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Abstract

Hundreds of millions of people routinely take photos using
their smartphones as point and shoot (PAS) cameras, yet
very few would have the photography skills to compose a
good shot of a scene. While traditional PAS cameras have
built-in functions to ensure a photo is well focused and has
the right brightness, they cannot tell the users how to com-
pose the best shot of a scene. In this paper, we present a
first of its kind smart point and shoot (SPAS) system to help
users to take good photos. Our SPAS proposes to help users
to compose a good shot of a scene by automatically guiding
the users to adjust the camera pose live on the scene. We
first constructed a large dataset containing 320K images
with camera pose information from 4000 scenes. We then
developed an innovative CLIP-based Composition Qual-
ity Assessment (CCQA) model to assign pseudo labels to
these images. The CCQA introduces a unique learnable
text embedding technique to learn continuous word em-
beddings capable of discerning subtle visual quality dif-
ferences in the range covered by five levels of quality de-
scription words {bad, poor, fair, good, perfect}. And fi-
nally we have developed a camera pose adjustment model
(CPAM) which first determines if the current view can be
further improved and if so it outputs the adjust suggestion
in the form of two camera pose adjustment angles. The two
tasks of CPAM make decisions in a sequential manner and
each involves different sets of training samples, we have de-
veloped a mixture-of-experts model with a gated loss func-
tion to train the CPAM in an end-to-end manner. We will
present extensive results to demonstrate the performances
of our SPAS system using publicly available image compo-
sition datasets.
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Figure 1. Given a view composed by the user, our Smart Point-
and-Shoot (SPAS) system can predict camera pose adjustment
suggestions so that the photo captured after applying the adjust-
ment will have a better composition.

1. Introduction

Traditional Point-and-Shoot (PAS) cameras have built-in
functions such as autofocus, autoexposure, and auto-flash to
ensure a photograph is well focused and has the right bright-
ness. However, these PAS cameras cannot tell the users how
to compose the best shot of a scene. It is estimated that there
are over 7 billion smartphones worldwide and every one is
a PAS camera (in the context of this paper, smartphone and
camera are used interchangeably). Although almost every
smartphone user would routinely use their phones to take
photos, very few would have the photography skill to com-
pose a good shot of a scene. In this paper, we present a solu-
tion that automatically guides smartphone users to compose
the best shot live on a scene.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Geometric explanation of the relationship between ERP
(a) and the sphere (b).

For a given scene of interest and starting from an initial
view a user points to, our Smart Point-and-Shoot (SPAS)
system automatically recommends camera pose adjustment
strategies and guide the user to rotate the camera upwards,
downwards, rightwards or leftwards until the camera points
to the best shot. In contrast to existing literature on auto-
matic picture composition which is a post-processing pro-
cedure of cropping a photo that has already been taken from
a fixed view, our SPAS is the first system that enables users
to compose the best shot of a scene by guiding the users to
adjust the camera pose live on the scene.

As shown in Figure 1, given an initial view, the cam-
era pose adjustment model (CPAM) first evaluates whether
the composition can be improved. If so, it predicts how the
camera pose should be adjusted. Specifically, let θ, φ, and
γ respectively denote the yaw, pitch, and roll angles of a
camera pose P = (θ, φ, γ). Because it is unusual to roll
the camera during shooting, it is reasonable to assume that
the roll angle is fixed. The CPAM therefore suggests how
to rotate along the vertical axis (change yaw angle θ) and
how to rotate along the horizontal axis (change pitch an-
gle φ). By providing camera pose adjustment suggestions
during the shooting process, we can help the users to effec-
tively improve the composition and take a good shot of the
scene. The challenge now is how to construct the camera
pose adjustment model (CPAM).

First of all, we require a suitably annotated dataset and
then use the data to construct an intelligent model that can
first determine if a given view’s composition can be im-
proved and if so how the camera pose should be changed
in order to obtain an improved shot. The challenge of ob-
taining a large enough dataset is significant. Manually ac-
quiring images of different camera poses from a variety of
scenes and then annotate them with composition scores will
be extremely time consuming and therefore is impractica-
ble. In terms of the CPAM itself, it needs to perform se-
quential decision making on two tasks. It is therefore par-
ticularly important to model the relationship between the
tasks to avoid conflicts arising from task discrepancies. In
this paper, we have developed practical solutions to these

Dataset Year Label Scenes
Candidate

Views
Camera

Pose
ICDB[28] 2013 Best 950 1 N/A
HCDB[4] 2014 Best 500 1 N/A
GNMC[3] 2022 Best 10000 5 N/A
SACD[29] 2023 Best 2777 8 N/A
FCDB[2] 2017 Rank 1536 18 N/A
CPC[26] 2018 Rank 10800 24 N/A

GAICv1[31] 2019 Score 1236 86 N/A
GAICv2[32] 2020 Score 3336 86 N/A

UGCrop5K[23] 2024 Score 5000 90 N/A
PCARD(Ours) 2024 Score 4000 81 324000

Table 1. Image Composition datasets and PCARD.

problems.
To construct a dataset for the problem, we first take ad-

vantage of the availability of 360◦ images of Google Street
View1. By exploiting the geometric explanation of the re-
lationship between the equirectangular projection (ERP) of
the 360◦ image and the sphere (see Figure 2), we discover
that a panoramic image in the ERP format can be mapped
onto the surface of a unit sphere. This mapping creates
a complete 360◦ photographic environment where spheri-
cal coordinates (longitude θ and latitude φ) naturally cor-
respond to the orientation of a virtual camera positioned
at the sphere’s center. Through this geometric correspon-
dence, we can precisely control the camera’s viewing direc-
tion using these spherical coordinates, enabling the genera-
tion of sample views with well-defined camera poses (θ, φ)
via perspective projection. Based on this observation, we
create the Panorama-based Composition Adjustment Rec-
ommendation dataset (PCARD). As shown in Table 1, the
new PCARD contains 320K images with camera pose in-
formation from 4000 scenes. As far as we know, this is the
first dataset created from the 360◦ images of Google Street
View where each image contains the camera pose informa-
tion. We will use the PCARD to develop a smart point and
shoot (SPAS) solution.

For the 320K images in PCARD, it is necessary to assign
each a quality label. Again manual approach is impractical.
Instead we resort to images with composition quality rat-
ings such as those in [32] to train a labeler to assign pseudo
composition score labels to these images. One of the ma-
jor challenges in developing the pseudo labeler is that neig-
bouring views have large overlapping regions and are very
similar, therefore the labeler needs to have the ability to dis-
tinguish images with subtle differences. In this paper, we
take full advantage of large language models (LLM) and
have developed a CLIP-based Composition Quality Assess-
ment (CCQA) model. As CLIP is sensitive to the choice of
prompts and text descriptions of nuance visual differences
are difficult, we abandon traditional subjective prompt set-

1https://www.google.com/streetview/
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tings in favor of learnable text prompts. We have devel-
oped an effective method that learns continuous word em-
beddings capable of discerning subtle visual quality differ-
ences in the range covered by five levels of quality descrip-
tion words {bad, poor, fair, good, perfect}.

The Camera Pose Adjustment model (CPAM) performs
two tasks in a sequential manner. Logically, it needs to first
determine if the current view can be further improved and
if so it then outputs the adjust suggestion in the form of two
pose adjustment angles. This is a multitask learning prob-
lem but logically the decisions must be made in a sequen-
tial manner. Also, unlike normal multitask learning, the
two learning tasks involve different training samples with
one involves the full set and the other a subset of the train-
ing samples. To tackle this problem, we have developed a
mixture-of-experts model with a gated loss function to train
the CPAM in an end-to-end manner. In summary, this paper
makes 4 major contributions:
• We present a first of its kind smart point and shoot (SPAS)

system to help the billions of smartphone users to take
good photographs. Our SPAS is the first in the literature
that proposes to help users to compose a good shot of
a scene by automatically guiding the users to adjust the
camera pose live on the scene.

• We have constructed a large dataset containing 320K
images with camera pose information from 4000 scenes
by exploiting the availability of 360◦ images of Google
Street View. This dataset which will be made publicly
available and can be used for the task in this paper as well
as other applications.

• We have developed an innovative CLIP-based Compo-
sition Quality Assessment (CCQA) model. The CCQA
introduces a unique learnable text embedding technique
to learn continuous word embeddings capable of dis-
cerning subtle visual quality differences in the range
covered by five levels of quality description words
{bad, poor, fair, good, perfect}.

• We have developed a camera pose adjustment model
(CPAM) which first determines if the current view can
be improved and if so it outputs the adjust suggestion in
the form of two camera pose adjustment angles. The two
tasks of CPAM make decisions in a sequential manner
and each involves different sets of training samples, we
have developed a mixture-of-experts model with a gated
loss function to train the CPAM in an end-to-end manner.

2. Related Work
Image Composition dataset. For photo recommendation
tasks, there exist some image cropping datasets [2–4, 23,
26, 28, 29, 31, 32] that can be categorized into two groups
based on their annotation styles, as shown in Table 1. More
details can be seen in the Supplementary Material.

Aesthetic-guided image composition. Image aesthetic
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Figure 3. The overview of our method. Using perspective pro-
jection, we generate views from 360° images with camera poses
(Step 1). We train a composition scoring model to evaluate im-
age composition quality (Step 2) and design a composition quality
score-guided method to generate camera pose adjustment labels
(Step 3). Finally, a sequential multi-task MoE network predicts
camera adjustments to improve image composition (Step 4).

quality assessment aims to quantify image aesthetic values,
while image composition focuses on finding the most aes-
thetic view. While prior works [1, 14, 17, 18, 33] learn
aesthetic-related features to evaluate composition quality,
they lack recommendation capabilities. Instead, image
cropping, which aims to find the most aesthetic sub-region
through cropping boxes, has emerged as a promising direc-
tion. Existing methods [2, 7–9, 11–13, 15, 16, 19, 20, 23–
26, 31, 32, 36] generally fall into two categories: score-
based methods [2, 13, 19, 20, 23–26, 30–32] that evaluate
candidate views using learned aesthetic knowledge, and co-
ordinate regression-based [7–9, 11, 12, 15, 16, 36] methods
that directly predict optimal cropping boxes through various
learning strategies.

Although previous methods have achieved good results
for cropping-based image composition tasks, image crop-
ping is a post-processing exercise applied to already cap-
tured images where the viewpoints have already been fixed.
It is not applicable in scenarios where the photographer
needs to adjust the camera pose or position to capture the
best view of a scene. In this work, we present a frame-
work that automatically provides photographers with cam-
era pose adjustment directions and guides the photogra-
phers to take the best shot of a given scene.

3. Problem Definition and Overview

In general, a photographer assesses an initial view through
the viewfinder and then adjusts the camera pose utilizing 3
degrees of freedom in the 3D world space (yaw θ, pitch φ,
roll γ) to take the best shot.

Given an initial view Ii
init of the ith scene, and a camera

pose adjustment prediction model f(·), the problem can be
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Figure 4. A multi-angle view generation method based on the
360◦ images.

formulated by (
ŷi
s, ŷ

i
a

)
= f

(
Ii
init

)
(1)

where ŷi
s and ŷi

a respectively represent the suggestion out-
put and the adjustment output. ŷi

s indicates whether the
composition of an initial view Ii

init can be improved. If
the composition can be improved, the adjustment predic-
tor predicts the suitable camera pose adjustment strategy,
which is (∆θi,∆φi,∆γi). In practice, it is unusual to roll
the camera during the photography process, we therefore
fix the roll angle γ. The camera pose and the camera pose
adjustment strategy can be further simplified to (θi, φi) and
(∆θi,∆φi). θi ∈ [−180◦, 180◦] and φi ∈ [−90◦, 90◦].
∆θ ∈ [−180◦, 180◦] represents the camera pose rotat-
ing left or right around the vertical axis, with rightward
rotation being positive. ∆φ ∈ [−180◦, 180◦] represents
the camera pose rotating up or down around the horizon-
tal axis, with upward being positive. The pipeline of the
whole approach is illustrated in Figure 3. First, to train
the camera pose adjustment prediction model f(·), we cre-
ate the Panorama-based Composition Adjustment Recom-
mendation dataset DPCARD =

{
Ii
init,y

i
s,y

i
a

}Nscene

i=1
and

present a pseudo-labeling method guided by composition
quality scores to generate the camera pose adjustment la-
bels (yi

s,y
i
a) (Sec. 4). Specially, we propose a CLIP-based

Composition Quality Assessment (CCQA) model h(·) to
evaluate the composition quality of views I (Sec. 5). Subse-
quently, the Camera Pose Adjustment model (CPAM) f(·)
is illustrated in Sec. 6.

4. PCARD Database
4.1. Formulation

As shown in Figure 4, given an ERP image with spa-
tial resolution H × W , we transform it into a unit sphere
S3 with S2 as its surface. Every point (θ, ϕ) ∈ S2 is
uniquely defined by its longitude θ ∈ [−π, π] and latitude

ϕ ∈ [−π/2, π/2]. In the spherical domain, this can be ex-
pressed as: {

θ = 2πu
W − π

φ = −πv
H + π

2

(2)

where u ∈ [1,W ] and v ∈ [1, H]. We assume that a vir-
tual pinhole camera is positioned at the center of the sphere
S3. The visual content is then captured as a planar view
Ii
init that is determined by the viewing angle (θiinit, φ

i
init),

and field of view (fovx, fovy) of the camera through per-
spective projection[5]. By adjusting the camera pose we
generate candidate views Ii

adj = {Iji , (θ
j
i , φ

j
i )}Mj=1, where

M = 360
∆θ × 180

∆φ which is the number of candidate views,
∆θ and ∆φ are the view adjustment step-sizes. Then
the search space M is efficiently reduced by exploiting
the Content Preservation and Local Redundancy proper-
ties. And to complete the dataset construction process, we
propose a pseudo-labeling method guided by composition
quality scores to generate the camera pose adjustment la-
bels (yi

s,y
i
a) for the candidate views.

Content Preservation. Generally speaking, the adjusted
view Ii

adj should preserve the main content of the initial
view Ii

init to maintain the photographer’s intended subject.
Hence, we constrain the overlapping area between the ad-
justed next view Ii

adj and the initial view Ii
init to be no

smaller than a certain proportion of Ii
init. Note that it is

directly defined on a sphere (the 360◦ images) rather than
ERP or the tangent plane [35].

SphOverlap (Sadj , Sinit ) =
A(Sadj ∩ Sinit )

A(Sinit )
> λ (3)

where Sadj and Sinit represent the spherical rectangles cor-
responding to Ii

adj and Ii
init in the 360◦ images respec-

tively, A(·) is the area of the shape and λ ∈ [0.5, 1).
Local Redundancy. Adjusting the camera pose to im-

prove image composition is a problem with local redun-
dancy because suboptimal solutions are also acceptable.
Based on Moore neighborhood theory[22], we design a
sampling matrix that captures 8 neighboring views around
the current camera pose (θi, φi) at varying distances con-
trolled by a multiplier m, as shown in Figure 4. To effi-
ciently remove redundant candidate views, we set the sam-
pling step sizes ∆θ = ∆φ = 5◦ following [37].

More detailed mathematical calculations can be found in
the Supplementary Material.

4.2. Database Construction

We selected 20 countries from Street View Download 360
2, with an average of 8 cities per country, resulting in a
total download of over 150K 360◦ images in equirectan-
gular projection (ERP) format. We designed a web player
based on a Web3D library Three.js3 to achieve 360◦ play-

2https://svd360.com/
3https://threejs.org/
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back of the panoramic images. This allows us to inspect
the panoramic images for obvious distortion or damage,
and if none are present, select suitable initial views and
record their camera poses. In the end, we retained 4,000
high-quality panoramic images. For each panoramic image,
we first generate the initial view Ii

init according to the pre-
recorded camera poses (θiinit, φ

i
init) and then generate can-

didate views Ii
adj = {Iji , (θ

j
i , φ

j
i )}Mj=1 following the Con-

tent Preservation and Local Redundancy in Sec. 4.1, where
M is the size of candidate view set. In our final dataset, on
average, M = 81 which we believe is a reasonable size for
learning image composition.

4.3. Label Generation

We propose a labeling method guided by aesthetic scores
to generate the camera pose adjustment labels (yi

s,y
i
a) of

the view Ii
init. To do this, we have designed a CLIP-based

Composition Quality Assessment (CCQA) model which
will be described in Sec. 5. Given an initial view Ii

init

with camera pose (θiinit, φ
i
init) and its corresponding can-

didate views Ii
adj = {Iji , (θ

j
i , φ

j
i )}Mj=1, we use the CCQA

model h(·) to assign numerical composition quality ratings
to views: s = h(I). We denoted that siinit represents the
score for the initial view Ii

init while siadj contains the scores
for the candidate views Ii

adj .
Then, we calculate the adaptive threshold τi for each

scene i. This threshold is determined by ranking the scores
of the candidate views in descending order and selecting the
N th score: τi = TopN (siadj) where N is a fixed percent-
age of the total number of candidates M . In practice, we
set N = 25%, the detailed information will be discussed in
Supplementary.

Finally, we generate the suggestion label yi
s and adjust-

ment label yi
a leveraging the adaptive threshold τi:

yi
s =

{
1, if siinit < τi
0, if siinit >= τi

(4)

yi
a =

{ (
θibest , φ

i
best

)
−
(
θiinit , φ

i
init

)
, if yi

s = 1
(0, 0), otherwise (5)

where (θibest, φ
i
best) represents the camera pose of the can-

didate view with the highest composition quality score.

5. CLIP-based Composition Quality Assess-
ment

We introduce our CLIP-based Composition Quality Assess-
ment (CCQA) model illustrated in Figure 5. The model is
trained on the GAICv2 dataset [32] that pairs each image
x with multiple cropping view v and their corresponding
composition quality scores s.

Image encoder. Given an image x and a set of view v,
the image encoder creates global feature maps from x by
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Figure 5. CLIP-based Composition Quality Assessment model.

a trainable CLIP image encoder’s first 3 blocks, then uses
RoIAlign to extract sub-view feature which are further en-
coded by CLIP’s final block to obtain sub-view embeddings
that denoted as visual embedding I .

Learnable prompt. The design of prompts can greatly
impact performances. CLIP is sensitive to the choice
of prompts, therefore, we abandon traditional subjective
prompt settings in favor of a learnable prompt strategy.
These learnable text prompts T are defined as follows:

T = [P ]1[P ]2 . . . [P ]L[Class] (6)

Each [P ]l(l ∈ {1, . . . , L}) is a learnable word embedding
in the text prompt templates with the same 512 dimension-
ality as the CLIP word embedding, L represents the number
of context tokens. Class is one of five-level quality descrip-
tion words {bad, poor, fair, good, perfect}.

Feature adapters and Weighted summation. We in-
troduce learnable feature adapters to better leverage CLIP’s
prior knowledge and enhance visual-text feature synergy.
The adapted features I ′ and T ′ are obtained by applying
residual adaptation and normalization to the visual embed-
ding I and text embeddings T respectively.

The quality weights Wi are computed by applying soft-
max to the cosine similarities between adapted image fea-
ture I ′ and five class prompts {Ti

′}5i=1[27, 34].

Wi =
exp

(
I ′⊤Ti

′/σ
)∑5

j=1 exp
(
I ′⊤Tj

′/σ
) , (7)

where σ is the temperature parameter. The assessment score
q of the given image is calculated as:

q =

5∑
i=1

Wi × Ci, (8)

where {Ci}5i=1 are the numerical scores of the five-level
quality description words which are set to 1, 2, 3, 4 and 5
with a lower numerical value corresponds to a lower quality
class word.
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Feature mixers and regression. To better enable the
CLIP features to discern subtle differences in aesthetic qual-
ity across a series of similar photos, we obtain the weighted
text features Ft through calculating the dot product be-
tween the quality weights Wi and the adapted text features
{Ti

′}5i=1 of the five prompts:

Ft =

5∑
i=1

Wi × Ti
′, (9)

The final score ŝ is predicted by passing the concatenated
weighted text features Ft and adapted image features I ′

through an MLP.
Optimization. The CCQA uses a multi-task loss func-

tion. The first task enforces the predicted scores to be close
to their ground truth scores:

L1 =
1

N

N∑
i=1

(ŝi − si)
2 (10)

where ŝi and si represent the score predicted by CCQA and
the ground truth.

The second task enforces the predicted scores of dif-
ferent views to have the same ranking order as that of the
ground truth scores. We therefore also incorporate a rank-
ing loss L2 to explicitly model the ranking relationship.

L2 =

∑
i,j max (0,−sign (si − sj) ((ŝi − ŝj)− (si − sj))) .

N(N − 1)/2
(11)

where sign(·) is the standard sign function.
The third task L3 enforces consistency between q (cosine

similarity-based weighting computed according to Eq. (8)),
and the ground truth scores si.

L3 =
1

N

N∑
i=1

(qi − si)
2 (12)

The total loss function can be summarized as

LCCQA = L1 + L2 + α ∗ L3 (13)

where the hyperparameters α is used to balance different
losses (set to 0.1 in this paper).

6. Camera Pose Adjustment Model
Given an image, the Camera Pose Adjustment model
(CPAM) f(·) produces two outputs. Firstly, the output of
the suggestion predictor ŷi

s predicts whether a view adjust-
ment should be performed. Suggestion predictor is a binary
classification head. Secondly, the output of the adjustment
predictor ŷi

a predicts how to adjust the camera pose when
the suggestion predictor indicates an adjustment is needed.
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Figure 6. Camera Pose Adjustment model.

The adjustment predictor has a regression head respectively
predicting the variables ∆θ and ∆φ.

A key challenge is the sequential dependency between
these tasks - the adjustment prediction is only meaning-
ful when the suggestion predictor indicates adjustment is
needed. This creates an imbalanced training scenario where
only a subset of samples contribute to the adjustment task,
potentially causing conflicts between tasks due to different
sample spaces and gradient frequencies.

To resolve this problem, we adopt a multi-gate mixture
of experts architecture, which allows each task to adaptively
control parameter sharing through task-specific gates, en-
abling the model to learn task-specific features while main-
taining shared knowledge where beneficial. Each task can
dynamically assign different weights to experts, mitigating
the conflicts caused by imbalanced training.

Specifically, as shown in Figure 6. Given an image, let
x ∈ RD denote the shared features extracted by the ResNet
backbone. Our Camera Pose Adjustment model (CPAM)
consists of M experts Em: RD → RD and task-specific
gates Gt: RD → RM , where t ∈ [1, 2] indicates different
tasks. Each gate follows the softmax design:

Gt(x) = Softmax (FFNt(x)) (14)

where FFNt represents a task-specific feed-forward net-
work. The output feature ft of each task branch is computed
as:

ft =

m∑
i=1

Gt(x)i · Ei(x) (15)

Finally, these task-specific features ft are processed
through separate MLP layers to generate the suggestion pre-
diction ŷi

s and the adjustment prediction ŷi
a

Optimization. The CPAM uses a multi-task loss func-
tion. For the suggestion prediction task, we adopt the cross-
entropy loss function Lce:

Lsuggest =
1

N

N∑
i=1

Lce(ŷ
i
s,y

i
s) (16)
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For the adjustment prediction task, the loss function is:

Lcs = 1− 1

N

N∑
i=1

ŷi
a · yi

a

∥ŷi
a∥∥yi

a∥
(17)

Lnorm =
1

N

N∑
i=1

(∥ŷi
a∥ − ∥yi

a∥)2 (18)

Ladjust = Lcs + Lnorm (19)

The total loss function can be summarized as

LCPAM = Lsuggest + 1(ys=1)Ladjust (20)

where 1(ys=1) is an indicator function that determines dur-
ing training, the gradients of the adjustment predictor are
backpropagated only for samples where a suggestion should
be provided.

7. Experiments
7.1. Implementation Details

Training. We use CLIP (RN50) [21] as the backbone of
CCQA, with RoIAlign size of 14 × 14. The CCQA model
trained for 120 epochs using Adam optimizer [10] with
learning rate 5×10−6. For CPAM, we adopt ImageNet pre-
trained ResNet50 [6] and train it for 50 epochs using Adam
with learning rate 1× 10−4 and weight decay 1× 10−4.

Datasets. We train CCQA on GAICv2 [32] (3,636 im-
ages, 86 views per image) and evaluate its generalization
on CPC [26] (10,800 images, 24 views per image). Our
PCARD dataset is divided into training and test sets with an
8:2 ratio for CPAM training and evaluation.

Evaluation Metrics. We use the AUC (Area under re-
ceiver operating characteristics curve) to evaluate the per-
formance of the suggestion predictor. This metric mea-
sures how accurately a model triggers suggestions. Then,
we evaluate the accuracy of the adjustment predictor using
cosine similarity (CS) and MAE, where cosine similarity
(CS) measures how close the predicted adjustment direc-
tion is to the actual adjustment direction, and MAE mea-
sures the precision of the adjustment predictor. We adopt
Intersection over Union (IoU) to quantify the accuracy of
view adjustment predictions. Notably, the IoU is computed
on the spherical panorama surface. More details can be seen
in Supplementary Material.

7.2. Objective Evaluation

Exploration of different expert numbers in CPAM. To
investigate the optimal number of experts in our Camera
Pose Adjustment model, we conducted ablation studies by
varying the number of experts M from 1 to 5. As shown
in Table 2, we can observe that: (a) the model achieves the
best overall performance when M = 2. The suggestion

M AUC↑ TP TP+FP
CS↑ MAE↓ IoU ↑ IoU ↑

1 78.7 0.401 0.524 0.604 0.601
2 79.3 0.415 0.507 0.613 0.617
3 78.4 0.408 0.515 0.606 0.612
4 77.3 0.398 0.52 0.597 0.601
5 76.7 0.368 0.541 0.591 0.597

Table 2. Ablation study of Camera Pose Adjustment model. (TP:
True Positive, FP: False Positive).

Loss AUC↑ TP TP+FP
CS↑ MAE↓ IoU ↑ IoU ↑

A 76.1 0.391 0.507 0.602 0.605
B 78.5 0.408 0.507 0.606 0.611
C 79.3 0.415 0.507 0.613 0.617

Table 3. Ablation Study of Loss Functions in Camera Pose Ad-
justment Model. (TP: True Positive, FP: False Positive)

predictor demonstrates the highest AUC of 79.3%, and the
adjustment predictor shows superior performance across all
metrics; (b) increasing the number of experts beyond two
leads to a gradual decline in performance across all metrics.
This degradation might be attributed to the increased model
complexity in expert predictions; (c) despite having similar
suggestion prediction performance (AUC scores of 78.4%
and 78.7% respectively), the M = 3 configuration demon-
strates superior adjustment prediction capability compared
to the M = 1. This is because when M = 1, the gating net-
work becomes ineffective, so the CPAM lacks the dynamic
expert weighting mechanism that is crucial for the mixture
of experts; (d) we also report the IoU metrics for both true
positives (TP) and all predicted adjustment cases (TP+FP)
from the suggestion predictor. Notably, when M ≥ 2, our
adjustment predictor can still generate reasonable adjust-
ments even when the suggestion predictor makes mistakes.

Exploration of different loss functions in CPAM.
To further validate the rationality of the loss functions
(Eq. (19)) for the adjustment predictor, we compared the re-
sults of two other loss functions on the PCARD dataset, as
shown in Table 3. A represents replacing Eq. (19) with MSE
loss, treating the camera pose adjustment prediction as a
standard regression problem. B denoted replacing Eq. (18)
with MSE loss, which treats the camera pose adjustment
prediction as a regression of direction and coordinates, us-
ing cosine similarity to supervise the alignment of predicted
and labeled directions, and MSE for the coordinate regres-
sion. C is the loss functions adopted in our paper, treating
camera pose adjustment prediction as a strict spatial vector
prediction, which involves supervision of both the vector di-
rection and the vector magnitude. The results demonstrate
the effectiveness of our designed loss functions.
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Figure 7. Qualitative examples. Each pair shows the original im-
age (left) and the result of the adjustment (right).

Generalization Capability Validation of CCQA.To
evaluate the generalization capability of our proposed
CCQA model, and demonstrate the reliability of the scor-
ing order in our PCARD dataset, we conducted rigorous
experiments on additional unseen datasets. Specifically,
we trained the model on the GAICv2 dataset[32] and then
tested it directly on the unseen CPC dataset[26]. The av-
eraged top-k accuracy (Acck) and weighted average top-k
accuracy(Accwk ) for both k=5 and k=10 as evaluation met-
rics are reported in Table 4. There are no discarded regions
in the images of our PCARD dataset. Therefore, the net-
works were appropriately modified to adapt to our dataset,
∗ indicates that we removed RODAlign from these networks
designed for image cropping tasks. The best generalization
capability results are marked in bold and the second gen-
eralization capability results are marked with underlines.
We can see that our proposed CCQA achieves the best per-
formance on all metrics, the results demonstrate that the
CCQA model exhibits good generalization capability, sug-
gesting that utilizing this model to provide aesthetic scoring
for our PCARD dataset is a reliable approach.

The ablation studies of CCQA and analysis experiments
on PACRD dataset labels will be discussed in the Supple-
mentary Material.

7.3. Subjective Evaluation

To further demonstrate the effectiveness of our proposed
framework, we design an annotation toolbox and conduct
two sets of user studies. First, we select 100 images from

Method Acc5 Acc10 Accw5 Accw10

TransView*[20] 51.1 66.4 36.7 50.7
GAICv2*[32] 50.9 66.5 36.6 50.8
SFRC* [25] 51 65.9 36.8 50.6

CCQA(Ours) 56.1 72.6 39.8 55.5

Table 4. Comparison of the generalization ability of different com-
position scoring models on the CPC dataset.

Which is better Suggestion Adjustment

After/Original 82.0% 64.0%
Before/Candidate 14.0% 27.0%

No difference 4.0% 9.0%

Table 5. Subjective evaluation results on our dataset PCARD.

our dataset and show the raters the image both before and
after applying the suggested camera adjustment strategy to
evaluate whether the suggested camera adjustment strategy
effectively improves the composition of the original image.
Second, we select another 50 image pairs from our dataset
and show the raters the original image and candidate image
to evaluate the accuracy of whether a camera pose adjust-
ment should be suggested. To make the comparison fair, we
invited 25 students to participate in the user study. The sub-
jects are asked which image has the better composition or
if they cannot tell. The order of the two images is chosen
randomly to avoid bias. The results are in Table 5 and the
qualitative examples are shown in Figure 7. When a camera
pose adjustment suggestion is provided, our framework ef-
fectively improves the composition of images in most cases
(64.0%), with erroneous adjustment suggestions account-
ing for about 27.0%. When no suggestion is needed, our
model has a high success rate (82.0%), and it only wrongly
judges the need for a suggestion about 14.0% of the time.
More qualitative results can be provided in Supplementary
Material.

8. Concluding remarks

We have presented a new smart point and shoot (SPAS) so-
lution to help smartphone users to take better photographs.
We have made several contributions in this paper including
a large dataset with 320K images from 4000 scenes where
each image containing camera pose information. We have
also developed an image quality labeler that can discern
subtle image quality difference as well as a camera pose ad-
justment model that using a mixture of experts solution to
accomplish two sequential tasks of guiding a user to com-
pose a good shot of a scene.
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