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Figure 1. A gallery of our reconstructed CAD models (middle and right) from single-view RGB images (left). The reconstructed shapes

are shown in light blue (middle), while their topological representations of B-rep vertices and edges are shown in green (right).

Abstract

Diffusion-based 3D generation has made remarkable

progress in recent years. However, existing 3D genera-

tive models often produce overly dense and unstructured

meshes, which stand in stark contrast to the compact, struc-

tured, and sharply-edged Computer-Aided Design (CAD)

models crafted by human designers. To address this gap,

we introduce CADDreamer, a novel approach for generat-

ing boundary representations (B-rep) of CAD objects from

a single image. CADDreamer employs a primitive-aware

multi-view diffusion model that captures both local geomet-

ric details and high-level structural semantics during the

generation process. By encoding primitive semantics into

the color domain, the method leverages the strong priors

of pre-trained diffusion models to align with well-defined

primitives. This enables the inference of multi-view nor-

mal maps and semantic maps from a single image, facil-

itating the reconstruction of a mesh with primitive labels.

Furthermore, we introduce geometric optimization tech-

niques and topology-preserving extraction methods to miti-

gate noise and distortion in the generated primitives. These

enhancements result in a complete and seamless B-rep of

the CAD model. Experimental results demonstrate that our

method effectively recovers high-quality CAD objects from

single-view images. Compared to existing 3D generation

techniques, the B-rep models produced by CADDreamer

are compact in representation, clear in structure, sharp in

edges, and watertight in topology.

1. Introduction

Recently, the field of image-based 3D generation has

undergone significant advancements [10, 25–27, 32, 36,

40]. Progress in diffusion models trained on large-scale

datasets [5, 10, 34] has greatly streamlined the transforma-

tion of 2D images into 3D models, heralding a revolution in

3D content creation.

Despite the increasing amount of work on image-based

3D generation, a critical issue remains. The meshes pro-

duced by these methods are typically derived from low-

level representations such as neural implicit fields [30, 37],

leading to over-tessellated meshes that lack explicit geomet-

ric structure and semantics. In contrast, human designers

often conceptualize 3D objects at a higher level, perceiv-

ing shapes as compositions of basic primitives and feature

curves [24]. As a result, designer-created 3D meshes are

compact in representation while preserving clear structures

and sharp edges. This significant disparity limits the prac-

tical applicability of 3D generative models in scenarios de-

manding high-quality, structured 3D models, such as gam-

ing, manufacturing, and product design.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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To bridge the quality gap between shapes created by

human designers and those generated by 3D generative

models, this paper focuses on reconstructing Computer-

Aided Design (CAD) models from single-view images us-

ing diffusion-based generative models. CAD objects offer

a higher level of abstraction in shape modeling and ensure

structural integrity aligned with human perception. Con-

sequently, generating CAD objects requires diffusion mod-

els to understand and interpret high-level structures and ge-

ometric primitives. However, single-view images capture

only partial information about 3D shapes, necessitating the

inference of complete CAD models comprising structured

geometric primitives. Additionally, reconstructing the wa-

tertight boundary representation (B-rep) of CAD objects

poses significant challenges due to inevitable noise and dis-

tortion in the generated geometric primitives. Even minor

deviations in primitives can disrupt intersection edges, re-

sulting in misaligned primitives or non-watertight B-reps

that are unsuitable for manufacturing and product design.

To address these challenges, we propose CADDreamer,

a method for reconstructing CAD objects from single-view

images. It consists of the following two main modules.

Module 1 - Multi-view Generation: CADDreamer recon-

structs a complete 3D mesh and segments it into patches

representing six types of geometric primitives: planes,

cylinders, cones, spheres, tori, and boundary feature lines.

Specifically, we employ a cross-domain multi-view diffu-

sion model [29] to jointly predict normal maps and seman-

tic primitive maps. The normal maps are fed into NeuS [37]

to reconstruct the complete 3D mesh. Semantic primitive

maps are back-projected onto the mesh faces, and a Graph

Cut process divides the reconstructed mesh into patches,

each corresponding to a geometric primitive.

Module 2 - Geometric and Topological Extraction:

CADDreamer estimates the primitive parameters for each

patch and calculates the vertices, edges, and faces of B-rep

by determining intersections between primitives. To ensure

accuracy, a geometry optimization algorithm corrects noisy

primitive parameters, restoring relationships such as par-

allelism, perpendicularity, collinearity, and intersections.

This ensures proper intersection curves are computed. The

resulting topological representation, derived from the seg-

mented mesh, guides the intersection of geometric primi-

tives, ultimately producing a watertight B-rep model with

accurate CAD vertices, edges, and faces.

The contributions of this paper can be summarized as:

• CADDreamer Framework: We propose CADDreamer,

a two-module framework for high-quality CAD recon-

struction from single-view images. The first module

leverages large-scale diffusion models [34], exhibiting su-

perior generative capabilities and a powerful capacity to

handle diverse geometric shapes. With cross-view and

cross-domain attention mechanisms, the diffusion model

ensures high consistency in both geometry and semantics

across multiple views. However, the reconstructed mesh

from multi-view images may inevitably suffer from dis-

tortions and noise. Even with semantic guidance, these

inaccuracies can lead to failed computations of geomet-

ric primitive intersections, resulting in misaligned prim-

itives or non-watertight B-reps. To address these issues,

the second module of CADDreamer is designed to solve

the associated geometric and topological challenges.

• Semantic-enhanced Multi-view 2D Diffusion: We pro-

pose a multi-view 2D diffusion model that perceives high-

level semantics by encoding semantic information into

the color space. This approach differs from existing meth-

ods [25, 27, 40], which primarily focus on generating

low-level information such as colors and normals. By

enforcing strong priors in diffusion models, our method

aligns operations with well-defined primitives, inherently

enabling the model to understand and interpret high-level

structures of CAD objects.

• Geometry Optimization Algorithm: We introduce a ge-

ometry optimization algorithm to refine the parameters of

geometric primitives. This ensures the preservation of

topological and geometric relationships between neigh-

boring primitives, such as intersections, parallelism, per-

pendicularity, and collinearity.

• Topology-preserving B-rep Construction: We extract

a topological representation from segmented meshes and

use it to guide the topology-preserving extraction of CAD

vertices, edges, and faces. This process ultimately con-

tributes to generating a watertight and accurate B-rep of

CAD objects.

2. Related work

Traditional CAD reconstruction methods. Before the ad-

vent of learning-based reconstruction, a plethora of tradi-

tional methods had been developed for B-rep reconstruc-

tion, including parameter space-based methods [23, 33],

primitive growing/fitting-based methods [3, 21, 31, 35], and

variational surface fitting-based methods [42, 45]. For an

overview of these traditional methods, we refer readers to

the survey [13]. A major criticism of these traditional meth-

ods is that they require users’ aid, e.g., specifying primitive

fitting types manually [35]. Conversely, CADDreamer uti-

lizes a multi-view diffusion module to estimate fitting prim-

itive types and avoid human intervention.

Learning-based CAD Reconstruction Methods. Re-

cently, with the advancement of deep learning, numer-

ous learning-based CAD generation methods have been

proposed. These methods can be divided into three

main categories, including CAD instructions-based meth-

ods, retrieval and assembly-based methods, and parame-

ter surface-based methods. Firstly, CAD instructions-based

methods [17, 19, 39] reduce the B-rep generation into the
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Figure 2. The pipeline of CADDreamer. In the first module, the given single-view RGB image is converted as a normal map. Using

the normal map as input, the generation module uses a diffusion process to generate multi-view normal and semantic primitive maps.

Inputting the multi-view normal map into Neus [37], we obtain 3D meshes; back-projecting semantic primitive maps into 3D meshes,

we segmented the mesh into several patches with a Graph Cut process. In the second module, geometric optimization corrects the noisy

primitive parameters, while the topology-preserving extraction computes their topology-guided intersections and reconstructs a watertight

B-rep CAD model.

natural language generation. By utilizing a large amount

of CAD instructions as training data, these methods aim

to generate new CAD instructions to achieve CAD gener-

ation. However, these methods rely on massive CAD ob-

jects containing CAD instructions, resulting in unaccept-

able data preparation costs and limiting the potential appli-

cations of these methods. Secondly, retrieval and assembly-

based methods [12, 14, 17, 44] transform the problem of B-

rep reconstruction into a retrieval problem. Using the given

images or shapes as keys, these methods retrieve several

CAD objects with similar shapes and learn a potential as-

sembly scheme to achieve B-rep reconstruction, i.e., CSG

trees [14, 44]. Because maintaining a vast and compre-

hensive CAD database for retrieving typically incurs mas-

sive data preparation costs, these methods are not the first

choice for image-to-CAD conversion. Recently, parameter

surface-based methods [22, 28, 41] have made significant

progress in CAD reconstruction. These methods first divide

the shape into several parameter surfaces (e.g., primitives),

and then estimate the parameters and topologies of these pa-

rameter surfaces to implement CAD reconstruction. These

methods have made rapid progress in CAD reverse engi-

neering, but due to the constraints of their pipelines, they

cannot take images as inputs and achieve image-to-CAD

conversion.

Image2CAD. Most existing Image2CAD methods rely on

a retrieval-and-assembly pipeline based on implicit surfaces

rather than directly generating B-reps [7, 9, 11, 16, 18]. An-

other solution [1, 4, 43] generates B-reps with the conven-

tional sketch-extrude commands. While these methods can

produce B-reps directly, the generated objects are limited

to planes and cylinders. In contrast, CADDreamer over-

comes these limitations by directly generating B-reps with

a diverse set of primitives.

Single-view Reconstruction Methods. Large-scale diffu-

sion models [34], pre-trained on billion-scale data, have

shown tremendous potential and robust performance in

both 2D and 3D generation tasks. Numerous methods

based on large-scale diffusion modules have been applied

to tackle the problem of single-view 3D reconstruction and

have achieved state-of-the-art performance [38, 40], such

as Wonder3D [29], SyncDreamer [27], and LRM [10]. De-

spite their success, these approaches typically depend on

low-level representations to reconstruct 3D shapes, which

lack high-level shape comprehension. This often results

in significant noise and distortions in the reconstructed

meshes. In contrast, CADDreamer is designed to cap-

ture both low-level geometric representations and high-level

structured representations of 3D shapes, including seven

types of primitives, to mitigate reconstruction noises and

contribute to more compact geometric representations.

3. Method

As shown in Figure 2, CADDreamer consists of two main

modules: a multi-view generation module and a geomet-

ric and topological extraction module. First, the multi-view

generation module takes a single-view RGB image to re-

construct a complete 3D triangular mesh and then decom-

poses this mesh into distinct patches, each corresponding to

a primitive. Second, the geometric and topological extrac-

tion module refines the parameters of each primitive and

performs CAD reconstruction through topology-preserving

intersections between neighboring primitives. Sec. 3.1 de-

tails the multi-view generation module, while Sec. 3.2 elab-

orates on the geometric and topological extraction module.
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Figure 3. An example of the Graph Cut process to obtain com-

plete 3D mesh patches representing primitives. (a) depicts the

mesh patches generated by feature-line cut and back-projection.

(b) illustrates the process of Graph Cut algorithm to obtain mesh

patches corresponding to primitives.

3.1. Multi­view Generation Module

The multi-view generation module is designed to recon-

struct a complete 3D mesh and then partition the trian-

gles into distinct patches, each representing a CAD prim-

itive. While numerous existing multi-view diffusion mod-

ules achieve state-of-the-art performance in 3D mesh recon-

struction, these methods devote significant effort to recon-

structing multi-view textures and surface materials, which

are unnecessary for CADDreamer. Instead, our multi-view

generation module focuses on both reconstructing a com-

plete 3D mesh and generating a structured shape repre-

sentation—specifically, segmenting the mesh into triangle

patches that represent CAD primitives.

Thus, we develop a new multi-view generation module,

as illustrated in Figure 2. The entire process can be summa-

rized in four steps. First, we use a popular normal predic-

tor [2, 20] to generate a normal map from the single-view

RGB image. Second, using the generated normal map as

input, we fine-tune the popular cross-domain diffusion gen-

erative model, Wonder3D [29], to produce m multi-view

normal maps and m multi-view semantic primitive maps,

where m = 6 and feature lines have a width of three pixels

in this paper. In these maps, the RGB values in the normal

maps indicate normal directions, while those in each prim-

itive map represent primitive types, including feature lines

that separate neighboring primitives. To enhance generation

performance, we fine-tune two separate VAE decoders for

normal and primitive map generation, respectively. Third,

we input multi-view normal maps into NeuS [37] for 3D

mesh reconstruction. We remove the multi-view color in-

puts and associated texture reconstruction loss from NeuS,

as CADDreamer does not require texture reconstruction.

Finally, we utilize feature lines to divide each primitive map

into several 2D patches. These 2D patches are then back-

projected onto the mesh, where a Graph Cut process is ap-

plied to merge the back-projected patches into a cohesive

set of 3D mesh patches that represent different primitives.

Graph Cut Process. As shown in Figure 3, each back-

projected mesh patch is treated as an individual node, and

connectivity edges are added between adjacent or overlap-

ping patches. Mesh patches sharing triangle boundaries are

Primitives Parameters

Plane x⃗, p : normal and position

Cylinder
x⃗, p : axis and position,

r : radius

Cone
x⃗, p : axis and center position,

α : semi-angle, h : height

Torus
x⃗, p : axis and center position

rl : major radius, rs : minor radius

Sphere p : center position, r : radius

Relationships Determination

Topology

Relationship
Intersected : ( Intersection is not ∅)

Geometric

Relationships

Perpendicular: (x⃗1 · x⃗2 = 0)

Parallel: (x⃗1 · x⃗2 = 1)

Collinear : (∃t : p1 = p2 + tx⃗2)

Table 1. Definitions of parameters and relationships for primitives.

considered adjacent, while those with overlaps are over-

lapped. Using Efficient RANSAC [35], we extract primi-

tive parameters and calculate their cosine similarity as edge

weights. Since the 3D patches derived from the same im-

ages correspond to different primitives, merging patches

from the same images is considered an error in the graph cut

methodology. Given that the number of primitives in CAD

objects typically exceeds two, an initial cut threshold is set

to divide the mesh into two surface patches. This threshold

is then gradually increased to yield more connected compo-

nents. The minimum cut threshold that results in the fewest

errors is selected as the final cut threshold. Thus, through

the Graph Cut process, the multi-view generation module

effectively separates the constructed mesh into distinct sur-

face patches, each representing a CAD primitive.

Compared to previous models, our multi-view gener-

ation module incorporates two significant improvements.

First, we introduce an off-the-shelf normal prediction model

that converts the original images into normal maps, thereby

alleviating the interference caused by image textures and

shading variations. As a result, the impact of diverse tex-

tures and shading can be minimized, significantly reducing

the problem’s complexity and contributing to a more robust

reconstruction process. Second, we implement a new cross-

domain generation strategy for multi-view normal and se-

mantic primitive maps. By generating these maps together,

we not only reconstruct a 3D mesh but also segment it into

a structured representation of shapes, i.e., the five types of

primitives illustrated in Table 1.

3.2. Geometric and Topological Extraction Module

The multi-view generation module in Sec.3.1 converts the

given image into a 3D mesh and decomposes it into multiple

mesh patches, each representing a distinct primitive. The

geometric optimization module then aims to extract prim-
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itive surfaces and generate a CAD model by finding inter-

sections between these primitives. This process consists of

four main steps:

• First, we input the vertices of each mesh patch into the

RANSAC [35] algorithm to extract the parameters for

each primitive, as defined in Table 1.

• Next, we introduce a novel geometric optimization algo-

rithm to recover the topological relationships (e.g., inter-

sections) and geometric relationships (e.g., parallelism,

perpendicularity, and collinearity) between primitives,

with detailed definitions provided in Table 1.

• Third, we extract a topological representation from the

segmented mesh patches, encompassing vertices, edges,

and faces, as referred to Figure A1 in the supplement.

• Finally, using the extracted topological representation, we

perform topology-preserving intersection operations be-

tween each primitive surface and its neighboring primi-

tives to create CAD models’ vertices, edges, and faces.

The details of each step of the process are outlined below.

Primitive Extraction. In the first step, we build on pre-

vious studies [35] by using the RANSAC algorithm to es-

timate the parameters of primitives. Unlike direct least

squares fitting, which can be significantly affected by out-

lier data, RANSAC helps to mitigate the impact of such out-

liers. However, due to the inevitable distortion in 3D mesh

reconstruction from single-view images, the primitive pa-

rameters obtained from RANSAC may still be inaccurate.

As a result, some essential topological and geometric rela-

tionships between the primitives might not be preserved. As

illustrated in Figure 4(a), the expected intersecting primitive

surfaces may fail to intersect, leading to incorrect topologi-

cal relationships and reconstruction failures for vertices and

edges. Furthermore, since the parameters of primitives are

based on points, lines, and directions, it is crucial to pre-

serve key geometric relationships between these elements,

such as collinearity among points and lines, as well as par-

allelism and perpendicularity among directions. As shown

in Figure 4(b), (c), and (d), neglecting these vital geomet-

ric relationships can result in completely erroneous inter-

section curves, which may cause gaps in the reconstructed

CAD model. Therefore, in the next step, we aim to estab-

lish these important relationships between primitives before

implementing the intersection reconstruction strategy.

Geometric Optimization. In the second step, we introduce

a novel geometric optimization algorithm designed to re-

fine primitive parameters and restore four types of primitive

relationships. Specifically, our algorithm includes a prim-

itive stitching process aimed at recovering intersection re-

lationships while incorporating geometric relationships as

constraints to ensure that the final primitive parameters con-

form to these geometric relationships. The primitive stitch-

ing process can be divided into three key sub-steps.

First, we derive primitive intersection relationships from

Figure 4. Four key primitive relationships: (a-b) cylinder-plane in-

tersection and perpendicularity; (c) parallel cylinders; (d) collinear

cylinder and torus. Incorrect relationships (columns 2 & 4) yield

flawed intersections, while correct ones (columns 3 & 5) produce

accurate results.

adjacent patches on segmented meshes: primitives inter-

sect if and only if neighboring patches share boundaries.

Second, for each intersection relationship, we sample k

boundary vertices closest to intersecting primitives as stitch-

ing vertices (Figure 5(b)). We uniformly sample candidate

points along mesh segmentation boundaries (line-strings)

and select k points with minimal projection distances to

the intersecting primitives as stitching vertices. Third, we

project each stitching vertex onto the two primitive surfaces

and minimize the distance between the corresponding pro-

jection points by optimizing the parameters of the primitive

surfaces, as shown in Figure 5(c-f).

The optimization function for a stitching vertex vi be-

tween the two corresponding primitive surfaces A and B is

defined as follows:

fstch(vi) = ||π(vi, PA)− π(vi, PB)||, (1)

where PA and PB are the optimizable shape parameters

of the primitive surfaces A and B, and π(vi, PA) and

π(vi, PB) represent the projection points of vi on A and B,

respectively. By minimizing the sum of optimization func-

tions for all stitching vertices
∑

vi∈V
fstch(vi), the primi-

tive stitching algorithm reduces the distances between prim-

itive surfaces that should intersect, helping to prevent in-

tersection failures and preserve correct topological relation-

ships between neighboring primitives.

We also incorporate certain geometric relationships as

constraints within the primitive stitching process to ensure

that the resulting parameters satisfy these relationships.

• A parallel relationship means that two primitives share

the same axis direction, allowing us to optimize a single

axis direction while maintaining consistency between the

axes of both primitives.

• A collinear relationship implies that the position of prim-
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(a) (b) (c) (d) (e) (f)

Figure 5. An example of primitive stitching process with four stitching vertices. (a) shows the patch boundaries on reconstructed mesh, (b)

represents the sampled stitching vertices (k=4), (c) illustrates the initial primitives and the projected points of stitching vertices, (d) depicts

the stitching result after the first step of optimization, (e) shows the result at the 100th step, and (f) represents the final stitching result.

itive A (denoted as pA) can be expressed in terms of the

parameters of primitive B: pA = pB + x⃗B ∗ t, where

x⃗B is the axis direction of primitive B, as shown in Ta-

ble 1. Therefore, to enforce collinearity constraints, we

optimize the parameter t instead of pA.

• For a perpendicular relationship, we utilize the dot prod-

uct between the two axes as an additional optimization

function. Given the set of all stitching points V and all

perpendicular relationships P , the optimization function

can be expressed as:
∑

vi∈V
fstch(vi) +

∑
(C,D)∈P

x⃗C ·
x⃗D, where C and D are perpendicular primitives, and x⃗C

and x⃗D are their axis directions, respectively.

In our implementation, the three geometric relationships are

detected if the equations from Table 1 hold within a tol-

erance of 0.05. By employing the L-BFGS algorithm [6]

to optimize the objective function, we effectively minimize

the distances between primitive surfaces that should inter-

sect and reconstruct the geometric relationships between

primitives. Figure 5 illustrates an example of four stitching

points. As shown in Figure 5 (d), by enforcing constraints

to restore parallel and collinear relationships, the first step

of the optimization process re-establishes the parallel re-

lationship between the axes of the cylinders and planes.

Subsequently, as the optimization progresses, we gradually

restore the perpendicular and intersection relationships be-

tween the primitives, as shown in Figure 5 (e-f).

Extraction of Topological Representation. In the third

step, we extract a watertight topological representation from

the mesh to guide the intersection of the primitives. Specifi-

cally, each 3D mesh patch corresponds to a topological face,

while the edge curves adjacent to two patches are consid-

ered topological edges. Additionally, mesh vertices con-

nected to more than two patches are regarded as topological

vertices. The half-edge structure of the meshes provides di-

rectionality for the patch boundaries, and we inherit these

directions as the orientations of the topological edges. This

process enables us to extract a topological representation

from the segmented mesh, including topological vertices,

edges, and faces (see Figure A1 in the supplementary ma-

terial). Since the reconstructed meshes are watertight, this

topological representation is also watertight.

Topology-preserving CAD Reconstruction. In the final

step, we utilize this watertight topology as guidance to con-

struct the CAD model using the following intersection strat-

egy, which is divided into two main sub-steps.

First, we reconstruct the CAD curves for each face. Re-

ferring to Figure A1(a) in the supplement, each topological

edge’s neighborhood comprises two patches corresponding

to two primitives. We then compute the intersection of these

two primitives to obtain CAD curves. If multiple intersec-

tion curves exist between two primitives, we select the one

with the closest projection distance to the corresponding

topological edge. By applying this process to all topological

edges, we generate the CAD curves for each one.

Second, we reconstruct the CAD vertices, edges, and

faces using the following intersection strategy. Each topo-

logical vertex connects two topological edges, or CAD

curves. We compute the intersection of these two corre-

sponding CAD curves as the intersection point of the three

related primitives, given that each CAD curve is associated

with two neighboring primitives and one primitive is shared

between the two CAD curves. If multiple intersected ver-

tices are present, we select the vertex closest to the topo-

logical vertex as the reconstructed vertex. By applying this

process to all topological vertices, we obtain an equal num-

ber of CAD vertices. Using these CAD vertices to trim the

CAD curves allows us to create CAD edges. Furthermore,

by utilizing these CAD edges to trim the primitives, we ob-

tain CAD faces. By merging these CAD vertices, edges,

and faces, we create a complete and watertight boundary

representation (B-rep) for the CAD model.

4. Experiments

Dataset. We begin by training and evaluating CADDreamer

on synthetic images, followed by testing it on real-world

images. For the synthetic dataset, we curate 30,000 seam-

less CAD models from the ABC [15] and DeepCAD [39]

datasets. These CAD objects are enhanced with textures

and backgrounds, then rendered into multi-view images, re-

sulting in a training set of 29,000 samples and a testing set

of 1,000 samples. To maintain consistency, we adopt the
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Figure 6. The segmentation results and reconstructed B-rep models. Electric blue ( ) represents segmentation boundaries and edges of

B-rep objects. Other colors represents different primitives: plane ( ), cylinder ( ), cone ( ), sphere ( ), and torus ( ).

camera configurations and image resolution settings used

in Wonder3D [29]. Furthermore, we capture RGB images

of real CAD objects using handheld devices to assess our

model’s generalization performance on real-world objects.

Baselines. Currently, popular approaches for reconstruct-

ing B-reps fall into two categories: conventional sketch-

extrude methods [1, 4, 43] and more recent intersection-

based methods [28]. Because our dataset includes CAD

models with a diverse range of primitives—such as spheres,

tori, and cones—that cannot be reconstructed using conven-

tional sketch-extrude methods [1, 4, 43], we focus on com-

paring intersection-based models, which can handle these

varied primitive types. Our evaluation framework inte-

grates state-of-the-art single-view reconstruction methods

(e.g., SyncDreamer [27], LRM [10], CRM [38], and In-

stantMesh [40]) with B-rep reconstruction techniques like

Point2CAD [28]. For benchmarking, we apply these single-

view generation methods to create meshes, and then use

Point2CAD to segment the meshes into primitive shapes,

estimate primitive parameters, and convert them into B-

reps. Additional comparative assessments of the traditional

sketch-extrude approach within point cloud inputs are doc-

umented in the supplementary material.

Metrics. We evaluate generation quality across three as-

pects: meshes, primitives, and B-reps. First, an ideal re-

constructed mesh should minimize reconstruction distor-

tion and align closely with the original B-reps (i.e., prim-

itives). To assess geometric alignment between the re-

constructed mesh and the ground truth, we utilize two

widely-used metrics: Chamfer Distance (CD) and Normal

Methods CD (↓) NC (↑) SEG(V) (↑) SEG(P) (↑)

CRM [38] 3.97 64.4 40.2 49.3

LRM [10] 4.26 63.6 38.4 46.8

InstantMesh [40] 4.61 58.3 35.1 41.7

SyncDreamer [27] 5.49 48.9 29.8 33.2

CADDreamer 1.27 92.6 95.7 97.9

Table 2. Statistical results of reconstructed meshes and ex-

tracted primitives, including Chamfer distance (CD ×100), nor-

mal consistency (NC, %), segmentation accuracy based on ver-

tices (SEG(V), %), and segmentation accuracy based on primitive

counts (SEG(P),%). Best values are highlighted in bold.

Consistency (NC) [8]. Second, incorrect segmentation re-

sults—particularly the omission of primitives—can cause

significant fitting errors and reconstruction failures. To ad-

dress this, we evaluate both the percentage of correctly clas-

sified mesh vertices (SEG(V)) and the accuracy of predicted

primitive counts (SEG(P)). Additionally, fitting errors in

primitives can disrupt correct intersection relationships, re-

sulting in hanging faces or non-closed B-reps. To quantify

these issues, we calculate the proportion of hanging faces

(HF) in the resulting B-reps and measured the deviation of

the reconstructed B-reps from the ground truth using Cham-

fer Distance (CD).

Settings. We use Wonder3D [29] as our pre-trained model

to ensure more stable and faster convergence. All exper-

iments are conducted on a single machine equipped with

eight NVIDIA A100 GPUs (80GB each) and an AMD

EPYC 7313 CPU. The details of the comparative analyses

are presented below, while ablation studies and limitation

analyses are provided in the supplementary materials.
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Methods HF (↓) CD (↓)

CRM [38] 35.2 9.74

LRM [10] 39.6 11.6

InstantMesh [40] 43.6 13.1

SyncDreamer [27] 58.5 15.4

CADDreamer 2.4 1.36

Table 3. Statistical results of reconstructed B-reps, including the

percentage of B-reps with hanging faces (HF, %), and Chamfer

distance (CD ×100) between the reconstructed B-reps and ground

truth. Best values are highlighted in bold.

4.1. Comparisons on Synthetic Images

Figure 6 visually showcases the reconstruction results from

synthetic images, while Table 2 and 3 provide quantitative

comparisons. These results demonstrate that CADDreamer

offers significant advantages in mesh generation quality,

primitive extraction, and the topological fidelity of the re-

constructed B-reps.

CADDreamer’s key strength lies in its ability to si-

multaneously capture low-level geometric features (normal

maps) and high-level semantic shape understanding (prim-

itive maps), resulting in meshes with minimal distortion.

As shown in Figure 6, our method generates clean, com-

pact meshes with sharp edges, minimizing fitting errors

and reconstruction failures. In contrast, competing meth-

ods, which lack high-level semantic understanding, gener-

ate distorted reconstructions that significantly deviate from

the primitives. Quantitative results in Table 2 further vali-

date CADDreamer’s performance, showing that its meshes

exhibit the least geometric deviation from the ground truth,

with the lowest CD and highest NC values.

In addition, CADDreamer employs a back-projection

and Graph Cut process for primitive extraction, rather than

relying on traditional mesh or point cloud segmentation

methods. This approach enables more precise primitive ex-

traction. Single-view RGB image reconstructions often pro-

duce meshes with errors such as uneven surfaces and over-

smoothed boundaries. When these flawed meshes are pro-

cessed through segmentation-based methods for primitive

extraction, the reconstruction errors are amplified. For ex-

ample, two twisted planes with a smooth transition might

be misidentified as a single cone, as shown in Figure 6(a)

LRM. Using such incorrectly identified primitives for mesh

reconstruction inevitably results in excessive fitting errors

and reconstruction failures. In contrast, our method demon-

strates superior primitive extraction that aligns closely with

ground truth CAD models. Our segmentation approach

achieves more precise primitive labeling than other meth-

ods, with 97.9% of meshes correctly matching the primitive

count of the ground truth, as shown in Table 2.

Thirdly, CADDreamer refines critical relationships be-

tween adjacent primitives, such as intersection, paral-

Image Normal
Ours

(CAD)

CRM

(Mesh)

LRM

(Mesh)

InstantMesh

(Mesh)

SyncDreamer

(Mesh)

Ours

(Mesh)

(a)

(b)

(c)

Figure 7. Segmentation results and reconstructed B-reps from real

images (color definitions are the same as in Figure 6).

lelism, perpendicularity, and collinearity. It also employs

a topology-preserving intersection strategy to reconstruct

B-reps with accurate topology, reducing two common er-

rors: hanging faces that arise from incorrect primitive in-

tersections, and massive non-closed B-reps caused by non-

intersection, as shown in Figure 6(a-f). As shown in Table 3,

CADDreamer minimizes the percentages of hanging faces

(HF) while significantly reducing face reconstruction fail-

ures caused by non-intersection, resulting in the lowest CD

among compared approaches.

4.2. Comparisons on Real Images

We capture RGB images of real-world CAD objects us-

ing a Canon EOS R5 camera with a Canon EF 70 lens.

Era3D [20] is employed for background removal and as a

normal predictor to generate accurate normal maps, which

are subsequently used as inputs to evaluate our method’s

generalization capability on real-world CAD objects. As

shown in Figure 7, despite the fact that real images possess

more complex lighting and shadow effects, greater perspec-

tive distortion, and introduce larger errors in normal estima-

tion, our method still successfully reconstructs high-quality

CAD models, which demonstrates the generalization poten-

tial of our approach in handling real images.

5. Conclusion and Future Work

CADDreamer introduces a novel cross-domain, multi-view

generation strategy, along with a geometric optimization

and topological extraction process, enabling the accurate

generation of B-reps with diverse primitives. However, two

key limitations remain. First, the method’s performance

is constrained by image quantity and resolution, some-

times failing to detect extremely fine geometric features,

which leads to fitting inaccuracies and incomplete recon-

structions. Second, like existing single-view reconstruction

approaches, the system struggles with challenging view-

points and complex occlusions, especially when the cap-

tured angles do not reveal all the primitives. Our future

work will explore multi-view generation techniques that in-

corporate additional viewpoints and enhanced resolution to

address these limitations.
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