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Figure 1. OmniFlow is capable of a diverse range of any-to-any generation tasks. OmniFlow supports generation of any output modalities
given any input modality, such as text-to-image, text-to-audio, audio-to-image generations. It also supports tasks in multiple input modalities,
such as text+audio-to-image.

Abstract

We introduce OmniFlow, a novel generative model de-
signed for any-to-any generation tasks such as text-to-image,
text-to-audio, and audio-to-image synthesis. OmniFlow ad-
vances the rectified flow (RF) framework used in text-to-
image models to handle the joint distribution of multiple
modalities. It outperforms previous any-to-any models on a
wide range of tasks, such as text-to-image and text-to-audio
synthesis. Our work offers three key contributions: First, we

extend RF to a multi-modal setting and introduce a novel
guidance mechanism, enabling users to flexibly control the
alignment between different modalities in the generated out-
puts. Second, we propose a novel architecture that extends
the text-to-image MMDiT architecture of Stable Diffusion 3
and enables audio and text generation. The extended mod-
ules can be efficiently pretrained individually and merged
with the vanilla text-to-image MMDiT for fine-tuning. Lastly,
we conduct a comprehensive study of the design choices of
rectified flow transformers for large-scale audio and text
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generation, providing valuable insights into optimizing per-
formance across various modalities. Code is available at
https://github.com/jacklishufan/OmniFlows.

1. Introduction
Generative modeling has witnessed considerable advance-
ments in recent years. Notably, diffusion models such as
DALLE-3 [40], Stable Diffusion 3 [11], AudioLDM2 [33]
achieves state-of-the art performance on text-to-image and
text-to-audio tasks. However, these models can only per-
form a single task while requiring considerable computing
resources and data for training. To achieve any-to-any gen-
erations, previous works such as CoDi [46] and UIO [36]
typically combine a set of modality-specific encoders (e.g.
ViT [1]) and decoders (e.g. Stable Diffusion [44]). However,
this design limits these models’ ability to integrate infor-
mation across modalities and generate multi-modal outputs
coherently. For example, to perform audio+text-to-image
(A+T!I) generation, CoDi simply takes a weighted average
of the audio embedding and text embedding to condition
an image generator. However, there is no guarantee that the
averaged embedding can faithfully represent the two input
modalities, as arbitrarily many modality embeddings can
average to the same embedding.

An alternative approach for any-to-any generation is to
use a single multi-modal model to learn the joint distribu-
tion of multiple modalities. This approach has often led to
strong performance as it allows information to flow across
modalities. However, existing single-model designs typically
involve training from scratch, and thus require a considerable
amount of data. Existing works in this area, such as UniDif-
fuser [4] and Chameleon [47] only experiment with text and
image modalities. They also require considerable compute
resources. To the best of our knowledge, there has yet to be
a unified open-sourced multi-modal generative model that
supports text, image, and audio simultaneously.

We propose OmniFlow, a unified multi-modal generative
model for any-to-any generation. Unlike previous unified
multi-modal models, OmniFlow does not need to be trained
from scratch with a large amount of data because of its
modular design, saving considerable computing resources
for its training. OmniFlow is inspired by the MMDiT ar-
chitecture used in Stable Diffusion 3 [11], which performs
text-to-image generation using a two-stream network that
combines a text-input stream and an image-output stream
through a series of joint attention blocks. OmniFlow builds
on MMDIT by incorporating additional input and output
streams, extending its text-to-image capability to support
any-to-any generation. Crucially, since the parameters for
each stream are mostly independent, we can pretrain them
separately or initialize them with a pretrained single-task
expert model (e.g. SD3).

To effectively train OmniFlow, we propose a novel multi-
modal rectified flow formulation that incorporates a diverse
set of tasks, such as text-to-audio and audio-to-image, into
a unified learning objective. Multi-modal rectified flow is
built upon a decoupled, time-differentiable interpretation
between the distribution of a multi-modal data pair and i.i.d.
Gaussian noise. In this formulation, each of the any-to-any
generation tasks can be represented by a path connecting
two noise levels. For example, given text, image, and audio
modalities, the task of text+audio-to-image (T+A!I) can
be represented by a path between the distribution of (clean
text, clean audio, Gaussian noise) to (clean text, clean audio,
clean image).

We conducted extensive evaluations of OmniFlow. Ex-
periment results show that OmniFlow outperforms previous
any-to-any models on a wide range of tasks, including text-to-
image and text-to-audio generation. Compared to single-task
specialist models, OmniFlow achieves competitive perfor-
mance with state-of-the-art methods.

In summary, our contributions are three-fold:
• First, we extend rectified flow formulation to the multi-

modal setting and support flexible learning of any-to-any
generation in a unified framework.

• Second, we proposed OmniFlow, a novel modular multi-
modal architecture for any-to-any generation tasks. It al-
lows multiple modalities to directly interact with each
other while being modular enough to allow individual
components to be pretrained independently or initialized
from task-specific expert models.

• Lastly, to the best of our knowledge, we are the first work
that provides a systematic investigation of the different
ways of combining state-of-the-art flow-matching objec-
tives with diffusion transformers for audio and text genera-
tion. We provide meaningful insights and hope to help the
community develop future multi-modal diffusion models
beyond text-to-image generation tasks.

2. Backgrounds
2.1. Flow-Based Generative Models
Flow-based generative models [23, 31, 34, 48], represent the
coupling of data points x0 and noise distribution x1 using an
ordinary differential equation (ODE):

dxt = v✓(x
t, t)dt (1)

where the velocity v is parameterized by a neural network.
Directly solving this equation is expensive. However, we can
define a forward process xt = a(t)x0 + b(t)x1 to directly
regress a conditional vector field using the Conditional Flow
Matching (CFM) objective [48] as follows:

LCFM = (�b(t)�0(t)

2
)Et,x1,xt|x1k✏✓(xt, t)� x1k2 (2)
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Figure 2. Pipeline of OmniFlow. Previous any-to-any models
such as CoDi [46] (Top) concatenate multiple modality-specific
encoders and decoders, and naively average the embedding of
multiple modalities to achieve joint conditioning. By contrast, Om-
niFlow (Bottom) is a unified, modular multi-modal model, where
features from different modalities directly interact with each other
through joint attention layers. OmniFlow is inspired by the modular
design of Stable Diffusion 3 [11] (Middle), a text-to-image model.

where �(t) = log ↵(t)2

�(t)2 is the signal-to-noise ratio (SNR),

✏✓(xt, t) = � 2
�0(t)b(t) (v✓(x

t, t)� ↵0(t)
↵(t) x

t) is parameterized
by v✓. The optimum of this objective remains unchanged
when introducing time-dependent weighting, and hence we
can rewrite it following [22] as:

Lw(x0) = �
1

2
Et, x1 w(t)�0(t)k✏⇥(zt, t)� ✏k2 (3)

where, w(t) = � 1
2�

0(t)b(t)2 for CFM and x1 ⇠ N (0, I)
follows noise distribution. This formulation gives a uni-
fied representation for a variety of generative modeling ap-
proaches. For example, a rectified flow’s forward process
is defined as xt = (1 � t)x0 + tx1, which corresponds to
wRF = t

1�t . Esser et al. [11] summarized many configura-
tions of common methods under this unified formulation,
including (LDM)-Linear [44] and Cosine [39]. They also
explored a logit-normal distribution of timestep t for text-
to-image generation. We explore all these variants in the
context of multi-modal generation, particularly for audio
and text, as it is unclear if the results from the text-to-image
domain can be directly generalized.

2.2. Any-to-Any Generation
Prior works have explored any-to-any generation. CoDi [46]
achieved it first by combining multiple modality-specific
encoders (e.g. ViT) and decoders (e.g. Stable Diffusion)
through bridge alignment. However, its design has lim-
ited cross-modality interaction. For example, to achieve
text+audio-to-image (T+A!I generation), it simply com-
putes the weighted average of text embeddings and audio
embedding. Unified-IO [36] models any-to-any generation
as a sequence-to-sequence problem, and uses an autoregres-
sive model to achieve any-to-any generation, such as text-
to-image or text-to-audio. Our work is the first to use a
multi-modal flow matching objective for any-to-any tasks.

Additional works focus exclusively on unifying text-to-
image and image-to-text generation. Chameleon [47] uses
an LLM-like large autoregressive model to handle multi-
modal data. It represents images as VQGAN tokens [50].
Transfusion [52] adopted a similar design, but uses a non-
autoregressive diffusion loss for image modeling, while
maintaining an autoregressive loss for text generation. De-
spite their successes, these unified multi-modal models re-
quire considerable training resources, because they are less
modular than previous works that combine multiple mod-
els. OmniFlow achieves a good balance by separating the
parameters of each individual modality, while allowing the
features of each modality to freely interact with each other
at every layer.

3. Method
3.1. Multi-Modal Rectified Flow
We consider the joint distribution (x0

1, x
0
2, ..x

0
n) ⇠ ⇡data

over the space of paired multi-modal data where xi ✓ Rdi

is a sample of modality i represented by a vector of di
dimension. Let (x1

1, x
1
2, ..x

1
n) ⇠ ⇡1 be the i.i.d Gaussian

distribution where x1
i ⇠ N (0, I) is a Gaussian vector of

di dimension. Given empirical observations x0 ⇠ ⇡data,
and x1 ⇠ ⇡1, we consider the decoupled, continuous, time-
differential interpolation given by:

@xti
i

@ti
= vi(x

t1
1 , xt2

2 , . . . , xti
i , t1, . . . , ti) (4)

@xti
i

@tj
= 0; i 6= j (5)

xti
i = (1� ti)x

0
i + tix

1
i (6)

where the independence condition of Eq (2) indicates
xti
i only moves when ti moves. Over this interpretation

space, we can use a path ⌧ : t ! (t1, t2..tn); [0, 1] !
[0, 1]n to model any-to-any generation tasks involving these
modalities. For example, given (x1, x2, x3) ⇠ pdata where
x1, x2, x3 are image, text, and audio modalities. We can
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Algorithm 1 Multi-Modal Rectified Flow
Input: Dataset D consists of modality 1, ...N ,where
each sample x = (x0

i1, x
0
i2, ..) consists of a subset (or

all) of modalities i1, i2.. 2 {1, 2, ..N}.
Output: v✓,i : (xt1

1 , xt2
2 , ...xtn

n ) ! vtii for each i =
1, 2..N , parameterized by ✓
Initialize ✓

1: while not converged do
2: Sample x = (x0

i1, x
0
i2, ..) ⇠ D

3: x0
j  0; 8j 2 {1, 2..N} \ {i1, i2...}

4: Sample path ⌧ .*
5: Sample t ⇠ Uniform([0, 1])
6: (t1...tN ) ⌧(t)
7: xti

i  xti
i = (1� ti)x0

i + tix1
i ; 8i 2 1, 2..N

8: L =
P

i2{i1,i2..}kvi � v✓,i(x
t1
1 , ...xtn

n , t1..tn)k2
9: Perform optimizer step using r✓L

10: end while
11: Return ✓
12: . * ⌧ encodes a task involving only modality i1, i2..,

hence tj = 1; 8j /2 {i1, i2..}

model text-to-image(T!I) tasks as a path ⌧t2i such that
⌧t2i(0) = (0, 0, 1), which represents a clean text-image pair
and ⌧t2i(1) = (1, 0, 1), which represents clean text. We can
similarly model the joint sampling of text, image and audio
set as a path from (0, 0, 0) to (1, 1, 1) and text+image-to-
audio (T + I ! A) as a path from (0, 0, 0) to (0, 0, 1).

The flow matching objective would be solving n least
squares regression problems for each modality of the form:

min
vi
✓

E⌧

Z

⌧
Ex0,x1kvi � v✓,i(x

t1
1 , xt2

2 , ...xtn
n , t1..tn)k2ds

(7)
where vi = x0

i � x1
i , and v✓,i is a neural network pa-

rameterized by ✓. We use the same network ✓ to predict
outputs for all modalities 1, 2..N . The outer expectation is
over some prior of paths encoding generation tasks which
we are interested in. The integral is calculated over a path
⌧(t) = (t1, ...tn), and ds = @ti

@t dt. Concretely, we consider
three modalities: image, text, audio in our experiments as
modalities: 1, 2 and 3 respectively. We consider the distribu-
tion of all possible linear paths ⌧(t) = (t1, t2, t3) in [0, 1]3

following the rectified flow formulation. They can encode a
diverse set of tasks such as text-to-image or text+image-to-
audio.

During training, we do not necessarily need all modalities
for each data point. For data points that only contain a subset
of three modalities (e.g. text-image pairs), we can set the
time step of remaining modalities (e.g. audio) to 1, which
corresponds to complete Gaussian noise. The full training
algorithm is given as follows:

At inference, we simply pick a path and use the network

prediction to solve for Eq. (5). Notably, for standard text-
to-image generation with (x1, x2) pairs where x1 is image
and x2 is text, and x3 is the missing audio modality, pick-
ing a linear path from (1, 0, 1) to (0, 0, 1) is equivalent to
the standard single-modality rectified flow (Text!Image)
formulation used by Stable Diffusion 3 [11].

3.2. Multi-Modal Guidance
To flexibly control the multi-modal generation process, we
extend the classifier free guidance (CFG)[16] to multi-modal
rectified flow setting. Recall that CFG of single modalities
are formulated as follows:

v̂✓(x
t, c) = v✓(x

t, c) + (↵� 1)(v✓(x
t, c)� v✓(x

t)) (8)

where c is a condition and xt is the noised latent at
timestep t of the single-modal output. We extend this
formulation to multi-modal setting by defining �ij =
v✓(xt

i, x
0
j ) � v✓(xt

i), which represents the influence of in-
put modality j to output modality i. In particular, we ob-
tain v✓(xt

i, x
0
j ) and v✓(xt

i) by setting inputs of modalities
not present in the formula to Gaussian noise. For example,
given three modalities x1, x2, x3, we can obtain v✓(xt

1, x
0
2)

by computing v✓(xt
1, x

0
2, x

1
3) and obtain v✓(xt

1) by comput-
ing v✓(xt

1, x
1
2, x

1
3). Note that x1

2, x
1
3 is just Gaussian noise.

Given the set of �ij , we can guide the output generation
of modality i by the following formula:

v̂✓(x
t1
1 ...xtn

n ) = v✓(x
t1
1 ...xtn

n ) +
X

j 6=i

(↵ij � 1)�ij (9)

where ↵ij is the equivalent of ↵ in a multi-modal set-
ting. This scheme allows the user to precisely control the
interaction between each of the input and output modali-
ties. When there are only two modalities, our multi-modal
guidance Eq. (9) is equivalent to the standard single-modal
classifier-free guidance Eq. (8).

3.3. Model Architecture
We propose OmniFlow, a modular, effective extension to
the MMDiT architecture used in Stable Diffusion 3. Con-
cretely, given multi-modal inputs that consist of text, image,
and audio, we first convert them to latents x1, x2, x3 using
modality-specific VAEs. We then add random Gaussian noise
to the latents following the forward process defined in Eq. (6).
We use the three sinusoidal embeddings to encode, t1, t2, t3
which correlate to the noise scale for each modality. These
three timestep embeddings are passed to an MLP to obtain y,
a single embedding representing all modality-specific time
steps. The final input to OmniFlow are the unified timestep
embedding y, and noised latents (x1, x2, x3). These four in-
put vectors are passed to N consecutive Omni-Transformer
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Figure 3. Architecture of OmniFlow. Left: We highlight the architecture of OmniFlow. Right: We show the design of an individual
Omni-Transformer Block.

blocks. The final hidden states of each modality, are then
processed by the linear output layer to obtain predictions of
v.

Within each Omni-Transformer block, the inputs
x1, x2, x3 are processed by modality-specific projec-
tions to obtain q1, k1, v1, q2, k2, v2, q3, k3, v3. We then
concatenate the queries, keys, and values to obtain
Q = Concat(q1, q2, q3),K = Concat(k1, k2, k3), V =
Concat(v1, v2, v3). The joint attention output for ith modal-
ity outi is given by:

outi = SoftMax(
qTi Kp

d
)V (10)

where d is the dimension of each attention head. The out-
put is passed to a feed forward network (FFN) to get the final
output of the Omni-Transformer block. Following the design
of DiT [41], we use the unified time embedding to modulate
the qkv projection and FFN. We add skip connections after
the joint attention operation and after the FFN.

We illustrate the model architecture in Fig. 3. Notably,
different modalities are handled by different projection and
feed-forward layers with independent parameters. The only
multi-modal operation is the joint attention, with no trainable
parameters of its own. This allows us to pretrain layers of
different modalities individually and combine them for fine-

tuning, which significantly improves the training efficiency.

4. Setup
4.1. Training Dataset
We use text-image pairs, text-audio pairs, and audio-image
pairs during training. We also make use of a small amount of
text-image-audio triplets. The text-image pairs include 5M
images sampled from COYO-700M dataset [5], 2M images
sampled from LAION-Aesthetic-3M subset [25], 7M images
from LAION-COCO subset [26], the full CC12M dataset
[6], and 2M high-quality image dataset generated by flux-
dev and DALLE-3 [14]. We put high weights on images
from LAION-Aesthetic-3M and the 2M high-quality images
to maintain good aesthetic quality in the output. The text-
audio pairs include the full training set of AudioSet [12],
Audiocaps [21] and WavCaps [37]. The audio-image pairs
include the training data of VGGSound [7] and SoundNet
[2]. While SoundNet contains 2M images and is larger than
VGGSound, we set the sample weight of VGGSound and
SoundNet to 2:1 since SoundNet contains many improperly
resized images with bad aspect ratios.

To generate text-image-audio triplets, we use BLIP [28]
to generate synthetic captions for videos in VGGSound and
SoundNet. We provide further details of the dataset construc-
tion in the Appendix.
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4.2. Training Recipe
At a high level, we initialize OmniFlow with the text and
image modules of Stable-Diffusion 3 (Model 1). We first
train a separate text-to-audio model with text-audio pairs
(Model 2). Then, we merge Model 1 and Model 2 to obtain
a combined model with text, image, and audio modules
(Model 3). Since Model 1 and Model 2 have separate text
modules, we average their weights during the merge process.
Finally, we fine-tune Model 3 on a diverse set of any-to-any
tasks using the methods described in Sec. 3.1.

Due to our modular design, we can initialize and pretrain
each module individually. This saves immense computa-
tional cost when compared to previous unified multi-modal
models (e.g. UniDiffuser [4]) which are trained from scratch.
We use a global batch size of 64 and train Model 2 and
Model 3 for 100k, and 150k steps each. We provide further
training and implementation details in the Appendix.

5. Main Results
5.1. Evaluation Metrics
We perform extensive experiments on paired generation (text-
to-image, text-to-audio) and generic any-to-any generation
such as text-to-audio+image (T!I+A), audio-to-text+image
(A!T+I). For text-to-image generation, we report FID [15]
and CLIP [43] scores on MSCOCO-30K benchmark [30].
Following the official implementation, the cosine similarities
between CLIP embeddings are multiplied by 100. We also
report results on the GenEval benchmark [13]. For audio
generation, we report FAD [20] and CLAP [10] score on
AudioCaps. Results are reported with a 16kHz sampling rate.
We also use CLAP scores for caption evaluations.

5.2. Text-to-Image Generation

Model Param FID# CLIP"
UniDiffuser 0.9B 9.71 30.93
CoDi 4.3B 11.26 30.69
UIO-2XXL 6.8B 13.39 -
SDv1.5 0.9B 11.12 30.63
SDXL* 2.6B 16.49 31.36
SD3-Medium* 2B 20.94 30.65
OmniFlow* 3.4B 13.40 31.54

Table 1. Text-to-Image Generation on MSCOCO-30K Bench-
mark. *Indicates models pretraining data consists of high quality
images and captions that do not follow the distribution of COCO
dataset, which can negatively affect FID scores.

We report results on MSCOCO-30k in Tab. 1, and results
on GenEval in table Tab. 2. On MSCOCO-30k, we achieve
a lower FID than state-of-the-art models such as SDXL and
SD3-Medium. While our FID number is higher than some

Model Param Images Gen."
Text-to-Image Specialist

SD1.5 0.9B 4.0B .43
SDv2.1 0.9B 2.3B .50
SDXL 2.6B 1.6B .55

DALL-E 2 4.2B 2.6B .52
SD3-Medium 2B 1B .62

SD3-Large 8B 2.0B .68
Generalist

CoDi 4.3B 400M* .38
UniDiff. 0.9B 2B .43

OmniFlow 3.4B 30M* .62
Chameleon 7B 3.5B .39
Transfusion 7B 3.5B .63

Table 2. Text-to-Image Generation on GenEval Benchmark. We
compare the model size, number of training images and GenEval
benmark Score. * Indicates fine-tuning dataset. CoDi and MMDiT-
O are both initialized with pretrained text-to-image diffusion mod-
els (SD and SD3).

previous models such as SDv1.5, it should be noted that
more recent models such as SDXL and SD3 tend to have
higher FID numbers because they are trained on high-quality
text-image pairs that do not match the distribution of COCO
images [42]. Notably, SD3 has a FID of 20.94 while SDv1.5
has 11.12, even though SD3 is considered a better model
according to human evaluations. SDXL, which is widely
recognized as the state-of-the-art open-source model before
the release of SD3, also has a higher FID than SDv1.5.

In terms of CLIP scores, OmniFlow significantly out-
performs previous models. In particular, when contrasted
with generalist models UniDiffuser and CoDi, we achieve a
gain of +0.61 and +0.85 respectively, showing superior text-
to-image alignment. On GenEval Benchmark, which better
measures the text-to-image capabilities, OmniFlow achieves
a score of 0.62, a competitive score even when compared
to the state-of-the-art specialist SD3-Medium. In addition,
OmniFlow significantly outperforms previous any-to-any
baselines at the same scale, such as CoDi (+.24) and UniDif-
fuser (+.19). Compared with larger models trained on a lot
more images, OmniFlow outperforms Chameleon-7B and
achieves competitive performance as Transfusion-7B.

Notably, unlike Chameleon, Transfusion, and UniDiffser
which need to be trained from scratch, OmniFlow achieves
high performance with only 30M training images, highlight-
ing the effectiveness of our modular design. While the design
of CoDi also allows it to make use of pretrained text-to-
image model as its initialization, it is trained with consider-
ably more images than OmniFlow while performing worse.
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Model Param FAD# CLAP"
Text-to-Audio Specialist

AudioGen-L[24] 1B 1.82 -
Make-an-Audio[19] 0.4B 2.66 -
AudioLDM-L[32] 0.7B 1.96 .141
Make-an-Audio 2[18] 0.9B 2.05 .173
AudioLDM 2-Full-L[33] 0.7B 1.86 .182

Generalist
CoDi 3.4B 1.80 .053*
OmniFlow 3.4B 1.75 .183
UIO-2XXL 6.7B 2.64 -

Table 3. Text-to-Audio Generation on AudioCaps Evaluation Set.
Comparison of FAD and CLAP scores for various audio generators.
*Reproduced from official checkpoint, see Appendix for details.

5.3. Text-to-Audio Generation
We report text-to-audio generation results on AudioCaps
in Tab. 3. Compared with previous state-of-the-art, Omni-
Flow achieves strong performance on FAD and CLAP scores.
It outperforms AudioLDM2 on FAD (-0.11) and achieves
equivalent performance on CLAP (+0.001). When compared
with generalist models, OmniFlow significantly outperforms
CoDi on both FAD (-0.05) and CLAP (+.13) metrics.

5.4. Recipes for Audio and Text Diffusions

Audio Gen. Text Gen.
FAD# CLAP"

Continuous Flow Matching
eps/linear 2.08 .141
v/cos 2.01 .203
v/linear 1.86 .126
rf/uniform 1.82 .227
rf/lognorm 1.79 .254

Discrete Text Diffusion
SEDD[35] - .180
MDLM[45] - .163

Table 4. Various Formulations for Audio and Text Generation.
We report FAD for audio generation and CLAP for text generation
on AudioCaps dataset.

We explore various recipes for training audio and text
diffusion transformers for multi-modal generation, which is
a relatively under-explored area. Concretely, we explored
five formulations mentioned in the section Sec. 2.1. For these
experiments, we used a model with only audio and text mod-
ules (Model 2 in Sec. 4.2) and trained for 50k steps. We
report FAD score for text-to-audio generation and CLAP
score for audio-to-text generation. Amongst all five formu-
lations, rf/lognorm performs the best with the lowest FAD
(1.79) and highest CLAP score (.254). We also explored two

discrete space diffusion models, SEDD [35] and MDLM
[45] which showed advantages over continuous-space dif-
fusion models in recent literature. Specifically, we use the
absorbing state version of SEDD. For these experiments,
the text-vae encoder is replaced with a token-embedding
layer, and, text-vae decoder is replaced with a simple lin-
ear output layer to predict token logits. We also replace the
flow-matching loss on the text-embedding with the loss func-
tion of SEDD and MDLM respectively, which operates on
token logits instead of continuous embeddings. We report
the CLAP score on audio-to-text generation. We do not see
considerable advantages over continuous alternatives.

6. Sampling
On the sampling side, we explored the effect of guidance
and timestep shift. The timestep shift was originally intro-
duced by SD3 to balance the sampling process of images at
different resolutions. Concretely, it augments the inference
schedule as:

t̂ =
�t

1 + (1� �)t
(11)

where � =
p

m
n , with m being the target sample resolu-

tion and n being a reference resolution. For audio and text
generation, there is no concept of varying resolution, as the
input audio spectrogram and text embedding have fixed res-
olutions. However, we empirically observe applying a shift
can improve the generation quality. Concretely, incorporat-
ing the shift term � > 1 will lead to a concave schedule,
where the denoising process progresses slowly at the be-
ginning and accelerates towards the end. We find that this
improves sample quality for text-to-audio and audio-to-text
generation tasks.

We employ the multi-modal guidance mentioned in
Sec. 3.2. For simple audio-to-text and text-to-audio gen-
eration, our formulation is reduced to standard classifier-
free guidance. We show the effect of guidance and timestep
shift in Fig. 4. Generally, we find that shift=3.0 works well
for both tasks. For audio generation, a guidance scale of
8 achieves the highest performance. For text generation, a
guidance scale of 4 achieves the best result.

To explore the effect of multi-modal guidance in Sec. 3.2,
we provide qualitative results for audio+image-to-text
(A+I!T) task. Recall that we use x1, x2, x3 to denote im-
age, text, and audio modalities. The multi-modal guidance
for this task can be controlled by ↵21 and ↵23 where ↵21

controls text-image alignment and ↵23 controls text-audio
alignment. For simplicity, we denote ↵21 as ↵im and ↵23 as
↵au. We vary ↵im, ↵au between the interval [1.0, 2.0] such
that ↵im + ↵au = 3.0. We show the results in Fig. 5. Quali-
tatively, higher ↵au will make the model’s output resemble
more the audio captions, and ↵im will make the model’s
output resembles more the image captions. Interestingly,
we observe that it also reflects the subtle differences in the
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(a) Text-to-Audio Generation. (b) Audio-to-Text Generation.

Figure 4. Effect of CFG and Shift for audio and text generation.
We evaluate the impact of guidance and timestep shift on text-to-
audio and audio-to-text tasks.

A race car is revving its 
engine.

a group of race cars lined up 
on a track.

a group of high-performance 
race cars driving down a race 
track.

A race car is accelerating 
then it throttles down a gear.

a futuristic race car speeding 
down a winding road.αim αau

2.0

1.0

1.0

2.0

Figure 5. Effect of Multi-Modal Guidance. In this example, the
user can flexibly control the alignment between output text and
input image, audio independently by varying ↵au and ↵im. Higher
↵im will make the output texts resemble image captions, with visual
descriptions such as lined up, driving down. Higher ↵au will make
the output texts resemble audio captions, with descriptions such as
accelerating, revving.

style of audio and image captions in the training data (e.g.
whether the first letter is capitalized). By varying these two
parameters, users can achieve flexible control of generation.

6.1. Qualitative Comparison
We directly compare OmniFlow with two recent any-to-any
generation methods: CoDi [46] and UniDiffuser [4]. In addi-
tion to the quantitative results, we present qualitative text-to-
image comparisons in Fig. 6. These examples demonstrate
that OmniFlow achieves a significant improvement in gen-
eration quality compared to previous any-to-any models.
Specifically, in the first example (top), our model success-
fully follows the prompt while maintaining high aesthetic
quality, accurately capturing both the cat’s features and its
mirrored reflection. In contrast, CoDi is unable to change
the cat’s eyes, and UniDiffuser fails to depict the cat looking
at the mirror. A similar trend is evident in the third exam-
ple: OmniFlow correctly positions lanterns tied to a rope,

OmniFlow (Ours) UniDiffuser

“Painting of a 
cherry blossom 
park at night, 
with lanterns 

lighting the path, 
peaceful scene.”

“Portrait of a 
small owl nestled 
in a tree hollow 

with curious 
eyes.”

“A serene scene 
of a lighthouse 

on a rocky 
island, with 

seagulls flying 
overhead and 
gentle waves.”

“Portrait of a 
cyberpunk girl 

with neon tattoos 
and a visor, 

staring 
intensely.”

“Side view of 
ragdoll cat with 

blue eyes looking 
at itself in the 

mirror.”

CoDi

Figure 6. Qualitative Comparison with baselines on text-to-
image generation. OmniFlow achieves better image quality and
prompt alignment when compared to previous generalist models.

while UniDiffuser places them on the river. Finally, in the
lighthouse example, CoDi fails to incorporate seagulls, and
UniDiffuser ignores the adjective “gentle,” instead producing
an image with rough waves and an out-of-focus lighthouse.

Our results show that OmniFlow achieves a much higher
generation quality compared with previous any-to-any mod-
els, both in terms of image-text alignment and image fidelity.

7. Conclusion
We present OmniFlow, a unified early-fusion multi-modal
generative model for any-to-any generation tasks. Omni-
Flow adapts a modular design that enables individual com-
ponents to be pretrained separately, while allowing features
from different modalities to directly interact with each other,
through a joint attention mechanism. We conduct extensive
experiments to show that OmniFlow outperforms previous
any-to-any models on a wide range of challenging generation
tasks, including text-to-image and text-to-audio generation.
We provide further analysis on the limitation of OmniFlow in
the Appendix.
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