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Abstract

Existing progress in object keypoint estimation primar-
ily benefits from the conventional supervised learning
paradigm based on numerous data labeled with pre-defined
keypoints. However, these well-trained models can hardly
detect the undefined new keypoints in test time, which
largely hinders their feasibility for diverse downstream
tasks. To handle this, various solutions are explored but
still suffer from either limited generalizability or transfer-
ability. Therefore, in this paper, we explore a novel keypoint
learning paradigm in that we only annotate new keypoints
in the new data and incrementally train the model, without
retaining any old data, called Incremental object Keypoint
Learning (IKL). A two-stage learning scheme as a novel
baseline tailored to IKL is developed. In the first Knowl-
edge Association stage, given the data labeled with only
new keypoints, an auxiliary KA-Net is trained to automati-
cally associate the old keypoints to these new ones based on
their spatial and intrinsic anatomical relations. In the sec-
ond Mutual Promotion stage, based on a keypoint-oriented
spatial distillation loss, we jointly leverage the auxiliary
KA-Net and the old model for knowledge consolidation to
mutually promote the estimation of all old and new key-
points. Owing to the investigation of the correlations be-
tween new and old keypoints, our proposed method can not
just effectively mitigate the catastrophic forgetting of old
keypoints, but may even further improve the estimation of
the old ones and achieve a positive transfer beyond anti-
forgetting. Such an observation has been solidly verified by
extensive experiments on different keypoint datasets, where
our method exhibits superiority in alleviating the forgetting
issue and boosting performance while enjoying labeling ef-
ficiency even under the low-shot data regime.

1. Introduction

As a fundamental task in computer vision, estimating the
visual keypoint locations of an object serves as the indis-
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Figure 1. Medical analysis can frequently change and require new
keypoints essentially [6], while the labeling is time-consuming.

pensable primitive to support numerous down-stream tasks,
e.g., object pose detection [29, 77, 80], tracking [28], action
recognition [7], generation [57] and animation [28, 58], etc.
Over a long period of time, supervised keypoint learn-
ing (SKL) [19, 36, 39, 68] has significantly advanced the
progress on keypoint estimation. By exploiting large-scale
pure 2D keypoint datasets [5, 44] with extreme variance,
SKL aims to train a deep neural network that can robustly
detect a set of pre-defined keypoints in test images.

However, the SKL models can not estimate newly-added
undefined keypoints of an object, while new demands from
downstream tasks will inevitably require new keypoints.
For instance, until now, models trained by existing keypoint
dataset [67] can only detect 19 keypoints to support Downs
analysis in the Cephalometric analysis, while they are in-
feasible for important analysis like Steiner analysis [53], as
shown in Fig. 1. Such an issue motivated a recent MIC-
CAI challenge [6] on annotating much more keypoints to
support increasing analysis. However, keypoint labeling is
time-consuming [18, 45, 50], especially when keypoints are
defined sequentially. Another alternative solution is to train
separate new keypoint estimator [12, 31] for each set of new
keypoints as in Fig. 2. However, the number of estimators
will increase linearly, and the separate training strategy will
make each estimator easily overfit the new keypoints [12]
and hardly capture the intrinsic relation between old and
new keypoints, leading to sub-optimal performance.

To mitigate the above issues, unsupervised keypoint
learning (UKL) [22, 23, 49, 55, 84] is proposed for new
keypoint estimation. The models are firstly pretrained in an
unsupervised manner to predict numbers of keypoints ran-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

25399



Figure 2. Separate Estimators need multiple estimators in test time. Unsupervised keypoint learning (UKL) and category-agnostic pose
estimation (CAPE) exploit a fixed pretrained keypoint estimator on unseen new keypoints. While our Incremental object Keypoint Kearn-
ing (IKL) continually updates the same model on the new data labeled only on new keypoints without retaining any old training data.

domly, then a linear transformation is learned to transfer
the existing keypoints to the new undefined ones. However,
UKL is merely effective on objects with relatively rigid mo-
tion or video data with consistent object instances and local
changes in appearance and motion. As a result, it is hard
to perform UKL on large-scale pure 2D datasets [5, 44] due
to their extreme inter-image differences in the background,
appearance, and motions of distinct object instances. Re-
cently, a supervised metric learning-based [59] paradigm
named category-agnostic pose estimation (CAPE) [76] is
proposed to learn a class-agnostic pose estimator that can
estimate unseen keypoints in test time with a few labeled
support samples. However, as the model is frozen after
pretraining, CAPE is limited by its restricted generalization
and transferability for newly-defined keypoints (Tab. 4).

Therefore, in this paper, we propose to solve the new
keypoint estimation problem creatively in an incremental
learning (IL) manner. As shown in Fig. 2, we propose an
Incremental object Keypoint Learning (IKL) paradigm
to incrementally train a keypoint estimator on the new data
labeled only with new keypoints. Even without retain-
ing any old data, the IKL model should not forget the
old keypoints catastrophically. Compared to the naive so-
lutions that either label both new and old keypoints or
learn separate estimators, our IKL only labels the new key-
points and maintains just one model in the lifetime, which
is computationally efficient. Moreover, different from the
UKL and CAPE whose performances are largely limited
by their restricted transferability depending on a fixed pre-
trained model, the IKL alleviates such an issue by continu-
ally training the model to sufficiently expand its knowledge
on newly-defined keypoints and may even improve the old
keypoint estimation when learning more relevant new key-
points. Lastly, as most works in IL mainly study the clas-
sification task [13, 70], to our best knowledge, IKL as an
incremental keypoint regression task has rarely been stud-

ied before, which also provides novel insights for IL.

However, IKL also poses a new challenge known as la-
bel non-co-occurrence (LNCO). As only new keypoints are
labeled in the new data, the kinematic and anatomical con-
straints between old and new keypoints are not explicitly
presented in the label space, making it hard for the model
to capture such a physical prior during incremental training.
Existing IL methods (Tab. 1) do not explicitly model such
inter-keypoint relations in IKL, thus the old and new key-
point predictions can not mutually support each other and
may readily bias toward the new ones, exacerbating the for-
getting of the old keypoints (Tab. 1).

To tackle the challenge of IKL, we propose a novel two-
stage learning scheme called KAMP as a new baseline tai-
lored to IKL. In the first Knowledge Association stage, we
train an auxiliary KA-Net to associate old and new key-
points based on their physiological connection, represented
by their spatial adjacency. Specifically, KA-Net learns to
predict the selected old keypoint given the related new key-
points to acquire their intrinsic anatomical relevance. In the
second Mutual Promotion stage, we train the new model on
all keypoints to mutually promote their estimation, where
the old ones are updated by distilling from the KA-Net and
the old model with a newly designed keypoint-oriented spa-
tial distillation loss for better knowledge preservation. To
verify our effectiveness, we simulate IKL based on four
keypoints datasets on both medical and natural images, i.e.,
Cephalometric [6], Chest [27], MPII [5] and ATRW [37].
Extensive results demonstrate that our KAMP can not just
effectively alleviate the catastrophic forgetting of old key-
points, but even further boost their performance and thus
outperform the existing exemplar-free IL methods by a sig-
nificant margin (Tab. 1) and can also work for low-shot sce-
narios (Tab. 3 and 4). Our analysis further reveals that IKL
is complementary to learning paradigms like CAPE (Tab. 4)
and labeling-efficient for new keypoint estimation.
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To summarize, our contributions are three-fold: (1) We
establish a novel paradigm, Incremental object Keypoint
Learning (IKL), to tackle the challenging demands of new
keypoints estimation. (2) We propose a two-stage exemplar-
free IKL method to explicitly model and exploit the rela-
tion between old and new keypoints to help alleviate the la-
bel non-co-occurrence problem tailored to IKL, which may
further boost the performance of old keypoints beyond anti-
forgetting. (3) As a proof-of-concept, we empirically show
that IKL is practical and labeling-efficient to scale up a
pretrained keypoint estimator on new keypoint estimation,
which is much better than other alternative paradigms.

2. Related Works
Keypoint Estimation (KE). Existing research of KE fo-
cuses on estimating a fixed number of keypoints for a spe-
cific category [5, 29, 44, 54, 78–80]. Most works de-
sign new methods [20, 34, 35, 38, 89] or network archi-
tectures [39, 48, 61, 62, 68, 77] to improve the supervised
learning over large-scale pure 2D keypoint datasets [5, 44].
Estimating dense keypoints [29, 82] of the human body
has been proposed but requires extreme labeling cost. Re-
cent works explore semi-supervised [24, 50, 66] or unsu-
pervised learning [63, 84] to reduce the laborious label-
ing consumption, but the unsupervised methods still hardly
achieve a precise estimation of semantically meaningful
keypoints [49]. Recently, Category-agnostic keypoint es-
timation (CAPE) [10, 56, 76] is proposed to learn a class-
agnostic model to detect keypoints of unseen categories by
a few labeled support images without retraining the model.
However, as the model is frozen after pretraining, CAPE is
limited by restricted generalization and transferability due
to the intra-class appearance variation, self-occlusion, and
appearance ambiguity, as detailed in [76]. Different from
the above paradigm that pre-defined a set of keypoints or
assumed the pretrained model was sufficient enough for dif-
ferent downstream tasks, our proposed IKL paradigm con-
tinuously updates the model only on the new keypoints to
increasingly expand its knowledge, which is much more
flexible and labeling-efficient.

Incremental Learning (IL). Existing IL methods can be
categorized as exemplar-free and exemplar-based ones [3,
25, 26, 32, 41, 52], given whether old data can be re-
tained. However, saving exemplars not just introduces in-
creasing costs on memory, but also has privacy issues in
real-world applications. For exemplar-free methods, exist-
ing approaches focus on adding regularization over param-
eters [2, 33, 47, 81, 83] or the network’s output in differ-
ent positions [15, 40, 73, 85]. Regarding the IL settings,
adding new classes [13] or domains [41, 46, 65] have been
studied popularly and mainly tested on classification bench-
marks [13, 14]. In contrast, keypoint estimation is a location
regression task [20, 34, 48], and our proposed IKL aims

to detect newly defined keypoints incrementally. The in-
cremental animal pose estimation [51] (IAPE) is a related
setting to us. However, IAPE assumes the label space of
keypoints is fixed for each animal, and it only learns new
animals’ poses, i.e., only the input distribution is changed
with new animal domains. While for our IKL, we instead
consider adding new keypoints to the label space for an
object category, and the old and new data distribution may
be relatively correlated.

Positive Transfer (PT) in IL. Most IL approaches fo-
cus on alleviating the catastrophic forgetting problem [13],
while only a few works are dedicated to achieving posi-
tive transfer (PT) in IL [30, 43, 47], i.e., improving the old
tasks while learning a new task. Those methods encour-
age PT by modifying the gradient updates based on the new
and old tasks’ correlations which are measured by saving
the data [47] from the old task or based on formal analy-
ses [30, 43]. Differently, our KAMP achieves PT by ex-
plicitly modeling the relation between old and new key-
points based on their intrinsic anatomical relevance, and we
exploits the relation to design novel distillation to fur-
ther boost the estimation of the old keypoint, which is
tailored to the IKL and keypoint estimation.

3. Incremental Object Keypoint Learning
3.1. Problem Formulation
We denote t=0 as the initial step and t=1, ..., T as the incre-
mental steps. Then the training set for the t-th incremen-
tal step is Dtrain

t =
{
xtrain
t,j , ytrain

t,j

}Nt

j=1
, where x, y,Nt denote

the inputs, the keypoint labels and the size of Dtrain
t . As

we only label new keypoints in IKL, thus the newly intro-
duced keypoints must be disjointed with the old ones, i.e.,
ytrain
t ∩

(
∪t−1
i=0y

train
i

)
= ∅. Different from the classifica-

tion task, the common practice for keypoint estimation is to
regress a 2D heatmap for a keypoint, i.e., a Gaussian peak
around the ground-truth keypoint location [71]. Thus the
model mt in IKL comprises the feature extractor ft and a
stack of convolutional keypoint estimation heads {Gi}ti=1

that parameterized by θt and {ϕi}ti=1, respectively. Each
estimation head ends with a convolutional layer to generate
the 2D heatmap. Gt denotes the estimation head for the new
keypoints in the t-th step. ft and {Gi}t−1

i=1 in model mt are
initialized by the same weights in the old model mt−1.

3.2. KAMP: A Novel Baseline for IKL
In this section, we present our two-stage method KAMP
as a novel baseline tailored to IKL. We conjecture that dis-
tilling the relation between related old and new keypoints
into the model may help it implicitly capture the intrinsic
physical prior to alleviate the label non-co-occurrence is-
sue. To do so, for each incremental step, in Stage-I, we
design an auxiliary prediction task to associate the related
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Figure 3. Overview of KAMP using the human body for illustration. In Stage-I, we learn an auxiliary KA-Net to associate the related old
and new keypoints based on their local anatomical constraint. In Stage-II, we jointly leverage the old model and the KA-Net as an auxiliary
teacher to consolidate all old keypoints’ prediction and also learn the new keypoints simultaneously to achieve mutual promotions.

old keypoint’s with the new ones by the KA-Net. In Stage-
II, the old model mt−1 and KA-Net are both frozen to distill
knowledge into the new model mt for all old keypoints, and
the new keypoints are learned concurrently to achieve mu-
tual promotion. Fig. 3 provides a schematic view of KAMP.

3.2.1. Stage-I: Knowledge Association (KA)
As mentioned in Sec. 1, the old and new keypoints in IKL
are not jointly labeled, making it difficult for the model to
learn relationships between keypoints, such as their struc-
tural and anatomical relevance, using only the labels of new
keypoints. To mitigate this issue, we propose to model the
constraint among the spatially and anatomically related old
and new keypoints as an implicit function in the current in-
cremental step t. Existing analysises [11, 12, 64] show that
keypoint association can be well-modeled by the triangula-
tion constraint. Motivated by this, we define a triangulation
constraint F on the distribution of three related keypoints:

F (P (Ki), P (Kj), P (Kk)) = 0, (1)

where P (Ki) denotes the distribution of the keypoint i, and
the tuple may include one or two new keypoints. However,
as there may be multiple valid solutions (constraints) that
satisfy the implicit function F , it is challenging to derive an
analytical solution for F in IKL.

Therefore, we consider an alternative formulation, e.g.,
P (Koj ) = F (P (Kn1), P (Kn2)), which is a special case
of the Eqn. 1 that we condition the distribution of an old
keypoint P (Koj ) on its related new keypoints P (Kn1) and
P (Kn2). We focus on two new keypoints since only they
have ground-truth labels, and the ground-truth supervision
can help reduce the uncertainty in learning the constraints.
Moreover, in practice, new tasks typically require more than
one new keypoint for support. Nonetheless, we verify in our
Supplementary that our approach performs effectively even
with a single new keypoint. To enhance this constraint, we
model the conditional probability between the related old
and new keypoints as an auxiliary prediction task:

P (Koj | Kn1 ,Kn2 , v) = KA(P (Kn1), P (Kn2), v), (2)

where KA stands for the Knowledge Association Net-
work (KA-Net). The insight of this auxiliary task is in-
spired by the fact that spatially adjacent and visually cor-
related keypoints can mutually predict each other as shown
in many existing works [11, 62, 64].

KA-Net. The input of the KA-Net is the ground-truth
heatmap (ygti,n1 and ygti,n2 ) of new keypoints Kn1 and Kn2 of
an image i, and the output is the predicted heatmap ỹi,j of
the old keypoint Koj . vi denotes the holistic visual features
v of the image i comprised of the intermediate features ex-
tracted from the frozen feature ft−1 and are re-scaled to
the same spatial size as ygti,n1 and ygti,n2 . The visual features
vi are incorporated alongside spatial information (ygti,n1 and
ygti,n2 ) because, in a 2D image, spatial coordinates alone are
insufficient to determine a keypoint’s location due to uncer-
tainty stemming from factors such as camera angle, object
appearance, and motion. By incorporating visual features,
we provide additional contextual information that helps ac-
count for this uncertainty in keypoint associations.

In the present paper, we explore KA-Net’s simplest con-
struction to minimize its training cost: for each new key-
point, we first perform the element-wise multiplication be-
tween its ground-truth heatmap (ygti,n1 and ygti,n2 ) and the
holistic features vi to obtain the keypoint-oriented spatial
features. Then we concatenate the spatial features and feed
them forward over three convolutional layers accompanied
by the Batch Normalization (BN) and ReLU to predict the
selected old keypoint Koj . Note that the trained KA-Net
will only be used to distill the keypoint association in the
Stage-II and will not be used in test time after IKL.

Training of KA-Net. We train KA-Net by the new data
Dtrain

t . As Dtrain
t does not have ground truth labels for old

keypoints, we use the pseudo-labels predicted by the old
model mt−1 to supervise KA-Net for keypoint regression:

ℓKA =
1

Nt

∑Nt

i

∑
j∈KKA

∥∥ŷt−1
i,j − ỹi,j

∥∥2
2
, (3)

25402



where KKA denotes the selected old keypoints used for
the auxiliary prediction task, ŷt−1

i,j denotes the prediction
of the j-th keypoint by mt−1 given image i, and ỹi,j de-
notes the prediction by the KA-Net. We will show in Sec. 4
that our KAMP can effectively reduce the forgetting of old
keypoints and even improve them, which largely reduce the
accumulative error to use pseudo-labels for KA-Net.

Auxiliary Task Creation. To select the old keypoint for
training KA-Net, in each incremental step, we first locate all
the old and new keypoints on a general object anatomy di-
agram by their semantic definition. Then we measure their
relative proximity by simple distance calculations (e.g., Eu-
clidean distance) to identify two new keypoints (Kn1 and
Kn2 ) that are close to an old one Koj . This process can also
be automated by multi-modality large language models like
GPT-4o [1, 42, 75] as shown in Fig. 3. If we identify sev-
eral tuples of old and new keypoints satisfied the require-
ment, we randomly choose one tuple to create the auxiliary
prediction task to avoid training too many KA-Net. For all
results of our KAMP in Section 4, we show that even by
creating only one auxiliary task in each step, we can still
bring sufficient improvement on all keypoints. Note that
task creation does not need any training, and we only need
to perform once before each step, which is highly efficient.
Such a design provides an interpretable way to incorporate
the physical knowledge of the object to guide the IKL.

3.2.2. Stage-II: Mutual Promotion (MP)
In Stage-II, we jointly optimize all the new and old key-
points on the new model mt by the loss lMP :

lMP = ℓGT + α (ℓKSD + ℓKA) , (4)

where ℓGT denotes the L2 loss between the ground truth of
the new keypoints and their predictions by the new model
to acquire the knowledge of new keypoints. α is a hyper-
parameter to balance the new keypoints acquisition and old
keypoints forgetting. For ℓKA, we use the frozen KA-Net
as an auxiliary teacher to supervised the old keypoint se-
lected in Stage-I to distill the keypoint association knowl-
edge. Since ℓKA is only applied to the selected old key-
point for knowledge transfer instead of mitigating the for-
getting, we further consolidate the knowledge of all old
keypoints by the loss ℓKSD using the frozen old model
mt−1. As the distribution of new and old data in IKL do
not change dramatically and may even have a strong cor-
relation, LWF [40] can be a baseline for ℓKSD in such a
scenario as analyzed in [13]. In general, ℓKSD represents
the negative log-likelihood 1

Nt

∑Nt

i s
(
ŷt−1
i

)
· log s (ŷti)

between the predictions of all old keypoints by the new
model, ŷt−1

i ∈RC×H×W , and predictions by the old model,
ŷti∈RC×H×W . s(·) denotes the Softmax operator. C de-
notes the numbers of old keypoints learned before step t, H
and W are the height and width of each keypoint’s heatmap.

However, since LWF and its variants all focus on the
classification task, they perform the Softmax across differ-
ent classes by default, i.e., over the C dimension, to obtain
the normalized class prediction score. For IKL, this means
normalizing across all old keypoints’ predictions, which can
not explicitly regularize the discrepancy of each old key-
point between the old and new model. To better preserve
keypoint-specific knowledge, we adopt a spatial softmax
operation over height (H) and width (W ) dimensions of
the keypoint prediction, sd

sp(·), d ∈ {H,W}, and combine
them to encourage spatial-oriented knowledge distillation.
We discuss in our Supplementary the difference between
each softmax alternative. Thus, our ℓKSD is defined as

1

Nt

∑Nt

i

∑C

j

∑
d
−sd

sp

(
ŷt−1
i,j

)
· log sd

sp

(
ŷti,j

)
. (5)

4. Experiment
Datasets. As the IKL has rarely been studied before, there
is no specific dataset or benchmark for IKL. Motivated by
the real-world application of IKL in medical analysis, we
leverage the large-scale Cephalometric keypoint dataset [6]
proposed in the 2023 MICCAI Challenge and also the com-
monly benchmarked Chest dataset [27] to further create the
IKL protocols to validate our proposed method. Note that
the Cephalometric keypoint dataset [6] differs from the head
dataset [67] used in previous works [78, 79] commonly, as
[6] has much larger number of keypoints and re-collected
from different hospitals to enlarge the variance of images,
makeing it much more challenging than [67]. Thus we term
this dataset [6] as Head-2023 for clarity. Note that both
Head-2023 and Chest datasets have less than or equal to 400
images in total. Moreover, though there is not a large need
for IKL on human and animal, the widely used human and
animal keypoint datasets, i.e., MPII [5] and ATRW [37],
have extreme variations and non-rigid motions. Thus we
also choose them for experiments to show the generality of
our KAMP under different domains and challenging scenar-
ios. We detail full dataset statistics in our Supplementary.

Compared Methods. For keypoint estimation, com-
mon network structures for classification like ResNet [21]
need specific modifications, e.g., adding the deconvolu-
tion layers and convolution layers to generate the key-
point location heatmap. These adjustments make many IL
methods inapplicable for IKL, e.g., prototype-based meth-
ods [87, 88] like PASS [88] that leverages the feature
mean prototype before the linear classification layer. Fur-
thermore, the IKL requires that the old data can not be
retained, and it is hard to identify specific methods for
IKL. Thus we choose several general and representative
exemplar-free methods that can adapt to different IL set-
tings based on their methodologies, including EWC [33],
LWF [40], MAS [72], RW [9], AFEC [69], CPR [8] for
comparison. They are regularization-based methods and
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Split Chest Split Head-2023 Split MPII Split ATRW

Method A-MRE1 ↓ AT1 ↑ MT1 ↑ A-MRE4 ↓ AT4 ↑ MT4 ↑ AAA4 ↑ AT4 ↑ MT4 ↑ AAA3 ↑ AT3 ↑ MT3 ↑

Joint Training 5.43 - - 2.12 - - 88.50 - - 94.69 - -
Finetune 43.1 - - 51.3 - - 37.41 - - 13.24 - -

EWC [33] 13.28 -8.23 -3.67 10.97 -6.37 -4.76 38.64 -51.84 -12.21 14.38 -59.75 -2.08
RW [9] 9.48 -7.12 -4.15 6.49 -4.23 -2.88 38.47 -18.83 -7.13 84.15 -10.87 0.00
MAS [4] 7.36 -1.86 -0.19 5.31 -2.15 -1.33 67.03 -7.56 0.34 85.68 -5.80 -1.13
LWF [40] 6.35 -1.34 0.18 4.31 -1.26 0.57 75.75 -3.86 0.41 87.31 -5.10 -0.64
AFEC [69] 8.04 -2.67 0.15 5.77 -3.45 -1.46 37.24 -22.85 -15.42 33.03 -40.25 -8.02
CPR [8] 6.17 -0.87 0.29 3.71 -1.18 0.16 75.52 -3.24 0.75 89.34 -2.76 4.49
SFD [17] 7.68 -0.54 0.13 4.76 -0.43 0.02 71.49 -0.93 0.21 86.11 -1.13 0.41
WF [74] 7.31 -0.31 0.16 4.58 0.03 0.11 72.87 -0.46 0.38 86.69 -0.97 0.62
GBD [16] 6.42 0.06 0.21 4.34 0.12 0.47 75.62 -0.18 0.35 87.42 -0.89 0.65

KAMP (Ours) 5.67 0.29 0.62 2.32 0.41 0.84 79.93 1.80 4.23 93.16 -0.84 5.13

Table 1. Result of 4 datasets after 2-Step, 5-Step, 5-Step and 4-Step IKL for Chest, Head-2023, MPII, and ATRW respectively. All
comparison methods are started from the same Step-0 trained model. A-MRE: smaller the better; AAA/AT/MT: larger the better.

can be easily applied to the IKL without trial and error.
We further adapt methods from Continual Semantic Seg-
mentation (CSS) and Class Incremental Learning (CIL)
to ISL for more comparisons, i.e., spatial feature distilla-
tion (SFD) [17], weight fusion (WF) [74], and gradient bal-
anced distillation (GBD) [16]. We also report the native
baseline, i.e., directly finetune the model during IKL, and
the upper bound that trains the model (e.g., HRNet [60])
with all the data, where we denote the former as “Finetune”
and the latter as “Joint Training”.

Evaluation Metrics. To assess the keypoint regression
task, we employ the widely used mean radial error (MRE)
for Head-2023 and Chest datasets as in [78, 79], and Proba-
bility of Correct Keypoint (PCK) [50, 56, 66, 77] for MPII
and ATRW and use their defaulted σ as in [50, 60] to
compute PCK. To measure the performance of incremental
learning (IL), we use Average Accuracy (AAA), calculating
the accuracy (%) across all keypoints post-incremental step
i under PCK, and extend this approach to MRE, denoting
it as A-MRE. Additionally, we introduce two metrics for
knowledge transfer in IL: (1) Average Transfer (AT), also
known as backward transfer [47], which averages the per-
formance improvement of keypoints over all previous steps
after step i, and (2) Maximal Transfer (MT), measuring
the largest performance improvement in any old keypoint
post-step i. Notably, when calculating AT and MT with
MRE, we invert the sign of the change in error. This ad-
justment ensures consistency, since a decrease in MRE sig-
nifies improvement, in contrast to the direct correlation of
increased accuracy with improvement in the PCK metric.
Detailed explanations for the calculation of each metric are
provided in our supplementary materials.

Experimental Design. We randomly split the keypoints
of Chest, Head-2023, MPII, and ATRW into different incre-
mental steps to create the Spilt Head-2023, Chest, MPII and
ATRW protocols respectively. As the Chest dataset only has
6 keypoints in total, we split them into two groups where the
first group has 4 keypoints with 150 training images, and the
second group for IKL has 2 keypoints with only 50 training
images. For Split Head-2023, we split the 38 keypoints into

5 groups, where the first group has 19 keypoints with the
same definition as [67] with 100 training images, and we
split the rest of keypoint into 4 groups randomly to simu-
late four incremental steps with only 50 training images for
each step. Similarly, the 16 MPII keypoints and 15 ATRW
keypoints were split into 5 and 4 groups, respectively, with
an equal distribution of training images per step. We repeat
five times under different orders of keypoint groups and re-
port the mean value in the main paper. The standard devia-
tion (std), details about the keypoints group, and results of
other experimental setups are in our Supplementary.

Implementation Details. We use the HRNet [60] as
the backbone for all methods as it is widely compared in
keypoint estimation [19, 36, 39, 50, 66, 79]. For a fair
comparison, we initialize all methods with the same initial
step (Step-0) model for incremental learning. As the first
benchmark for the IKL, we use the Continual Hyperparam-
eter Framework (CHF) [13, 41] to identify the training pa-
rameters like training epoch (100), initial learning rate (2e-
3 for Split Chest and Head-2023, 1e-2 for Split MPII, 1e-
3 for Split-ATRW), momentum (0.9), weight decay (1e-4),
and also the hyperparameters of each compared methods,
all included in our Supplementary. For our KAMP, the hy-
perparameter α is set as 1e2 for the Split Head-2023 and
Split-MPII and 1e4 for the Split Chest and Split-ATRW in
all experiments. The analysis of the α and other implemen-
tation details are included in our Supplementary.

4.1. Comparison with SOTA for IKL
As shown in Tab. 1, our KAMP consistently improves accu-
racy and reduces error across all old and new keypoints after
each incremental step, achieving the highest performance
compared to all other methods on all datasets. For example,
KAMP outperforms the second-best method by 1.39% in
A-MRE4 after four incremental steps on Split Head-2023,
and by 4.18% in AAA4 on Split MPII. Moreover, KAMP
is the only method to consistently yield the highest aver-
age transfer (AT) and maximal transfer (MT) scores across
all datasets. This result highlights that our two-stage learn-
ing scheme better facilitates knowledge transfer, thereby en-
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hancing accuracy on old keypoints while learning new ones.
When AT is positive, this indicates no forgetting on average,
underscoring the effectiveness of using pseudo-labels from
the old model to train KA-Net, as described in Sec. 3.2.1. In
Split-ATRW, the AT is negative for all methods, indicating
that forgetting of old keypoints outweighs knowledge trans-
fer. However, KAMP still achieves the highest AT among
the methods. Notably, the absolute value of KAMP’s AT
is nearly zero, suggesting minimal negative transfer. Addi-
tionally, by examining the maximal transfer metric, we ob-
serve a significant positive transfer in specific cases, such as
5.13% for MT3, indicating that some old keypoints experi-
ence a substantial positive transfer in each incremental step.
This positive transfer helps offset the forgetting of other old
keypoints, resulting in a minimal negative average transfer.
We further validate this effect by reporting per-keypoint per-
formance in our Supplementary. Qualitative results in Fig. 4
further verify our superiority in achieving more structurally
correct prediction than competitive methods.

Lastly, we observe that methods adapted from CSS and
CIL, i.e., SFD, WF, and GBD, achieve strong performance
on AT and MT metrics compared to competitive methods
like LWF and CPR, but perform poorly on overall met-
rics like A-MRE and AAA. This is because these methods
prioritize reducing forgetting, resulting in an overly rigid
model that struggles to effectively incorporate new key-
points in IKL. This observation highlights a crucial limita-
tion of existing CSS and CIL methods that they focus heav-
ily on regularizing forgetting but fail to balance this with
knowledge acquisition for new keypoints, which is espe-
cially problematic in our newly defined IKL setting. Con-
sequently, this emphasizes the need to study IKL as a dis-
tinct incremental learning scenario in this paper, as tradi-
tional incremental learning methods are too general to excel
here. Our proposed novel baseline, KAMP, effectively
addresses this gap for IKL, offering a well-balanced ap-
proach that goes beyond anti-forgetting to deliver robust
performance across both accuracy and transfer metrics.

4.2. Ablation Study

To verify the effectiveness of our method, we further ana-
lyze how each component may influence the result. Since
our method contains two-stage training and we consider a
keypoint-oriented spatial distillation loss (ℓKSD), thus we
compared our method with three alternatives: (1) the com-
petitive baseline, i.e., the LWF, which performs the Soft-
max operation across old keypoints. (2) only use our ℓKSD

to train the model without the KA-Net. (3) Constructing
the KA-Net randomly without using physical knowledge.
Results are shown in Tab. 2, and we can observe that: (1)
our adapted ℓKSD can effectively outperform the LWF with
1.18%, which demonstrates the essence of our keypoint-
oriented adaptation. (2) With proper auxiliary task creation

Method AAA4 ↑ AT4 ↑ MT4 ↑

LWF [40] 75.75 -3.86 0.41
KAMP (only ℓKSD) 76.93 -2.24 0.65

KAMP (Random KA-Net) 77.13 -0.48 1.24

KAMP (Ours) 79.93 1.80 4.23

Table 2. Ablation Study on Split MPII.

based on physical prior, we can achieve more positive aver-
age transfer than other counterparts and finally achieve the
largest improvement over all the keypoints on AAA4. This
shows that our proposed two-stage learning scheme for IKL
can not just provide better knowledge consolidation on the
old keypoints than the competitive baseline, but the auxil-
iary prediction task can also bring large improvement to the
old keypoints, showing that our KAMP will be a novel and
strong baseline for the IKL paradigm. More ablation studies
like using backbones other than HRNet and more datasets
are in our Supplementary.

4.3. Compare IKL to other low-data paradigms
Now we provide more insights into our IKL by comparing
it with other learning paradigms with low-shot data. Dis-
cussion of limitations are in our Supplementary.

As mentioned before, existing learning paradigms like
UKL [22, 23, 78] and CAPE [10, 56, 76] leverage large-
scale self-supervised and multi-dataset training to enable
novel keypoint detection with a few labeled samples in test
time. To fairly compare with UKL and CAPE, we extend
KAMP to low-data regime following EGT [78], where we
also pretrain an auxiliary self-supervised model at Step-0
to provide pseudo-labels for old keypoints during IKL, and
the details are in the Supplementary. For medical datasets
like Head-2023, we compare to the SOTA one-shot methods
CC2D [78] and EGT [79]. For 2D datasets like MPII, we
compare to the SOTA Autolink [22] and MetaPoint+ [10]
with official implementation available. Note that methods
like [86] require extra expensive 3D CAD models to iden-
tify keypoint proposals for novel keypoint detection and are
inferior to the SOTA [10, 56], thus we only compare to the
MetaPoint+ [10]. For KAMP, we use the low-data adapta-
tion for 1, 5, and 10 shot and do not use it for 50-shot since
50-shot is large enough for us to bypass the adaptation. Full
experimental details are in our Supplementary.

Method/(MRE ↓) 1-shot 5-shot 10-shot 50-shot

CC2D [78] 5.14 4.83 4.08 3.47
EGT [79] 5.01 4.58 3.87 3.21

KAMP (Ours) 4.35 3.70 3.03 2.32

Table 3. Compare to low-shot methods on Split Head-2023.

From Tab. 3 we observe that even on the extreme 1-shot
setting, KAMP still outperforms the CC2D and EGT, while
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Figure 4. Qualitative results on Split Head-2023 and MPII. All methods start from the same Step-0 model, whose prediction is in the
second column. GT: ground truth. The red circles denote the keypoints learned in Step 0, and the green ones denote all the new keypoints
learned in later incremental steps. We observe that after IKL, the compared methods (LWF and CPR) may acquire the new keypoints as
ours, but they have obvious miss-detection and wrong estimation (e.g., out of the body). While our method can consistently associate the
new and old keypoints and achieve structurally accurate keypoint predictions. More results are included in our Supplementary.

all the compared methods do not have good performances.
This is because the Head-2023 dataset is collected from
multiple sources with large discrepancy, and only one im-
age is hard to represent all the variations of the data. How-
ever, when more annotations are available, KAMP can scale
much better than CC2D and EGT since our two-stage learn-
ing scheme can capture the relation of old and new key-
points and distill them back to the model to improve the old
keypoints, which has not been handled in CC2D and EGT.

Method/(PCK [10] ↑) 1-shot 5-shot 10-shot 50-shot

UKL [22] 54.95 59.11 62.53 64.36
MetaPoint+ [10] 65.71 66.87 67.26 68.98

KAMP (Ours) 70.09 72.23 73.18 76.97
KAMP (Ours) + [10] 73.49 75.10 77.76 79.18

Table 4. Compare to low-shot methods on Split MPII.

As shown in Tab. 4, we observe that while the CAPE [10,
56, 76] and IKL are two disentangled paradigms, they can
complement each other effectively. CAPE relies on pre-
training with varied datasets, while IKL focuses on incre-
mental learning, making their training costs incomparable.
For example, CAPE methods like MetaPoint+ [10] require
a substantial training cost (4 GPUs, 1.5 days), whereas the
‘pretrain+incremental’ approach of IKL is more efficient
(1 GPU, 5 hours). To demonstrate that CAPE and IKL
are orthogonal and complementary, we applied IKL using
our KAMP method on MetaPoint+. As shown in Tab. 4,
this combined approach results in significant improvements,
even in low-data scenarios, highlighting that IKL can sub-
stantially enhance keypoint estimation when applied on a
CAPE-pretrained keypoint detector.

The goal of comparing these paradigms for novel key-
point estimation within the same object category is to es-

tablish the necessity of IKL. Although CAPE does not in-
volve continual learning and appears more deploy-friendly,
its performance plateaus and does not scale effectively with
additional data. In contrast, our KAMP achieves higher ac-
curacy with limited data and demonstrates superior scala-
bility with increased data, as evidenced in Tab. 4.

Lastly, as the first study to explore the IKL paradigm, we
focus on scaling up existing keypoint estimators for novel
keypoints within the same object category, laying the foun-
dation for future research. While CAPE can perform key-
point estimation on novel object categories with a few sup-
port images, its generalization remains limited. In the fu-
ture, we will explore extending the IKL paradigm to novel
object categories by applying IKL to keypoint estimators
pretrained with CAPE, aiming to combine the strengths of
both paradigms to develop a keypoint estimator capable of
continually learning new keypoints across diverse object
categories without forgetting and with effective scalability.

In summary, the comparison of Tab. 3 and 4 show that
our proposed IKL paradigm is highly label-efficient for ac-
quiring new keypoints. This characteristic is advantageous
for real-world applications where obtaining sufficient labels
is time-consuming, such as in medical analysis [6].

5. Conclusion

We explore learning the newly defined keypoint incremen-
tally without retaining any old data, called Incremental
object Keypoint Learning (IKL). We propose a two-stage
learning scheme as a novel baseline tailored to the IKL. Ex-
tensive experiments show that our method can effectively
alleviate the forgetting issue and may even improve the old
keypoints’ estimation during IKL. Our further analysis re-
veals that the IKL is label efficient in acquiring the new key-
points, which is promising for real-world applications.
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