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Figure 1. We develop ReNeg, a versatile negative embedding seamlessly adaptable to text-to-image and even text-to-video models. Strik-

ingly simple yet highly effective, ReNeg amplifies the visual appeal of outputs from base Stable Diffusion (SD) models. ‘+N
∗’ and

‘+ReNeg’ indicate improved results with handcrafted negative prompts and our negative embedding, respectively.

Abstract

In text-to-image (T2I) generation applications, negative em-

beddings have proven to be a simple yet effective approach

for enhancing generation quality. Typically, these neg-

ative embeddings are derived from user-defined negative

prompts, which, while being functional, are not necessar-

ily optimal. In this paper, we introduce ReNeg, an end-to-

end method designed to learn improved Negative embed-

dings guided by a Reward model. We employ a reward

feedback learning framework and integrate classifier-free

guidance (CFG) into the training process, which was previ-

ously utilized only during inference, thus enabling the effec-
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tive learning of negative embeddings. We also propose two

strategies for learning both global and per-sample negative

embeddings. Extensive experiments show that the learned

negative embedding significantly outperforms null-text and

handcrafted counterparts, achieving substantial improve-

ments in human preference alignment. Additionally, the

negative embedding learned within the same text embed-

ding space exhibits strong generalization capabilities. For

example, using the same CLIP text encoder, the negative

embedding learned on SD1.5 can be seamlessly transferred

to text-to-image or even text-to-video models such as Con-

trolNet, ZeroScope, and VideoCrafter2, resulting in consis-

tent performance improvements across the board. Code is

available at https://github.com/AMD-AIG-AIMA/ReNeg.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Recent advancements in diffusion models [15, 29, 30] have

led to significant breakthroughs in image generation [10,

27, 32, 38] and video generation [3, 6, 20, 36, 41]. A piv-

otal technique in these models is Classifier-free Guidance

(CFG) [14], which enhances text control capabilities while

also improving the realism and aesthetic quality of the gen-

erated outputs. CFG operates by concurrently training a

conditional probability model alongside an unconditional

probability model, merging their score predictions during

inference. The unconditional model takes a null-text prompt

as input, serving as guidance for the score predictions. In

practice, this null-text prompt can be substituted with a neg-

ative prompt [1, 9, 33, 35], prompting the model to gener-

ate outputs that deviate from the characteristics specified by

the negative prompt. Empirical evidence suggests that neg-

ative prompts generally yield superior results compared to

null-text prompts, leading to their prevalent use in text-to-

image [9, 33] and text-to-video generation [12].

To create effective negative prompts, the prevailing

method involves manually selecting negative terms—such

as “low resolution” and “distorted”—and employing trial

and error to identify optimal combinations. However, this

approach suffers from significant limitations. The manually

defined search space is inherently incomplete, as it cannot

encompass all permutations of negative vocabulary. Addi-

tionally, the quality assessment of generated outputs often

relies on subjective human judgment, resulting in ineffi-

ciencies during the search process. Consequently, manu-

ally crafted negative prompts, while yielding decent perfor-

mance, are suboptimal.

In this work, we introduce ReNeg, a Reward-guided ap-

proach that directly learns Negative embeddings through

gradient descent. Our method enhances the process along

two dimensions compared to manual searches. First, learn-

ing occurs within a comprehensive search space. We uti-

lize the continuous text embedding space—specifically, the

output embedding space of text encoders—since the origi-

nal language space is discrete [33], which makes gradient-

based optimization more challenging. Second, we fully

automate the evaluation criterion using an image reward

model (RM) [39], enabling continuous gradient descent

rather than relying on trial and error. We formulate the

learning objective within a reward feedback framework,

leveraging a pretrained image reward model to guide the

gradient descent. Negative embeddings are treated as a set

of model parameters, and to ensure they receive gradients

from the reward guidance, we modify the training process to

incorporate CFG, which was previously utilized only during

inference. Furthermore, we propose a tuning approach that

learns per-sample negative embeddings, adapting to various

prompts and yielding additional improvements.

Extensive experiments demonstrate that both the learned

global and per-sample negative embeddings consistently

outperform null-text and carefully crafted negative embed-

dings in terms of generation quality and human prefer-

ence. In human preference benchmarks such as HPSv2 [37]

and Parti-Prompts [40], ReNeg, while significantly simpler,

achieves remarkable results, even rivaling methods that re-

quire full model fine-tuning. Moreover, we highlight that

the global negative embeddings learned using ReNeg ex-

hibit strong generalization capabilities and are easily trans-

ferable. Any text-conditioned generative model utilizing

the same text encoder can share these negative embed-

dings. We demonstrate that negative embeddings learned

with Stable Diffusion 1.5 transfer seamlessly to text-to-

image and text-to-video models, including ControlNet [42],

ZeroScope [5], and VideoCrafter2 [6].

Our primary contributions are summarized as follows:

• We propose ReNeg, an innovative approach for learning

negative embeddings guided by reward models.

• We introduce two strategies for learning both global and

per-sample negative embeddings, each yielding signifi-

cant improvements, with per-sample embeddings demon-

strating superior performance.

• We establish that the learned global negative embeddings

can be readily transferred to other models and tasks, re-

sulting in consistent performance improvements.

2. Related Works

Text-to-Image Diffusion Models. Existing T2I mod-

els [26, 27] have demonstrated impressive generative ca-

pabilities, but generating satisfactory content from user-

provided positive text prompts remains challenging, par-

ticularly for common issues such as hand and face gen-

eration defects. A straightforward solution is to improve

the user prompt through prompt engineering [11, 34]. Re-

cent works [4, 13] have optimized pretrained large lan-

guage models (LLMs) [19, 24], enabling the modified mod-

els to generate refined prompts based on the original user

input. While the image quality generated using these re-

fined prompts shows some improvement over the original,

exploration of negative prompts remains limited. DNP [9],

for instance, samples a negative image based on the posi-

tive prompt and uses a captioning model to generate a cor-

responding negative prompt. In practice, this process of-

ten requires multiple attempts to find an appropriate neg-

ative prompt. On the other hand, DPO-Diff [33] searches

for negative prompts within the discrete language space. In

contrast, we attempt to directly learn negative embeddings

through gradient descent in the continuous text embedding

space, which allows for a more efficient search of optimal

negative embedding.

Reward Optimization for Text-to-Image Models. Nu-

merous efforts [8, 21, 39] have been made to optimize ex-

isting T2I models by leveraging reward models [18, 28,
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37, 39]. Inspired by Reinforcement Learning from Human

Feedback (RLHF) [7, 23] in LLMs, DDPO [2] employs

reinforcement learning (RL) to finetune diffusion models,

aiming to maximize the reward score within a relatively

constrained vocabulary. Alternatively, Diffusion-DPO [31]

adopts the Direct Preference Optimization (DPO) [25] strat-

egy that aligns diffusion models with human preferences

without the need for RL, significantly improving the vi-

sual appeal of generated content. Moreover, methods like

ReFL [39] and TextCraftor [21] calculate the reward score

directly from the predicted initial image to guide T2I model

finetuning, typically targeting components such as the text

encoder [21] or UNet [2, 31, 39] in the diffusion model.

Distinct from these approaches, our method seeks to opti-

mize the negative embedding under reward guidance, en-

abling comparable or even superior generation quality at

minimal storage cost.

3. Preliminary

Diffusion Models. Diffusion models consist of two pro-

cesses: a forward noising process and a backward denois-

ing process. In the forward process, Gaussian noise is grad-

ually added to the data x0 ∼ p(x0) through a fixed-length

Markov chain. As the time steps increase, a series of noisy

latent variables {x1, x2, ..., xT }with increasing noise levels

are progressively generated:

q(xt|x0) = N (xt;

√

1− β̄tx0, β̄tI), (1)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. ϵ is a standard

Gaussian noise, and αt decreases with the timestep t. In the

backward process, diffusion models restore the original data

distribution by progressively denoising variables sampled

from a Gaussian distribution xT ∼ N (0, I).

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (3)

µθ and σθ are predicted statistics. Observed by [15], only

predicting the noise through a neural network ϵθ(xt, t)
works well. For diffusion-based text-to-image tasks, the

textual prompt c is introduced as the condition. The training

objective can be represented by a reconstruction loss:

Lrec = E
x0,c,ϵ∼N (0,I),t

[

∥ϵθ(xt, E(c), t)− ϵ∥22
]

. (4)

Here, E is a pre-trained text encoder.

Classifier-free Guidance. During training diffusion mod-

els, [14] proposes to jointly train a conditional diffusion

model ϵθ(xt, c, t) and an unconditional one ϵθ(xt, ϕ, t).
During inference, it allows control over the balance between

Table 1. Parameter efficiency comparison between the negative

embedding n, the full model parameters θ0, and the added LoRA

parameters with rank r = 8 (θ8l ) and r = 16 (θ16l ).

E(n) E(θ0) E(θ8l ) E(θ16l )

5.1× 10−4 1.5× 10−6 8.1× 10−8 1.9× 10−9

realism and diversity of generated samples by adjusting the

guidance scale γ for the conditional generation task:

ϵ̃θ(xt, c, t) = ϵθ(xt, ϕ, t) + γ(ϵθ(xt, c, t)− ϵθ(xt, ϕ, t))
(5)

The unconditional model is realized by inputting a null-text

embedding ϕ as condition. Numerous works [9, 33] indicate

that replacing ϕ with a handcrafted negative embedding n

further improves generation quality. In this work, we aim

to learn the negative embedding. The main challenge here

is that CFG is usually performed during inference only. To

learn the negative embedding, we have to incorporate CFG

into training and make the gradient w.r.t. n tractable.

4. Method

In this section, we begin by discussing our motivation and

the feasibility of learning a negative embedding in Sec-

tion 4.1, illustrating why it could possibly work. Next, we

introduce how to learn a universal negative embedding us-

ing ReNeg in Section 4.2, and present a per-sample variant

in Section 4.3 to further enhance image generation quality.

4.1. On feasibility of learning negative embeddings

Our key insight is that the negative embedding can be seen

as part of the model parameters. Based on a pretrained dif-

fusion model, we make an important observation that tuning

the negative embedding is much more efficient than tuning

the model parameters. To illustrate this, we conduct a pilot

study as follows: we randomly select a set of N prompts,

feed them into a pretrained SD1.5 model, and obtain a set

of denoised latents X ∈ R
N×D, where D = h × w × c

represents the dimension of the latents. When N is large

enough, X can be seen as a nice sampling of the learned

distribution. We care about how the distribution changes

when small perturbations are applied to the model param-

eters θ (or similarly to the negative embedding n). For a

desired “efficient” set of parameters, we expect the distribu-

tion to vary fast with small perturbations, therefore it would

bring a greater chance to reach better solutions when tun-

ing this set of parameters. To quantify parameter efficiency,

we define a criterion based on the Jacobian matrix. Let

J = ∂X
∂θ
∈ R

dθ×ND be the Jacobian matrix, computed via

iterative backpropagation (See Appendix for details), where

dθ is the dimension of parameter θ. We define the parameter

efficiency E(θ) = 1
NDdθ

||J ||F , where || · ||F denotes the
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Figure 2. Overview of the training pipeline of our ReNeg. We learn the negative embedding by integrating Classifier-Free Guidance into

the training process. The negative embedding is directly optimized using reward feedback, with gradients backpropagated during the final

one-step generation process. Once optimized, it can be seamlessly transferred to any T2I or T2V models.

Frobenius Norm of a given matrix. A larger E(θ) implies

a higher rate of distributional change, indicating that tuning

the parameters θ is more efficient.

We compare the parameter efficiency between the full

model parameters θ0, the added LoRA [16] parameters with

rank r = 8 (θ8l ) and r = 16 (θ16l ), and the negative em-

bedding n. We observe in Table 1 that E(n) ≫ E(θ0) >

E(θ8l ) > E(θ16l ), indicating that tuning the negative em-

bedding is the most efficient. The lower efficiency of θ0,

θ8l and θ16l can be attributed to the fact that they start from

a well-pretrained checkpoint where local minimum has al-

ready been reached, leading to a rather low rate of distribu-

tional change. In contrast, the negative embedding is usu-

ally set empirically and is thus far from optimal. The high

parameter efficiency shows tuning the negative embedding

is a promising alternative to tuning the entire model, high-

lighting the feasibility of learning negative embeddings.

4.2. Learning Negative Embeddings with ReNeg

Overview. The key idea behind ReNeg is to learn the neg-

ative embedding using a reward feedback learning (ReFL)

framework [39]. Starting with a pretrained diffusion model,

e.g., Stable Diffusion 1.5 [27], we sample random prompts

and feed them into the model to generate predicted images.

An image reward model evaluates the reward score accord-

ing to the generation quality, and then backpropagate gra-

dients to the diffusion model. A graphical overview of this

process is provided in Fig. 2.

Reward model. In language models, reinforcement learn-

ing from human feedback (RLHF) [7, 23] is a widespread

technique that is proven to be effective in human prefer-

ence alignment. Typically, the reward for a given predic-

tion is evaluated by a pretrained reward model (RM) R.

In the domain of visual data generation, we adopt a sim-

ilar approach, leveraging an RM to guide diffusion mod-

els. Specifically, using the human preference-based reward

model HPSv2.1 [37], we optimize the negative embedding

to maximize the reward score. Formally, an image RM out-

puts a scalar reward score r = R(c, x) for a given pair of

prompt c and image x.

Learning objective. Unlike in language models, the iter-

ative denoising nature of diffusion models makes it chal-

lenging to estimate the likelihood of the generated samples

using reward models. Specifically, the reward model is typi-

cally trained on natural images and struggles to estimate the

rewards of intermediate images that are not fully denoised.

A feasible solution is to perform a one-step prediction from

intermediate denoised latents and then supervise the result-

ing prediction. Concretely, suppose a canonical denoising

iteration is xT → . . . → xt → . . . → x0. At an inter-

mediate timestep t, we directly predict x̂0 from xt, i.e., the

iteration can be depicted as xT → . . . → xt → x̂0. The

one-step prediction is given by

x̂0 =
xt −

(√
1− ᾱt ϵθ(xt, c, t)

)

√
ᾱt

. (6)

The final learning objective is to maximize the expectation

of reward scores over the prompt distribution D:

Jθ(D) = Ec∼D(R(c, x̂0)). (7)

For implementation simplicity, the gradient is backpropa-

gated through x̂0 to xt, but stops to go through further to

xt+1, . . . , xT . [39] reveal that the selection of the interme-

diate timestep t is non-trivial. When T − t is small, rewards

for all generations remain indistinguishably low. When

T − t is sufficiently large, rewards for generations of dif-

ferent quality become distinguishable. To ensure efficient

training, we set T = 30 and randomly sample t ∈ [0, 10].
Training with CFG. In order to learn negative embed-

ding, we incorporate CFG into the aforementioned training

framework. We register the negative embedding as a set of

the model parameters and initialize it with the pre-extracted

null-text embedding. During training, all other parameters

23639



t=30t=20

S
S

IM

D
D

IM
D

D
P

M

middle point 𝑡
Figure 3. Deterministic ODE sampler (DDIM) improves x̂0 pre-

diction. We plot the similarity score between x̂0 and x0 against

varying selection of middle point t. DDIM consistently outper-

forms DDPM. Prompts: A white-haired girl in a pink sweater

looks out a window in her bedroom.

are frozen, and only the negative embedding is updated us-

ing gradient
∂Jθ(D)

∂n
. We also experimented with making

the guidance scale factor γ learnable, but found similar re-

sults to setting it as a constant. Therefore, we opt to keep

it as a constant. Furthermore, effective alignment between

training and inference processes can be achieved through

this CFG training strategy, where the predicted noise at each

step is reparameterized using Eq. 5 during both processes.

The sample xt−1 is then predicted from the latents of the

previous timestep and the reparameterized noise.

Deterministic ODE solver improves x̂0 prediction. Due

to the nature of reward guidance being applied to the one-

step prediction x̂0, we aim for the prediction of x̂0 to be

as accurate as possible. This accuracy allows for a broader

sampling range at time t, leading to a more precise learned

marginal distribution. We found that, in this context, select-

ing the deterministic ODE solver of DDIM for sampling

from T to t yields better results than using the original SDE

solver of DDPM, resulting in more stable and accurate pre-

dictions of x̂0. In Figure 3, we visualize the differences be-

tween x̂0 predicted from xt and x0 obtained through com-

plete sampling. As t varies within the interval [0, T ], it is ev-

ident that the discrepancies between x̂0 and x0 with DDIM

are generally smaller than those with DDPM.

Transferability. Although our training relies on the gener-

ative model and the reward model, the learned negative em-

bedding is independent of these models, as they are merely

vectors in the output space of the text encoder. This means

that as long as the same text encoder is used, the learned

negative embedding can be seamlessly transferred across

different generative models. We validate the effectiveness

of this transfer in the experimental section.

4.3. Per­sample Negative Embedding

While it is feasible to learn a globally applicable and effec-

tive negative embedding, the optimal negative embedding

Global Neg Emb. Per-sample Neg Emb. Global Neg Emb. Per-sample Neg Emb.

Figure 4. Comparison of results using global negative embedding

and per-sample negative embedding. Red boxes highlight the im-

provement in image details achieved by the per-sample negative

embedding. Prompts: (Left) A girl in a school uniform making

a scissor hand gesture. (Right) An oil painting of a muscular cat

wielding a weapon with dramatic clouds in the background.

may vary depending on the prompt. For instance, when the

prompt requests realistic images resembling photography,

”cartoonish” may serve as a negative prompt. Conversely,

when the prompt asks for a cartoon image, ”realism” may

instead function as the negative prompt. Therefore, we pro-

pose an optional procedure that allows further adaptation of

the learned global negative embedding to generate adaptive

negative embedding tailored to a specific prompt.

Given a specific prompt, our method for learning the per-

sample negative embedding is similar to that described in

Eq. (7), with several key differences. First, we no longer

need to take the expectation over the prompt distribution, in-

stead training on individual samples. Second, the optimiza-

tion of per-sample negative embeddings is initialized with

the learned global negative embedding. Finally, we propose

a search strategy that guarantees convergence to a solution

that outperforms the global negative embedding. Specifi-

cally, we define a maximum training step N and a patience

value P , training stops when all N steps finish, or if early-

stop is triggered when the reward does not increase for at

least P consecutive steps. Implementation details are pro-

vided in Algorithm 1. We observe consistent improvements,

particularly in details refinement and text-image alignment,

when training per-sample negative embedding compared to

the learned global negative embedding, as shown in Fig. 4.

5. Experiments

5.1. Implementation Details

Dataset. In this work, we use the prompts provided by

ImageReward [39] for training. The training set consists

of 10,000 prompts spanning various categories, including

people, art, and outdoor scenes. We evaluate the proposed

ReNeg on two popular benchmarks: Parti-Prompts [40] and

HPSv2 [37]. Parti-Prompts contains 1,632 prompts encom-

passing various categories. Meanwhile, HPSv2 comprises

3,200 prompts, covering four styles of image descriptions:

animation, concept art, paintings, and photo.

Training Setting. The proposed method is built upon the

open-sourced Stable Diffusion 1.5. To optimize the negative
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Table 2. Quantitative results on HPSv2 and Parti-Prompts benchmarks. ‘+N
∗’ represents the handcrafted negative prompt. Methods

marked with † indicate our reproduced version. The best result is highlighted in bold, and the second best is underlined.

Model
HPSv2 Parti-Prompts

Animation Concept Art Painting Photo Pickscore Aesthetic HPSv2.1

Direct Inference
SD1.5 25.92 24.66 24.65 25.62 18.40 5.23 25.67

SD1.5 + N
∗ 27.29 26.33 26.39 27.01 19.14 5.26 26.79

Prompt Refinement

BeautifulPrompt [4] 24.07 23.95 23.99 21.40 19.38 5.78 22.72

Promptist [13] 26.22 25.11 25.14 24.25 19.44 5.42 25.24

DNP† [9] 26.02 25.08 24.89 25.49 19.81 5.21 25.83

Finetuning SD

DDPO-Aesthetic [2] 18.20 19.03 19.15 18.93 19.23 4.99 20.69

DDPO-Alignment [2] 20.45 20.53 20.12 20.33 19.29 4.93 19.00

Diffusion-DPO† [31] 27.60 26.42 26.36 26.32 19.48 5.26 26.62

ReFL† [39] 29.04 28.34 28.21 27.48 18.17 5.48 27.97

TextCraftor (Text) [21] 30.16 30.48 30.46 28.36 19.17 5.90 28.36

ReNeg
Global Neg. Emb. 31.37 31.67 32.00 29.27 19.90 5.45 29.16

Per-sample Neg. Emb. 32.21 32.52 32.83 30.00 19.97 5.50 29.84

Algorithm 1 Learning per-sample negative embedding

Require: Prompt c, learned global negative embedding n,

maximum steps N , patience value P

Variable Jbest ← 0, pctr ← 0
for i = 1 to N do

xT ∼ N (0, I) // Sample noise as latent

x̂0 = Sample(xT , c, n) // Sampling using Eq. (6)

Jn(c) = R(c, x̂0)
if Jn(c) > Jbest then

Jbest ← Jn(c)
Reset pctr ← 0

else // Early stopping

pctr ← pctr + 1
if pctr ≥ P then break

end if

end if

Update n using gradient descend.

end for

Return per-sample negative embedding n.

embedding, we employ the AdamW [22] optimizer and a

Cosine Scheduler for 4,000 steps, with a learning rate of

5e − 3 and batch size of 64. The weights of the pretrained

T2I diffusion model are frozen throughout the optimization.

We further refine the negative embedding for an additional

10 steps with a patience value of 3 to obtain the per-sample

negative embedding. At inference, DDIM scheduler with 30

steps is used for sampling and the classifier-free guidance

weight is set to 7.5 with the resolution 512 × 512.

Evaluation metrics. We adopt the Human Preference

Score v2.1 (HPSv2.1) [37], PickScore [18], and an aesthetic

predictor [28] to comprehensively evaluate our method.

Both HPSv2.1 and PickScore are derived from CLIP-based

models trained on large-scale human preference datasets,

allowing them to approximate human perception in as-

sessing image quality. These metrics have demonstrated

strong alignment with actual human preferences. The aes-

thetic predictor assesses visual appeal by analyzing high-

dimensional image features, focusing on aspects of style

and semantics. To further evaluate the performance of exist-

ing T2V models enhanced by ReNeg, we employ four met-

rics from VBench [17]: Aesthetic Quality, Motion Smooth-

ness, Temporal Flickering, and Background Consistency.

5.2. Comparison with State­of­the­Arts

We compare ReNeg with three categories of methods: (1)

Null-text embedding and handcrafted negative embedding;

(2) Prompt refinement methods that utilize automatic or

manual recaptioning for either positive or negative prompts;

and (3) Human preference alignment methods that typically

involve tuning all model parameters. The quantitative re-

sults are presented in Tab. 2.

Quantitative results. First, we compare the proposed

method with a handcrafted negative prompts, which consol-

idates commonly suggested negative prompts from the com-

munity. By incorporating the handcrafted negative prompts,

SD1.5 achieves performance gains on both benchmarks.

However, it still lags behind our optimized negative embed-

ding. We further compare our method with prompt opti-

mization (recaptioning) methods and outperform them by

a large margin. Remarkably, our method achieves compa-

rable performance against the TextCraftor, which involves

full finetuning of the UNet weights. The quantitative re-

sults highlight that our method not only enhances the vi-

sual appeal of generated results but also aligns more closely

with human preferences. Notably, our method can achieve

additional performance gains by combining with positive

prompt refinement. Moreover, adaptively finetuning the

negative embedding for a given positive prompts leads to

further improvements in generation quality.
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A Pixar lemon wearing sunglasses on a beach.

A figurine of Walter White from Breaking Bad depicted as an anime character.

A close-up portrait of a beautiful girl with an autumn leaves headdress and melting wax.

a baby daikon radish in a tutu.

SD1.5 ReNeg (Ours)PromptistBeautifulPromptSD1.5 + 𝑁∗ DNP DPO-Diff

Figure 5. Qualitative comparisons. The prompts source from HPSv2 and Parti-Prompts benchmarks. All images are generated at a

resolution of 512× 512. For a fair comparison, the images above are generated using the same initial noise and seed.

Qualitative results. The qualitative comparisons are pre-

sented in Fig. 5. By incorporating a handcrafted negative

prompts, SD1.5 achieves significant improvements in both

visual quality and semantical reasonability. Compared to

that, the methods for positive prompt refinement [4, 13]

yield minimal gains in visual quality. This limited improve-

ment can be attributed primarily to the fact that the opti-

mized prompts generated by these methods sometimes de-

viate from the intended meaning of the original description,

resulting in outputs that do not fully capture the desired

content. Images generated by DNP [9] and DPO-Diff [33]

lack finer details and aesthetic appeal. This is partially

because of their constrained search strategies and search

space, which pose a challenge to finding an optimal negative

prompts. Our method, however, produces higher-quality

images with finer details and coherent semantic alignment

to the text prompts.

5.3. Visualization of Negative Embedding

To elucidate the differences among our learned negative em-

bedding, the null-text prompt, and the handcrafted nega-

tive prompts, we visualize their corresponding embeddings.

Utilizing SD1.5 as the foundational model, we treat neg-

ative embeddings as pseudo-positive prompts to generate

corresponding images. The observed variations in appear-

ance between the two columns of negative embeddings arise

from differing random noise. As illustrated in Fig. 6, our

learned embedding exhibits more muted colors and lacks

significant semantic information compared to both null-

text and handcrafted prompts. Specifically, the null-text

prompt represents an average distribution of naturally gen-

erated images, closely aligning with authentic visual data.

In contrast, the handcrafted prompts displays slight devi-

ations from natural images; while it abstracts certain fea-

tures, it retains recognizable semantic elements, such as tex-

tures and discernible semantic information. Conversely, the

images generated from our learned embedding appear atyp-

ical and lack clear semantic content. Notably, the outputs

from our method align more closely with human aesthetic

preferences and maintain semantic coherence.

5.4. Generalization Capability

Generalization across different SD models. The pro-

posed ReNeg is flexible and can be easily applied to various

SD models, including SD1.4 and SD2.1. We calculate the

win rate between the SD models using handcrafted nega-
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Figure 6. Example of generation results using different negative

embeddings for the same prompt and the corresponding nega-

tive embeddings visualization. Prompts: (Left) Frontal portrait

of anime girl with pink hair wearing white t-shirt and smiling.

(Right) A plushy tired owl sits on a pile of antique books in a hu-

morous illustration.

Table 3. Automated win rates on the HPSv2 benchmark compar-

ing SD1.4, SD1.5, and SD2.1 using our negative embedding ver-

sus a handcrafted negative prompt. Results are calculated based

on the HPSv2.1 metric.

Model Animation Concept Art Painting Photo Average

SD1.4 0.91 0.95 0.97 0.87 0.93

SD1.5 0.99 0.99 0.98 0.99 0.99

SD2.1 0.96 0.98 0.98 0.93 0.96

Table 4. Performance comparison on video generation models.

‘Handcrafted Prompt’ denotes the handcrafted negative prompts.

Model
Aesthetic

Quality

Motion

Smoothness

Temporal

Flickering

Background

Consistency

VideoCrafter2 58.0 97.7 96.2 97.6

w/ Handcrafted Prompt 57.8 97.8 96.5 97.9

w/ Our ReNeg 58.6 97.8 96.4 98.5

ZeroScope 49.9 98.9 98.3 97.7

w/ Handcrafted Prompt 53.1 98.6 97.9 98.2

w/ Our ReNeg 58.7 98.1 97.3 98.7

tive prompts and the learned negative embedding on HPSv2

and Parti-Prompts. To provide a more meaningful compar-

ison, we calculate the win rate of using our negative em-

bedding relative to the handcrafted negative prompts, rather

than comparing it to a setup that exclusively uses a positive

prompts (i.e., without any negative prompts). As shown in

Tab. 3 and Fig. 7, the learned negative embedding signif-

icantly outperforms the handcrafted counterpart, achieving

substantial improvements in human preference alignment.

Generalization across T2I and T2V Models. Here, we

conduct experiments to examine the generalization capa-

bility of the proposed method across different generative

Figure 7. Comparison of the win rates on Parti-Prompts with and

without our ReNeg. Across three metrics, our negative embedding

achieves strong performance on various T2I models.

Table 5. Performance comparison on ControlNet. Our negative

embedding enables a more visually appealing pose-to-image effect

and better aligns with human preferences.

Model PickScore Aesthetic HPSv2.1

ControlNet 19.49 5.54 26.83

w/ Handcrafted Prompt 19.54 5.54 27.60

w/ Our ReNeg 19.52 5.95 30.79

models and tasks. As shown in Fig. 1, the learned nega-

tive embedding can be transferred seamlessly to the text-

to-image and text-to-video models, including ControlNet,

ZeroScope, and VideoCrafter2. The quantitative results are

reported in Tab. 4 and Tab. 5. We observe a consistent

performance improvement on both ControlNet and T2V

models by incorporating the learned negative embeddings,

which reveal strong generalization capabilities of the pro-

posed ReNeg. To conclude, the learned negative embedding

can be easily shared across any text-conditioned generative

models using the same text encoder. More qualitative re-

sults can be found in the appendix.

6. Conclusion

We propose ReNeg, a framework that searches for a global

negative embedding under reward feedback. Building on

this, we adaptively learn a distinct negative embedding tai-

lored to each positive prompt, which exhibits consistent im-

provements in detail refinement and textual alignment. To

enable effective gradient propagation through reward guid-

ance, we incorporate the CFG-training strategy. Despite its

simplicity, our negative embedding proves to be highly use-

ful, surpassing results generated with only positive prompts

or handcrafted negative prompts and rivaling those achieved

through full finetuning of diffusion models. Moreover, our

negative embedding can be easily transferred to other T2I

or T2V models, provided they share the same text encoder.

Although ReNeg can generate visually appealing images,

limited by the generative ability of the base model, it some-

times shows semantic deviations from the prompt. The im-

provement is left to our subsequent work.
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