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Abstract

Recently, many self-supervised pre-training methods have
been proposed to improve the performance of deep neural
networks (DNNs) for 3D point clouds processing. However,
the common mechanism underlying the effectiveness of dif-
ferent pre-training methods remains unclear. In this paper,
we use game-theoretic interactions as a unified approach
to explore the common mechanism of pre-training methods.
Specifically, we decompose the output score of a DNN into
the sum of numerous effects of interactions, with each in-
teraction representing a distinct 3D substructure of the in-
put point cloud. Based on the decomposed interactions, we
draw the following conclusions. (1) The common mecha-
nism across different pre-training methods is that they en-
hance the strength of high-order interactions encoded by
DNNs, which represent complex and global 3D structures,
while reducing the strength of low-order interactions, which
represent simple and local 3D structures. (2) Sufficient
pre-training and adequate fine-tuning data for downstream
tasks further reinforce the mechanism described above. (3)
Pre-training methods carry a potential risk of reducing
the transferability of features encoded by DNNs. Inspired
by the observed common mechanism, we propose a new
method to directly enhance the strength of high-order in-
teractions and reduce the strength of low-order interactions
encoded by DNNs, improving performance without the need
for pre-training on large-scale datasets. Experiments show
that our method achieves performance comparable to tra-
ditional pre-training methods.

1. Introduction
Self-supervised pre-training methods for 3D point clouds
have developed rapidly in recent years [1, 9, 13, 16, 21, 23,
30, 32, 38, 43]. Pre-training methods first train DNNs on
large-scale unlabeled datasets, then fine-tune the DNNs on
downstream tasks, generally enhancing their performance.
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However, the common mechanism underlying different pre-
training methods remains unclear, posing challenges for
gaining insights into effective model training strategies.

In this paper, we aim to explore the common mech-
anism behind the performance improvements of different
pre-training methods, thereby providing insights into pre-
training, and offering better guidance for the training pro-
cess. Recent studies have employed interactions to explain
the reasoning processes of DNNs [20, 25, 41]. Inspired by
these studies, we use interactions to provide a unified inter-
pretation of different pre-training methods.

Specifically, given a point cloud x with n regions1 in-
dexed by N = {1, 2, . . . , n}, an interaction represents the
collaborations among regions within a specific 3D struc-
ture S ⊆ N , where each interaction has a numerical ef-
fect I(S) on the network output. For example, as shown
in Fig. 1, the interaction between the regions in S1 =
{wingtip,wing root} form a concept of “wing”, contribut-
ing I(S1) to push the classification result toward the class
“airplane”. It has been proven by [6, 44] that the output
score of a DNN consistently equals the sum of the effects
of all activated interactions, regardless of how the input re-
gions are masked. In this way, interactions can be seen as
the detailed inference patterns encoded by the DNN.

Based on interactions, we conduct comparative exper-
iments to explore the common reasons behind the per-
formance improvements of different pre-training methods.
Specifically, we explore the impact of pre-training meth-
ods on the complexity of interactions encoded by DNNs.
Here, the complexity refers to the number of regions con-
tained in an interaction, i.e., the order of the interaction. A
high-order interaction, e.g., S3 in Fig. 1, captures collabo-
rations among massive point regions, representing complex
and global 3D structures. In contrast, a low-order interac-
tion, e.g., S1, measures collaborations between a few re-
gions, representing simple and local 3D structures. From
the experiments, we draw the following key conclusions.

• The common mechanism across different pre-training

1We divide a point cloud into n regions following [26].
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Figure 1. (a) Illustration of how interactions can be used to explain a DNN. Given an input point cloud with n regions, the output score of
the DNN can be decomposed into the sum of the numerical effects of 2n interactions, where each interaction S encodes the collaborations
among the point cloud regions in the set S. (b) Comparing the strength of interactions across different orders encoded by the DGCNN
trained from scratch (scr) and the DGCNN using a pre-training method (pt). Results show that the pre-trained DGCNN encodes stronger
high-order interactions and weaker low-order interactions than the DGCNN trained from scratch.

methods is that they enhance the strength of high-
order interactions encoded by DNNs while reducing
the strength of low-order interactions. This common
mechanism indicates that pre-training methods enhance
the DNNs’ ability to capture global 3D structures, while
reducing their reliance on local 3D structures.

• Sufficient pre-training and adequate fine-tuning data
for downstream tasks further reinforce the mecha-
nism described above. We observe that the strength of
high-order interactions increases with the number of pre-
training epochs while the strength of low-order interac-
tions decreases. Additionally, increasing the amount of
data for downstream tasks also amplifies this effect.

• Pre-training methods carry a potential risk of reduc-
ing the transferability of features encoded by DNNs.
We observe that the performance of the pre-trained DNNs
may decrease on unseen test datasets, possibly due to pre-
training methods causing the DNNs to encode high-order
interactions with excessively high strength.
Building on the common mechanism we identified, we

propose a new method to directly enhance the strength of
high-order interactions encoded by DNNs while reducing
the strength of low-order interactions. Experimental results
on classification and semantic segmentation benchmarks
show that our method achieves performance comparable to
pre-training methods, without the need for pre-training
on large-scale unlabeled datasets.

2. Related work
Self-supervised learning (SSL) of 3D point clouds. Re-
cently, 3D point cloud processing has developed rapidly
[5, 11, 14, 15, 24, 27, 35, 37, 40], with many self-supervised
methods proposed to learn representations from individual
3D objects [1, 9, 13, 16, 21, 23, 30, 32, 38, 43]. The goal
of SSL is to design pretext tasks to help the model learn the

data distribution and features in advance, preparing it for
downstream tasks. In this paper, we explore the common
mechanism behind the performance improvement of the fol-
lowing five widely used open-source pre-training methods.

• Occlusion Completion (OcCo) [32]. OcCo masks oc-
cluded points from a camera view and trains an encoder-
decoder model to reconstruct these missing points.

• Jigsaw [21]. Jigsaw trains a model to reconstruct point
clouds with parts rearranged in random order.

• Implicit Auto-encoder (IAE) [38]. IAE trains the model as
an encoder to map the point clouds to a high-dimensional
space and uses a decoder to reconstruct the encoder’s out-
puts back into 3D geometry.

• Spatio-Temporal Representation Learning (STRL) [9].
STRL captures spatio-temporal information from 3D se-
quences by using two temporally correlated frames to
learn invariant representations.

• CrossPoint [1]. CrossPoint learns transferable represen-
tations by maximizing the agreement between 3D point
clouds and corresponding 2D images.

Using game-theoretical interactions to explain DNNs.
Game-theoretical interactions provide a solid theoretical
foundation for explaining DNNs. Ren et al. [17] proposed
a mathematical formulation for the concepts encoded by a
DNN, while Ren et al. [18] further leveraged these concepts
to define optimal baseline values for Shapley values. Li et
al. [10] provided a theoretical guarantee that interactions
accurately capture the true concepts encoded by a DNN.
At the application level, interactions have been widely used
to explain the representation capacity of DNNs from vari-
ous perspectives, including adversarial robustness [17, 34],
adversarial transferability [33], and generalization power
[41, 45]. In this paper, we use interactions to investigate
the common mechanism underlying different pre-training
methods for 3D point clouds.
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Figure 2. Process of dividing an input point cloud into n regions.

3. Interactions in 3D point cloud processing
Preliminaries: interactions. As a new explanatory metric,
interaction has been used to clarify the inference logic [7],
generalization power [34], and robustness of a DNN [45].
It can be viewed as a universal measure due to its close
theoretical connections with other metrics. As proven by
[19], the Harsanyi interaction serves as the basis for exist-
ing game-theoretic attributions and interactions, including
the Shapley value [22], the Shapley interaction index [8],
and the Shapley Taylor interaction index [28]. Please see
the supplementary material for additional details.

Quantifying interactions for 3D point cloud process-
ing. We extend interactions to 3D point clouds. Consider-
ing an point cloud x ∈ RP×3, we divide it into n regions, as
shown in Fig. 2. First, we apply the farthest point sampling
(FPS) algorithm to select n points from the point cloud as
the centers of each region. Then, we use the k-dimensional
tree (KDTree) algorithm to assign the remaining points to
their nearest region. By doing so, we divide the input point
cloud x into n regions, indexed by N = {1, 2, ..., n}.

Given a trained DNN v : RP×3 → R, we follow [10, 20,
25] to define the DNN’s output score as v(x) = log p

1−p to
represent the classification confidence, where p is the output
probability of the ground truth class. Then, the output score
can be rewritten as the sum of the numerical effects of all
2n interactions between the point regions, as follows.

v(x) =
∑
S⊆N

I(S). (1)

Here, I(S) represents the numerical effect of the interac-
tion among the point regions in S ⊆ N , defined as follows.

I(S)
△
=

∑
T⊆S

(−1)|S|−|T | · v(xT ), (2)

where xT represents the input point cloud with the regions
in T ⊆ N unchanged, while the regions in N\T are masked
by replacing them with the centroid of the point cloud.

Understanding interactions in 3D point cloud pro-
cessing. The interaction extracted from the input point
cloud x encodes an AND relationship among the point re-
gions in S, with the numerical effect I(S) representing the
combined contribution of these regions to the output score
v(x). As shown in Fig. 1, when the point regions in the
set S1 = {wingtip,wing root} are unmasked, they form a
“wing” pattern and contribute a numerical effect I(S1) that
pushes the output score v(x) towards the “airplane” cate-
gory. Masking any region in S1 will deactivate this AND

interaction and remove I(S1) from v(x). In fact, Tang et
al. [29] has proven that interaction satisfies the universal
matching property, which states that the DNN’s inference
score v(xT ) can always be faithfully explained as the
sum of the numerical effects of all activated interactions,
regardless of how the point cloud regions are masked.

Theorem 1 (Universal matching property, proven by
[29]). Given an input sample x with n variables indexed
by N = {1, 2, ..., n}, we can generate 2n masked samples
xT where T ⊆ N . Let us construct the following surrogate
logical model ϕ(·) to use interactions for inference, which
are extracted from the DNN v(·) on the sample x. Then,
the output of the surrogate logical model ϕ(·) can always
match the output of the DNN v(·), regardless of how the
input sample is masked.

∀ T ⊆ N, ϕ(xT ) = v(xT ),

ϕ(xT ) = v(x∅) +
∑
S⊆N

I(S) · 1
(

xT triggers
AND relation S

)
= v(x∅) +

∑
∅≠S⊆T

I(S).

(3)

Defining and quantifying the representation complex-
ity of DNNs. The order of an interaction is defined as
m = |S|, which reflects the representation complexity of
DNNs. High-order interactions measure the effects of col-
laborations among massive point cloud regions, represent-
ing global and complex 3D structures, while low-order in-
teractions measure the effects of collaborations between a
few point regions, representing simple and local 3D struc-
tures. We introduce a new metric for measuring the repre-
sentation complexity of DNNs, as follows.

κ(m) ≜
ExES⊆N,|S|=m [|I(S)|]

Z
, (4)

where E denotes the mathematical expectation, and Z =
ExES⊆N [|I(S)|] is a normalization term to ensure fair
comparisons across different DNNs. Here, κ(m) measures
the normalized average strength of the m-th order interac-
tions. If the value of κ(m) of a high-order is larger than
that of a low-order, the DNN’s representation complexity is
enough to capture global and complex 3D structures. Oth-
erwise, the DNN’s representation complexity is limited to
encoding only local and simple 3D structures.

We further propose the following metrics to measure the
strength of high-order interactions and low-order interac-
tions encoded by the DNN.

κhigh =
∑

m∈Ωhigh

κ(m), s.t. Ωhigh def
= {m | ⌈2

3
n⌉ < m ≤ n},

κlow =
∑

m∈Ωlow

κ(m), s.t. Ωlow def
= {m | 1 ≤ m ≤ ⌈1

3
n⌉},

(5)

where Ωhigh and Ωlow denote the ranges of high-order and
low-order interactions, respectively.
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Figure 3. [Conclusion 1] (a) Comparing the normalized average strength of interactions encoded by different DNNs, including DNNs
trained from scratch and DNNs trained with different pre-training methods. Results show that the DNNs using pre-training methods
consistently encode stronger high-order interactions and weaker low-order interactions than the DNNs trained from scratch. (b) The
relationship between the strength of high-order interactions encoded by different DNNs and their corresponding classification accuracy.
Results show that DNNs encoding stronger high-order interactions tend to exhibit higher accuracy.

4. Interpreting different pre-training methods
using interactions

4.1. Comparative study setup
For a given network architecture, we compare the interac-
tions encoded by the model trained from scratch with those
encoded by models trained using various pre-training meth-
ods. This comparison aims to explore whether these pre-
training methods share a common underlying reason for
performance improvement, which we define as the common
mechanism across these methods. To provide a unified ex-
planation for most pre-training methods, we conduct exper-
iments on five widely used open-source pre-training meth-
ods, including IAE [38], STRL [9], CrossPoint [1], OcCo
[32] and JigSaw [21], as detailed in Sec. 2.

Networks and datasets. We conduct experiments on
three network architectures: DGCNN [35], PointNet [14],
and PCN [40]. For DGCNN, we utilize all five pre-training
methods, while for PointNet and PCN, we focus on OcCo
[32] and Jigsaw [21], depending on the accessibility of
open-source implementations for each pre-training method.

To compare the interactions encoded by different DNNs,
we use three benchmark datasets for 3D classification task:
ModelNet40 [36], ShapeNet2 [3], and ScanObjectNN [31].
Tab. 1 shows the statistics of these datasets. We randomly
select 10 samples per class from each dataset and use the

2The ShapeNet dataset for classification is derived from the ShapeNet
part segmentation dataset, following [26].

Name Type # Class # Training / Testing

ModelNet synthesized 40 9,843 / 2,468
ShapeNet synthesized 16 12,137 / 4,744
ScanObjectNN real world 15 2,304 / 576

Table 1. Statistics of datasets for classification.

method in Sec. 3 to divide each point cloud sample into n
regions for quantifying the interactions encoded by DNNs.

4.2. Exploring the common mechanism of different
pre-training methods

Conclusion 1. The common mechanism across dif-
ferent pre-training methods is that they enhance the
strength of high-order interactions encoded by DNNs,
while reducing the strength of low-order interactions.

Fig. 3 (a) shows the normalized average strength of the
interactions encoded by different DNNs, including DNNs
trained from scratch and DNNs using different pre-training
methods. Results show that the strength of high-order inter-
actions encoded by the DNNs using pre-training methods
is consistently greater than that of the DNNs trained from
scratch, across all datasets and network architectures. Con-
versely, the DNNs using pre-training methods typically en-
code weaker low-order interactions than the DNNs trained
from scratch. Fig. 3 (b) further illustrates the relationship
between the strength of high-order interactions and the clas-
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Figure 4. Visualization of interactions encoded by the DGCNN
trained from scratch (scr) and the DGCNN pre-trained (pt) with
IAE. The pre-trained DGCNN typically encodes stronger high-
order interactions and weaker low-order interactions compared to
the DGCNN trained from scratch.

sification accuracy across different DNNs. We observe that
DNNs encoding stronger high-order interactions tend to ex-
hibit higher accuracy. Thus, we regard this shared phe-
nomenon as the common mechanism behind the per-
formance improvement of different pre-training meth-
ods, i.e., different pre-training methods generally en-
hance the strength of high-order interactions encoded
by DNNs, while reducing the strength of low-order in-
teractions, as summarized in Conclusion 1.

Conclusion 1 reveals that pre-training methods enhance
the ability of DNNs to encode complex and global 3D
structures, while reducing their reliance on simple and lo-
cal 3D structures. As simple and local 3D structures (e.g.,
a curve, a corner) can appear across different categories,
they often lack sufficient classification information, so an
over-reliance on them may lead to incorrect classifications.
For example, as shown in Fig. 4, the DNN trained from
scratch incorrectly classifies a “plant” sample as a “stool”.
This misclassification may occur because the local struc-
tures the DNN learns for the plant, such as the “stem” and
the “leaf ”, are similar to some local structures of a stool,
such as the “legs”. However, the DNN still encodes a high
strength for these local structures (i.e., low-order interac-
tions), which results in an incorrect classification. In con-
trast, pre-training methods improve the modeling of com-
plex and global 3D structures, allowing DNNs to get a more
comprehensive understanding of the input, which in turn en-
hances their performance. Thus, beyond traditional accu-
racy metrics, interactions can help identify the poten-
tial reasons for classification errors by revealing which
3D structures modeled by the DNN have inappropriate
weights, offering a new perspective for debugging.

Comparison with transformer-based pre-training meth-
ods. We also measure interactions encoded by transformer-
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Figure 5. Comparing the normalized average strength of inter-
actions encoded by (1) transformer-based models, (2) traditional
DNNs (e.g., DGCNN and PointNet) trained from scratch, and (3)
traditional DNNs using pre-training methods (e.g., DGCNN with
IAE, and PointNet with OcCo). Results show that transformer-
based models also encode stronger high-order interactions and
weaker low-order interactions, exhibiting a similar pattern to tra-
ditional DNNs using pre-training methods.

based models, including PointBERT [39], PointMAE [12],
PointM2AE [42], and PointGPT [4]. These models in-
tegrate pre-training methods into the model architecture,
making them incompatible with traditional DNNs (e.g.,
DGCNN). Therefore, we directly compare the interactions
encoded by transformer-based models with the interactions
encoded by traditional DNNs, including the DNNs trained
from scratch and the DNNs trained with pre-training meth-
ods. As shown in Fig. 5, transformer-based models also en-
code stronger high-order interactions and weaker low-order
interactions than traditional DNNs trained from scratch,
which exhibit a similar pattern to the interactions encoded
by traditional DNNs using pre-training methods. This fur-
ther supports Conclusion 1.

4.3. Exploring the impact of different factors on the
common mechanism

We further explore two factors that impact the common
mechanism: (a) the extent of pre-training, and (b) the
amount of fine-tuning data used for downstream tasks.

Conclusion 2(a). The pre-training process progres-
sively enhances the strength of high-order interactions
encoded while weakening the strength of low-order in-
teractions as the extent of pre-training increases.

In this subsection, we first investigate the relationship
between the extent of pre-training and the strength of inter-
actions encoded by DNNs. Here, the extent of pre-training
refers to the number of pre-training epochs, i.e., the range of
epochs from the start of pre-training to the epoch at which
pre-training converges. To this end, we conduct experi-
ments on DGCNN with two pre-training methods, including
IAE and CrossPoint. For each pre-training method, let Tmax
denote the total number of epochs at which the pre-training
process of the DNN converges. We select the DNNs at
training epochs 0, 0.2Tmax, 0.4Tmax, . . . , Tmax, covering six
different stages of the pre-training process. Then, for all
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Figure 6. [Conclusion 2(a)] Comparing the normalized average
strength of interactions encoded by DGCNNs pre-trained for dif-
ferent extents, ranging from initial pre-training (0%) to full conver-
gence (100%). As the extent of pre-training increases, the strength
of high-order interactions encoded by the DNNs typically rises,
while the strength of low-order interactions generally decreases.
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Figure 7. [Conclusion 2(b)] Comparing the normalized average
strength of interactions encoded by DNNs fine-tuned with vary-
ing amounts of data. Results show that as the amount of fine-
tuning data increases from 1% to 100%, the strength of high-order
interactions encoded by the DNNs generally increases, while the
strength of low-order interactions generally decreases.

DNNs at different pre-training extents, we fine-tune them
on the same downstream task and quantify the interactions
encoded by these fine-tuned DNNs.

Fig. 6 presents the experimental results. We observe
that as the extent of pre-training increases, the strength of
high-order interactions encoded by the DNNs generally in-
creases, while the strength of low-order interactions typi-
cally decreases. We summarize this relationship between
the extent of pre-training and the interactions encoded by
DNNs in Conclusion 2(a). This conclusion suggests that
sufficient pre-training enhances the model’s ability to cap-
ture complex and global 3D contexts, further validating the
common mechanism outlined in Conclusion 1.

Conclusion 2(b). Increasing the amount of fine-
tuning data further enhances the strength of high-order
interactions encoded by DNNs, while weakening the
strength of low-order interactions.

To investigate the relationship between the amount of
fine-tuning data for downstream tasks and the interactions
encoded by DNNs, we construct seven training sets of vary-
ing sizes from the ModelNet40 dataset, containing 1%,
10%, 20%, 30%, 50%, 70%, and 100% of the original Mod-
elNet40 training data, respectively. Note that we ensure

High-order interaction strength 𝜅𝜅highTop-1 accuracy (%)

Percent of fine-tuning data amount (%)Percent of fine-tuning data amount (%)

+8.5

+0.2

+0.13

+2.61

Figure 8. Comparing the classification accuracy and the strength
of high-order interactions encoded by different DNNs fine-tuned
with varying amounts of data. As the amount of data increases,
the accuracy gap between the DNN trained from scratch and the
DNN pre-trained with IAE narrows, while the gap in the strength
of high-order interactions encoded by these DNNs widens.

at least one sample from each class is included, allowing
the model to learn from all categories. We then use the
different-sized training sets to fine-tune DGCNNs, includ-
ing those pre-trained using the IAE method and the Cross-
Point method. As shown in Fig. 7, as the amount of fine-
tuning data increases, the strength of high-order interactions
encoded by DNNs gradually increases, while the strength
of low-order interactions decreases. We summarize this re-
lationship between the amount of fine-tuning data and the
interactions encoded by DNNs in Conclusion 2(b).

4.4. Exploring the potential risk of pre-training
methods in reducing DNN’s transferability

Conclusion 3. Pre-training methods carry a poten-
tial risk of reducing the transferability of features en-
coded by DNNs.

When exploring the relationship between the amount of
fine-tuning data and the interactions encoded by DNNs, we
observe the following anomalous phenomenon. As shown
in Fig. 8, the gap in classification accuracy between the pre-
trained DNN and the DNN trained from scratch becomes
marginal as the fine-tuning data increases. For example,
when the fine-tuning data reaches 100%, the accuracy gap
is only 0.2%. However, the gap in the strength of high-order
interactions between the two DNNs gradually increases, in-
dicating that high-order interactions with excessively high
strength are not necessary for performance improvement.

Since high-order interactions generally carry a greater
risk of overfitting [41], we investigate the potential risk of
pre-training methods in reducing the transferability of fea-
tures encoded by DNNs. Here, the transferability of fea-
tures refers to the generalization ability of the features. For
example, if the features learned from one dataset (e.g., the
features of the airplane class in ModelNet) can be applied to
another unseen dataset (e.g., identifying the airplane class
in ShapeNet), we consider these features to have high trans-
ferability. To this end, we use ShapeNet as the unseen
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Figure 9. [Conclusion 3] Comparing the zero-shot classification
accuracy of DNNs with and without pre-training, followed by fine-
tuning with varying amounts of data. Results show that the zero-
shot accuracy of the pre-trained DNN initially exceeds that of the
DNN trained from scratch when the fine-tuning data is limited
(e.g., 1%), but falls below that of the DNN trained from scratch
as the fine-tuning data becomes sufficient (e.g., 100%).

dataset and compare the classification accuracy of different
DNNs, including DGCNNs trained with varying amounts
of data from ModelNet, as well as DGCNNs pre-trained
and then fine-tuned with varying amounts of data. Since
the category labels in the two datasets do not completely
align, we identify eight common categories. Please see the
supplementary material for more implementation details.

Fig. 9 shows the results. We find that when the amount
of fine-tuning data is limited (e.g., 1%), pre-trained DNNs,
such as the DNN pre-trained with CrossPoint, achieve
higher zero-shot accuracy (+8.9%) compared to the DNN
trained from scratch. In contrast, when the fine-tuning data
is sufficient (e.g., 100%), the accuracy of the DNN pre-
trained with CrossPoint significantly lags behind that of the
DNN trained from scratch (-14.7%). We attribute this to
pre-training methods causing DNNs to encode high-order
interactions with excessively high strength, which in turn
reduces the transferability of the features encoded by the
DNNs. Note that we are not criticizing the use of pre-
training methods to enhance the strength of high-order in-
teractions encoded by DNNs as inherently negative. Rather,
we are proposing this potential risk and offering new in-
sights for the design of pre-training methods.

5. Guiding the training process using the com-
mon mechanism

Traditional pre-training methods, while improving perfor-
mance, inevitably require extensive pre-training on large-
scale unlabeled datasets, which demands considerable time
and computational resources. As discussed above, we
find that the common mechanism underlying different
pre-training methods is that they universally enhance the
strength of high-order interactions encoded by DNNs while
reducing the strength of low-order interactions. Building
on this insight, we propose a new method that directly en-
hances the strength of high-order interactions encoded by
DNNs while reducing the strength of low-order interac-
tions. In this way, our method achieves performance
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Figure 10. (a) Curves showing the values of the proposed loss term
Linteraction for different values of α throughout the training process.
(b) Comparison of the normalized average strength of interactions
encoded by DNNs for various α values in the loss term.

comparable to traditional pre-training methods while
avoiding the need for pre-training on large-scale unla-
beled datasets. Specifically, we introduce a new heuristic
loss term defined as follows.

Linteraction = Ex

[
E|S|∈Ωlow [|I(S)|]− E|S|∈Ωhigh [|I(S)|]

]
, (6)

where Ωhigh and Ωlow define the ranges of high-order and
low-order interactions, as detailed in Sec. 3. Minimiz-
ing the loss term Linteraction forces the DNN to weaken
the strength of low-order interactions, i.e., decreasing
ExE|S|∈Ωlow [|I(S)|], while enhancing the strength of high-
order interactions, i.e., increasing ExE|S|∈Ωhigh [|I(S)|].

However, computing Eq. (6) is NP-hard. To overcome
this challenge, we approximate Linteraction using a sampling-
based approach. Specifically, given a point cloud x with n
regions indexed by N = {1, 2, ..., n}, we sample three dis-
joint subsets S1, S2, S3 ⊆ N where the orders of the sub-
sets |S1|, |S2|, |S3| ∈ Ωlow, with each subset representing
a low-order interaction encoded by the DNN. We consider
the union Sunion = S1 ∪ S2 ∪ S3 as a relatively high-order
interaction. Then, we can approximate the interaction loss
Linteraction as follows.

L′
interaction = ES1,S2,S3⊆N

[
Ei∈{1,2,3} [|I(Si)|]− |I(Sunion)|

]
.

(7)
Given a traditional DNN, we incorporate the interaction

loss into the training process using the following loss func-
tion for the classification task, without the need for addi-
tional pre-training on large-scale unlabeled datasets.

L = Lclassification + αLinteraction, (8)

where Lclassification denotes the standard classification loss
function (e.g., cross-entropy loss), and α > 0 is the hyper-
parameter controlling the strength of the interaction loss.
Please see Tab. 4 for the effects of varying α. As shown in
Fig. 10 (b), the strength of high-order interactions encoded
by the DNN with α > 0 is generally higher than the re-
sult when α = 0, but it does not increase indefinitely as α
grows. This shows the effectiveness of our interaction loss.

Experiments and results analysis. To evaluate the ef-
fectiveness of the proposed loss term, we conduct experi-
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Method ModelNet40 ScanObjectNN No Pre-train

PointNet 89.2 68.0 !

PointNet + JigSaw 89.6 - %

PointNet + OcCo 90.1 - %

PointNet + Linteraction (Ours) 90.1 69.0 !

DGCNN 92.5 78.1 !

DGCNN + JigSaw 92.6 83.5 %

DGCNN + OcCo 93.0 84.3 %

DGCNN + STRL 93.1 - %

DGCNN + CrossPoint 92.8 - %

DGCNN + IAE 94.2 85.6 %

DGCNN + Linteraction (Ours) 93.3 79.4 !

CurveNet 92.8 79.2 !

CurveNet + Linteraction (Ours) 93.1 82.0 !

GDANet 92.3 78.7 !

GDANet + Linteraction (Ours) 92.8 80.0 !

Table 2. Classification accuracy (%) on ModelNet40 and ScanOb-
jectNN datasets. The best results are shown in bold and the
second-best results are underlined. Our method achieves re-
sults comparable to pre-training methods, while not requiring pre-
training on large-scale datasets.

ments on 3D point cloud classification and semantic seg-
mentation tasks. For the classification task, we use the
ModelNet40 and ScanObjectNN datasets, as described in
Sec. 4.1. Specifically, for the ScanObjectNN dataset, we
conduct experiments using the PB T50 RS variant, which
is the most challenging variant. We train PointNet and
DGCNN using the proposed loss term and set α to 0.0005.
As shown in Tab. 2, our proposed loss term consistently im-
proves the performance of PointNet, DGCNN, CurveNet
[11], and GDANet [37] on both the ModelNet40 and the
ScanObjectNN testing splits, compared to their original ver-
sions. Moreover, our method demonstrates performance
comparable to pre-training methods, without the need for
pre-training on large-scale datasets.

For the semantic segmentation task, we conduct ex-
periments on the Stanford Large-Scale 3D Indoor Spaces
(S3DIS) dataset [2]. The S3DIS consists of 3D point clouds
collected from six distinct large-scale indoor environments,
with each point cloud annotated with per-point categorical
labels. We randomly subsample 4,096 points from the orig-
inal point cloud and apply 6-fold cross-validation during
fine-tuning. Since the proposed interaction loss is specif-
ically designed for 3D classification, it cannot be directly
applied to segmentation tasks. Instead, we adopt a two-
stage training approach: first, we train a DNN on the clas-
sification task with our interaction loss, and then fine-tune
the model on the semantic segmentation task. As shown in
Tab. 3, the DGCNN using the proposed loss term achieves
86.8% overall accuracy and 59.0% mIoU, outperforming
the majority of pre-training methods. Additionally, our loss
term also improves the performance of the PointNet.

Effects of the hyper-parameter α. We train the

Method S3DIS 6-Fold

OA mIoU

PointNet 78.5 47.6
PointNet + Linteraction (Ours) 82.1 50.8

DGCNN 84.1 56.1
DGCNN + JigSaw 84.4 56.6
DGCNN + OcCo 85.1 58.5
DGCNN + STRL 84.2 57.1
DGCNN + IAE 85.9 60.7
DGCNN + Linteraction (Ours) 86.8 59.0

Table 3. Semantic segmentation on S3DIS. We report Overall Ac-
curacy (OA) and mean Intersection over Union (mIoU) across six
folds. Our method surpasses most pre-training methods.

α ModelNet40 ScanObjectNN

0.0 92.5 78.1
0.0001 93.0 79.0
0.0005 93.3 79.4
0.001 91.3 78.1

Table 4. Classification accuracy (%) for DGCNNs trained with
varying hyper-parameters α for the interaction loss.

DGCNN with various interaction loss weights α and eval-
uate the testing accuracy, as shown in Tab. 4. The accu-
racy initially increases and then decreases as α rises. We
attribute this to the loss term enhancing the strength of high-
order interactions encoded by the DNN. At lower α values,
the interaction loss improves the DNN’s modeling of global
3D structures. However, excessively high values of α lead
to excessively high strength of high-order interactions, in-
creasing the risk of overfitting, as discussed in Conclusion
3. With an appropriately chosen α, the interaction loss ef-
fectively enhances the training process, further supporting
the common mechanism outlined in Conclusion 1.

6. Conclusion

In this paper, we use interactions to investigate the common
mechanism underlying the effectiveness of different pre-
training methods for 3D point clouds. Specifically, these
methods generally enhance the strength of high-order inter-
actions encoded by DNNs, while reducing the strength of
low-order interactions. We then explore the impact of var-
ious factors on the mechanism and find that sufficient pre-
training and adequate fine-tuning data further reinforce this
mechanism. Additionally, we identify a potential risk that
pre-training may reduce the transferability of DNNs. Based
on the common mechanism, we propose a new method that
directly enhances the strength of high-order interactions en-
coded by DNNs while weakening the strength of low-order
interactions. Experiments show that our method achieves
performance comparable to pre-training methods, without
the need for pre-training on large-scale datasets.
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