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Figure 1. ChatHuman is a LLM-based agent that uses a multimodal LLM to exploit and combine tools, discriminate their results, and integrate

the results to solve tasks related to 3D Humans.

Abstract

Numerous methods have been proposed to detect, estimate,
and analyze properties of people in images, including 3D
pose, shape, contact, human-object interaction, and emo-
tion. While widely applicable in vision and other areas, such
methods require expert knowledge to select, use, and inter-
pret the results. To address this, we introduce ChatHuman,
a language-driven system that integrates the capabilities
of specialized methods into a unified framework. ChatHu-
man functions as an assistant proficient in utilizing, analyz-
ing, and interacting with tools specific to 3D human tasks,
adeptly discussing and resolving related challenges. Built on
a Large Language Model (LLM) framework, ChatHuman is
trained to autonomously select, apply, and interpret a diverse
set of tools in response to user inputs. Our approach over-
comes significant hurdles in adapting LLMs to 3D human
tasks, including the need for domain-specific knowledge and
the ability to interpret complex 3D outputs. The innovations
of ChatHuman include leveraging academic publications
to instruct the LLM on tool usage, employing a retrieval-
augmented generation model to create in-context learning
examples for managing new tools, and effectively discrimi-
nating between and integrating tool results by transforming
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specialized 3D outputs into comprehensible formats. Experi-
ments demonstrate that ChatHuman surpasses existing mod-
els in both tool selection accuracy and overall performance
across various 3D human tasks, and it supports interactive
chatting with users. ChatHuman represents a significant
step toward consolidating diverse analytical methods into a
unified, robust system for 3D human tasks. Code and data
are available at chathuman.github.io.

1. Introduction

Research on 3D humans has progressed rapidly, result-
ing in the creation of many tools that can perform tasks
like estimating a human’s 3D pose from a single im-
age [18, 25, 27, 36, 37], predicting face/body shapes [8, 15],
capturing emotions [9, 15], and identifying regions of
touch/contact [46, 68], generating human poses from text
descriptions [10], and animating human images [84]. Each
of these tools, however, focuses on a specific problem, func-
tioning as isolated “specialists”. Moreover, these separate
tools cannot benefit from the expertise of others, and com-
bining them to solve more complex tasks requires significant
domain expertise. Ideally, we would have a single model that
can adaptively leverage different tools to solve complex 3D
human-related problems while offering intuitive user inter-
action through natural language input. Recent work such as
ChatPose [16] has taken initial steps in this direction, unify-
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ing pose generation, estimation, and general understanding
within an LLM framework. Unfortunately, ChatPose lacks
the accuracy of the best specialist methods.

To address these issues, we build a multi-modal LLM,
called ChatHuman, that specializes in using digital human
modeling tools, enabling it to autonomously interpret in-
structions and complete diverse tasks related to 3D humans;
see Fig. 1. Specifically, we teach an LLM to use a wide
range of specialized human-related models for tasks like
3D pose estimation, emotion recognition, contact reasoning,
and more, effectively extending the LLM’s capabilities to
the domain of 3D humans. This goes beyond providing a
natural-language interface to these tools, as the LLM can use
its broad understanding of humans to augment tool results
or to analyze and integrate their outputs, providing better
responses than any single tool alone.

With ChatHuman, we introduce a novel approach by fine-
tuning an LLM to act as an agent that autonomously calls
appropriate tools based on user inputs, completing tasks
and enhancing responses with tool-generated results. Sim-
ilar in spirit, recent works have employed off-the-shelf or
fine-tuned LLMs for tasks like basic vision (e.g., Visual
ChatGPT [53]), mobile applications (e.g., AppAgent [77]),
biology (e.g., AmadeusGPT [78]) and system automation
(e.g., GPT4Tools [74]). Our work, however, differs by fo-
cusing specifically on the unique challenges of 3D human
understanding. This domain requires precise, specialized
terminology and a nuanced understanding of 3D-specific
tools, which conventional LLMs lack. To teach the network
this specialized terminology, we do what we would do as
humans — we have the LLM read the papers describing the
methods. Even with that knowledge, the LLM needs to un-
derstand the task goals, select an appropriate tool or tools,
interpret results, and resolve differing results. These skills
are all beyond the abilities of general LLMs.

To address these challenges, we design the following
training pipeline: 1) We utilize relevant literature about the
tools to familiarize the LLM with domain knowledge, help-
ing it know when and how to use these tools; 2) After using a
tool, the LLM evaluates the reliability of the outcome using
its “judgment” and compares different methods to identify
the most reliable results; 3) It combines these results with its
general knowledge to create response. This pipeline repre-
sents several key innovations, laying a foundation for LLMs
to effectively handle complex, tool-driven 3D human tasks.

Retrieval-Augmented Tool Use: Details about tools are
typically present in corresponding academic paper. We give
the LLM access to these papers and demonstrate that “read-
ing the paper” improves tool use performance. We further
analyze which paper sections are most effective for instruct-
ing tool use. When encountering a new tool, users often
turn to the user guide for assistance. We compile the com-
plete documentation for these tools and utilize a paper-based
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Retrieval-Augmented Generation (RAG) mechanism to im-
prove the LLM’s understanding and management of new
tools. This means that, although the LLM has not encoun-
tered such tools during fine-tuning, it can still effectively use
the tools with the help of the paper-based RAG mechanism.
In some cases, tasks require combining multiple tools. To
address a broader range of tool usage scenarios, we employ
a graph-based invocation system, which includes a node for
single-tool use, a chain for sequential tool execution, and a
DAG for multi-tool combinations as shown in Fig. 3.

3D Human-Related Tool Result Integration: Analyz-
ing outputs from tools is crucial, as these outputs, such as
body meshes, model parameters (e.g., SMPL pose), or mo-
tion sequences, are highly varied and complex. To make
these results compatible with our LLM analysis system, we
convert them into visual formats that the LLM can easily in-
terpret. Guided by Cognitive Load Theory [63], we present
these outputs as multiple-choice options, streamlining the
selection process and enhancing the LLM’s effectiveness in
handling 3D human-related tasks. Combined with the LLM’s
extensive general knowledge, these integrated results enable
it to generate sophisticated responses about 3D humans.

Specifically, ChatHuman consists of a multimodal LLM
LLaVA [41], and 26 tools involving 3D Humans and general
vision tasks. The LLM is finetuned to use these tools and
incorporate their results. User requests can be in the form of
text descriptions, images or other 3D information (if appli-
cable), and the model produces text descriptions, images, or
other 3D outputs after tool reasoning. Extensive evaluations
demonstrate that ChatHuman not only surpasses previous
models in tool-use accuracy but also improves performance
on various human-related tasks. It achieves this by reason-
ing about multiple outputs, evaluating their veracity, and
combining them with its own knowledge.

Summarizing, our key contributions include: (1) a frame-
work that leverages LLMs to interact with users and address
human-centric tasks using specialist tools; (2) a scientific-
paper-based RAG mechanism that ensures precise tool use
by comprehending tool descriptions from scholarly articles,
enhancing tool applications and interactions; and (3) the
integration of tool outcomes with LLMs, enabling the LLM
to effectively explain tool results and interact with users.
Additionally, the LLM is fine-tuned to distinguish between
optimal and suboptimal tool results, improving overall accu-
racy. ChatHuman achieves superior performance in tool use
and human-related tasks compared with other LLM-based
methods or task-specific methods. The code, trained models,
and datasets are available for research purposes.

2. Related work

3D Humans: Many 3D human analysis tasks leverage
parametric models like SMPL [43], SMPL-X [48], or
GHUM [73] for the body, BEFM [49] or FLAME [35] for



faces, and MANO [55] for hands. These models enable the
representation of the human body, face, and hands as low-
dimensional vectors, facilitating subsequent applications in
estimation and generation. Estimation of human pose and
shape either relies on optimization methods [4, 24] or regres-
sion methods [8, 14, 18, 25, 27, 32, 36, 37, 56, 81], which
estimate body shape and pose parameters from a single im-
age. Similarly, face reconstruction methods [12, 15, 66]
estimate shape and expression parameters of the face model
from single images. The analysis of contact, vital for under-
standing human-environment interaction and social touch,
has seen recent attention [19, 46, 68]. Generative model-
ing techniques such as PoseScript [10] and PoseFix [11]
provide methods for synthesizing and correcting 3D human
poses based on textual descriptions, while language-to-3D
generation methods [5, 20, 82] facilitate 3D avatar creation.
Additionally, numerous methods generate human motions
[1,23, 33, 34, 45, 50, 64, 65], and recent language-to-video
models are even able to generate humans moving [3, 84].

These basic methods excel in their respective scenarios,
but are typically treated in isolation. When mature, such
tools are often incorporated into software systems for anima-
tors that require significant domain knowledge. In contrast,
recent generative models provide language interfaces to im-
age, video, and 3D generation tools, making them accessible
to novices. Until recently, such language-based control has
not been possible for 3D humans. ChatPose [16] makes
a step in this direction, unifying pose generation, estima-
tion, and an LLM’s general understanding into one model,
but remains limited in its task capabilities. In contrast, our
model integrates the performance of 26 3D human-related
tasks into a single, LLM-based model. ChatHuman enables
non-experts to solve real-world tasks by invoking appro-
priate tools and adding an extra layer of language-driven
understanding that effectively leverages the tool outputs.

Large Language Models and Tool Use: To expand LLM
capabilities without expensive retraining, recent work has
focused on enabling them to use specialized tools. In this
approach, a tool library is constructed and LLMs act as
planners to coordinate tool usage. Various tools have been
adopted, e.g., vision modules [53, 62, 76], mobile applica-
tions [77], community tools [58], special tools [79], and
system tools [74]. However, general-purpose LLMs often
lack a deep understanding of specific tools, especially those
requiring domain knowledge. To address this, recent work
[13, 28, 71] proposes to fintune general-purpose LLMs (e.g.,
LLaMA [67], LLaVA [40, 42]) with domain-specific tool-
use data. Some methods use additional tool documentation
to improve accuracy [21, 80], while others compose differ-
ent tools to accomplish complex tasks [29, 57, 72] . Dis-
tinct from previous work, ChatHuman focuses on 3D human
tasks through language interaction by leveraging off-the-
shelf human-related tools.
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Figure 2. Paper-based Retrieval-Augmented Tool Use. We feed
academic papers describing each tool to GPT-4 to build a document
for each tool. During inference, given a user query, a relevant
sample is retrieved from the documents and provided to the LLM-
based agent as an in-context example to improve tool use accuracy.

Retrieval Augmented Generation: RAG [17, 31, 83] is a
technique to enhance generative tasks by retrieving relevant
information from external databases, allowing for continual
knowledge update. Here, we design a RAG mechanism to
facilitate the use of new unseen tools.

3. Method

3.1. Overall Pipeline

ChatHuman consists of a multimodal LLM f4(-), along with
a set of 3D human-related functions fy, (+), fo, (), .... These
functions serve as tools for various tasks, such as 3D human
pose estimation, pose generation, and 3D face reconstruc-
tion. Our model takes input text queries X, images X,,, and
optionally X, representing other 3D human-related modali-
ties (e.g., SMPL parameters for 3D human poses). Then it
invokes tools and integrates their results to generate outputs
as text Y3, images Y,,, or 3D human-related modalities Y,,,.

3.2. Retrieval-Augmented Tool Usage

Teaching LLMs to decide when and how to use tools effec-
tively is a significant challenge. A basic approach [53, 74]
might involve including tool usage scenarios and input ar-
guments within the LLM prompt, represented as Yioop =
f¢(Xq, X¢), where X, denotes tool definitions. However,
this approach often falls short for specialized tools, espe-
cially given the variety of advanced tools for 3D human
tasks. Many tools require background knowledge for correct
use and have multiple application scenarios. For instance,
the HMR tool [18] may be queried with requests like, “Can
you estimate this person’s pose?”’, “What are the SMPL
parameters?”, or “Provide the 3D mesh of this person.” Cap-
turing all possible usage scenarios succinctly in a prompt
is difficult, and as tools proliferate, prompt descriptions be-
come unwieldy. To address these challenges, we introduce
paper-based Retrieval-Augmented Generation (RAG) [30]
and build a tool graph for tool combination. As shown in
Fig. 2, we feed academic papers associated with each tool
into GPT-4, prompting it to summarize the tool’s functions
and generate possible user queries for tool activation. These
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papers, with their rich background and detailed instructions,
enable the generation of user queries that cover diverse use
cases. By combining these queries with each tool’s struc-
tured arguments, we compile a document of question-answer
pairs for each tool’s operation. Figure 2 provides an example
from one of these documents. These documents serve as an
auxiliary knowledge base during inference, from which we
retrieve a relevant example X, in response to a user query
X,. The retrieval process matches the text embedding of
the query with embeddings in the tool documents using a
text embedding model [61]. The retrieved sample is then
presented to the agent fy4 as an in-context learning example:

Xe = fr(Xq)» Yiool = f¢(Xq7XeaXt)7 €))

where f,. is the retrieval function, and Y, is a textual de-
scription of the tool invocation, specifying tool selection,
names, and input arguments for tool calls.

Graph-based Tool Invocation. Note that the tool use de-
scription Y3, varies depending on task settings, as shown
for a single tool case in Fig. 2. However, some complex
tasks require combining multiple tools. To handle this, we
introduce a graph-based mechanism for tool invocation. We
construct a tool graph with three structure types: nodes (sin-
gle tool calls), chains (tool sequences for dependent tasks),
and directed acyclic graphs (DAGs) [59] for complex multi-
branch operations. For each user query, the model predicts
an appropriate tool graph and invokes the tools accordingly.
Examples of tool graphs are shown in Fig. 3.
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Figure 5. Illustration of tool results discrimination. When multi-
ple plausible tools exist for a task, ChatHuman discriminates and
chooses the best result as the final response.

3.3. Tool Result Integration

After using tools, integrating their results is essential to ef-
fectively engage with users and solve problems. However,
outputs from different tools vary widely, appearing as lan-
guage, images, or vectors (like SMPL poses), which can
challenge current multimodal LLMs, such as LLaVA [41],
that process only text and images. To utilize these varied
results and enhance the LLM’s understanding of 3D humans,
thereby improving its ability to apply world knowledge to
problem-solving, we introduce a tool-conditioned transfor-
mation, W(-). As shown in Fig. 4, this transformation con-
verts tool outputs Y, into textual or visual formats the LLM
can process. For example, we transform the vertex-wise con-
tact label from DECO [68] into body part-level descriptions
using SMPL’s [43] vertex-to-part mapping dictionary, and
render the mesh generated by PoseScipt [10] into an RGB
image using rendering techniques. See Sup. Mat. for more
details. The transformed results are then merged with the
user query as context for response generation:

Yy = fo(Xg, U(Yin))- 2

In scenarios where multiple tools can address a request
(Fig. 5), we present outcomes as multiple-choice questions,
prompting the model to select the most relevant answer:

Yrt :fd?(Xqle/(le)v\Il(YmQ)v~'~)a (3)

where Y,,,; denotes the ¢-th tool result. Since different tools
have different failure modes, this process enables ChatHu-
man to identify the best method case by case, producing
more accurate output than any individual method alone.

3.4. Training Data Construction

Tool Usage Instruction-following Data. To teach the
LLM-based agent to correctly use tools, we construct 90K
instruction-response pairs about tool usage. Following
GPT4Tools [74], we provide GPT-4 [47] with a textual de-
scription of COCO training images [39] and a tool-related
prompt containing a tool description. To improve efficiency,
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(b) Tool Feedback Discrimination Instructions

Human: System Prompt.
Prefix Prompt. Human: <Instruction>

<Discrimination Rule> <Tool result>
Assistant: <Response>

System Prompt.
Human:

Please compare the pose
estimation results of Tool A (blue
mesh) and Tool B (red mesh). Assess
which one of the two meshes more
accurately replicates the pose and
shape of the human figure in the
original image, taking into account
their alignment and resemblance.
Assistant: Tool B's result is better.

(c) Tool Feedback Integration Instructions

System Prompt.
Human: <Instruction> <Tool result>
Assistant: <Response>

System Prompt
y Human: Describe the HOI contact regions

of the man in the image. The contact
2% regions detected by tools are: left foot,
right foot, left hand, right hand.

Assistant: His right hand is in contact with
the handle of a cooking tool, while his left
hand is in contact with a bottle. His left and
right feet are in contact with the ground.

Figure 6. [llustration of our instruction-following data construction pipeline. We construct tool usage and feedback data by providing GPT-4
with various tool-related information, image content, and ground truth labels. Gray text shows some example instructions.

we first prompt GPT-4 to summarize paper content, re-
articulate tool functions, and enumerate 50 potential user
queries for tool activation (see Fig. 6(a)).

Tool Feedback Instruction-following Data. To help the
multimodal LLM model discriminate and integrate the tool
results, we construct 88K pairs of instruction-following data
based on existing datasets 3DPW [70], MOYO [69], Pos-
eScript [10] and SHAPY [8] (see Fig. 6(b)(c) ). Please see
Sup. Mat. for more details about data construction.

3.5. Model Training

Once we have data, we use LoRA [22] to finetune the LLM
fs(-) with the cross entropy loss. More specifically, with the
ground truth tool invocation labels )Aftool and response label
Y;, we optimize the model using the following objective
function: £ = CE()A/tool, Yiool) + CE(Yt,Yt), where CE
denotes the cross-entropy loss. See Sup. Mat. for details.

4. Experiments and Results
4.1. Implementation Details

We use LLaVA-1.5 [41] as the VLM backbone, with CLIP
[51] for vision encoding and Vicuna [7] for the LLM back-
bone. For retrieval, we adopt INSTRUCTOR [61] for text
embedding and utilize Chroma’s vector similarity searching
algorithm to identify relevant examples. To preserve the gen-
eralization of the pretrained multi-modal LLM, we use LoORA
[22] to perform efficient finetuning, with rank 128 and al-
pha 256. We implement tool utilization with LangChain [6],
which enables automatic parsing of tool names and input
parameters, followed by tool invocation Optimization uses
AdamW [44], with a learning rate of 2e-4 and weight decay
of 0. All models are finetuned over 2 epochs with a mix-
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Perception | Reasoning Generation

Body Pose Estimation [ 18]
Body Shape Measurement [2]
Hand Pose Estimation [38]

Selective Person Pose Detection [18, 41]
Specific Person Shape Measurement [2, 41]
Targeted Hand Pose Estimation [38, 41]

Text-to-Pose Generation [ 10]
Speculative Pose Generation [10, 41]
Text-to-Image Generation [54]

Text-based Pose Editing [11]

Remove Someone From The Photo [26, 41, 54]
Replace Someone From The Photo [26, 41, 54]
Instruct Image Using Text [54]

Text-to-Motion Generation [50]

Face Reconstruction [15]
Human Segmentation [26]
HOI Detection [68]

Pose Description [10]
Tmage Caption [41]
Motion Capture [60]

Described Person Face Reconstruction [15, 41]
Described Person Segmentation [26, 41]
Selective Person Contact Estimation [41, 68]
Visual Question Answering [41]

Text-to-Video Generation [50, 54, 84]
Image-to-Video Generation [50, 84]

Table 1. ChatHuman supports 26 human-related tools, including 9
perception tools, 10 generation tools, and 7 reasoning tools. Tools
in grey are unseen tools that are not included in the training data.

Seen Tools Unseen Tools
Method SR; SRut SRags SR IoU| SRy SRyx SRug SR IoU
GPT4Tools [75] 0.609 0.547 0.525 0.520 0.566(0.612 0.546 0.542 0.525 0.573
GPT4Tools-FT [75] 0.825 0.710  0.687 0.690 0.741{0.904 0.807 0.690 0.747 0.800
Visual ChatGPT-3.5 [53]|10.498 0.319  0.237 0.251 0.791{0.507 0.314  0.226 0.293 0.803
Visual ChatGPT-4 [53] |0.892 0.802 0.715 0.753 0.797{0.998 0.913  0.801 0.872 0.907
ChatHuman 1.000 0.974 0.950 0.970 0.975/0.999 0.967 0.893 0.954 0.953

Table 2. Tool use accuracy comparison. Successful rate of thought
(SRy), action (SRuc), arguments (SRurg), execution (SR), and IoU
are reported.

ture of tool usage, tool feedback, and LLaVA multimodal
instruction-tuning data, using 8 Nvidia A100-80G GPUs
with the DeepSpeed [52] engine. Unless otherwise specified,
we use LLaVA-1.5-7B as the base model for the ablation
study. We support 26 tools, as listed in Tab. 1.

4.2. Evaluation on Tool Usage

Tool Usage Benchmark. To evaluate tool usage accuracy,
we construct a validation and test set. The validation set has
1000 samples with the same tools as the training set, while
the test set includes 689 samples related to 3 tools unseen
during training. Split of seen and unseen tools are detailed
in Table 1. Similar to our training data construction, we
feed a textual description of COCO validation set image, a
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Figure 7. Visualization of Animation Processing. Left: Conversation
between the user and ChatHuman. Right: ChatHuman automat-
ically calls tools to solve the task. ChatHuman can handle tasks
beyond the capabilities of individual tools.

tool description, and some examples summarized from the
tool paper into GPT-4 and prompt it to generate instruction-
following data. We use the image description captioned
by LLaVA [41] instead of the original image captions to
ensure differences between training and test sets. Finally, we
manually check all question-answering pairs for accuracy.
Baselines. We compare our method with Visual ChatGPT
[53] and GPT4Tools [75] on the proposed evaluation set and
report 5 metrics proposed in GPT4Tools [75]. See Sup. Mat.
for details of the metrics. For Visual ChatGPT, we experi-
ment with two versions of GPT: “gpt-3.5-turbo-1106" and
“gpt-4-turbo-preview”. For GPT4Tools, we adopt the offi-
cial pretrained 13B model. For a fair comparison, we also
finetune GPT4Tools with our training data using the official
training code and obtain a variant, GPT4Tools-FT.

Table 2 shows that the original GPT4Tools struggles on
our benchmark due to mismatches between its tools and
our human-centric ones. Visual ChatGPT-4 exhibits im-
pressive tool use accuracy, showing its powerful zero-shot
ability to follow a standardized format and use tools accu-
rately. ChatHuman consistently outperforms other methods,
particularly with tools not seen in training, thanks to our
paper-based RAG mechanism.

4.3. Evaluation on 3D Human Related Tasks

Character Animation. ChatHuman employs tools for text-
to-motion and image-to-video generation. We demonstrate
how these tools are utilized to interact with users and reason
about motions based on conversations in Fig. 7 and Fig. 1.
ChatHuman can also tackle tasks that cannot be resolved
with a single tool. For instance, text-to-human video gen-
eration poses significant challenges due to the complexity
of motion. Therefore, another option is to first generate a
motion sequence via text-to-motion generation, then apply a
video generation model conditioned on this sequence. The
internal processing within ChatHuman, detailing how it an-
alyzes and solves tasks, is visualized in Fig. 7. We also
compare our text-to-video generation results with those of
Pika'. The qualitative comparisons are shown in Fig. 8.

'We use the demo available at https://pika.art/ (as of May
2025) to obtain the results.
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3DPW [70] RPE Benchmark [ 16]
Method MPIPE | PA-MPJPE | MPJRE | | MPIPE | PA-MPIPE | MPIRE |
SPIN [27] 102.9 62.9 10.1 2449 107.3 124
HMR20[18] | 910 58.4 9.2 2252 105.1 12.1
LLaVA-S [41] | 4408 2054 218 490.7 207.4 21.1
LLaVA*-S [41]| 232.1 101.1 12.8 - - -
GPT4-S [47] 3220 136.7 16.0 - - -
LLaVA-P[41] | 3352 172.3 165 3915 191.9 17.8
GPT4-P [47] 396.5 2034 18.6 - - -
ChatPose [16] | 163.6 81.9 104 253.6 103.8 11.7
ChatHuman 91.3 58.7 9.2 1472 79.1 10.3
Table 3. Comparison of vanilla human pose estimation and

reasoning-based pose estimation on 3DPW [70] and RPE [16].
LLaVA¥* is fine-tuned with human keypoint data. “S” uses mul-
timodal LLMs for keypoint detection and SMPLify [4] for pose
optimization. “P” utilizes multimodal LLMs for textual pose de-
scriptions, processed by PoseScript [10] to generate poses. MPJPE
(in mm), MP-MPJPE (in mm), and MPJRE (x100) are reported.

Please generate a video of a woman in a
sliver dress waving hands.

The man in the blue shirt is running.
He appears to be heading to the
other side of the street, running at a
fast pace, with his hair flying. Please
help me help his SMPL pose.

ﬂ

.

Figure 8. Left: Comparison to Pika® on text to video generation.

Right: Qualitative comparison with ChatPose [16] and HMR 2.0
[18] on reasoning-based human pose estimation task.

Pose Estimation. Following ChatPose [16], we evaluate the
performance of our method on both classical and reasoning-
based pose estimation (RPE) tasks. MPJPE, PA-MPJPE,
and MPJRE on the 3DPW [70] and RPE [16] benchmarks
are reported. For the reasoning-based pose estimation task,
ChatHuman first grounds a human based on a textual descrip-
tion and feeds it into the pose estimation tool to get the result.
As shown in Table 3, ChatHuman achieves comparable per-
formance to the task-specific models on the classical pose
estimation task. For reasoning-based human pose estimation,
which involves both reasoning ability and advanced human
pose estimation ability, ChatHuman outperforms both task-
specific and multi-modal LLM methods by a large margin
(34.6% | in MPVPE). As shown in Fig. 8, only our method
achieves a satisfactory result. The multimodal LLM com-
petitor ChatPose finds the correct person but fails to obtain
an accurate pose due to its limited perception ability, while
the task-specific tool does not match the correct person due
to the lack of reasoning ability. This demonstrates the advan-
tage of ChatHuman, which combines task-specific tool use
expertise with the general reasoning ability of an LLM.

Pose Generation. Here we evaluate the pose generation
capability of ChatHuman on the classical text-to-pose gen-
eration task and the speculative pose generation task (SPG)
[16]. Following previous work [10, 16], we report the text-
to-pose recall rate R72" and pose-to-text recall rate RF?7


https://pika.art/

PoseScript [10] SPG Benchmark [16]
Method RP2T 4 RT2P ¢ RP2T ¢ RT2P ¢
PoseScript [10] | 404 523 650|414 541 659|15 35 62| 14 23 5.1
ChatPose [16] 17.6 253 35.8|28.0 39.0 544(33 55 82| 35 58 11.0
LLaVA-P [41] - - 21 40 7.1} 21 33 6.1
GPT4-P [47] - - 27 47 92|27 53 82
ChatHuman 41.8 52.6 65.1|42.1 523 66.5|32 50 99|35 6.5 106

Table 4. Comparison of classical and speculative pose generation on
PoseScript [10] and SPG [16]. “P” denotes using LLMs to rephrase
textual pose descriptions, which are then processed by PoseScript
[10] to generate poses. Top 5, 10, 20 recall rates are reported.

of the retrieval models trained on real poses and evaluated
on generated poses. For the SPG task, ChatHuman first
rephrases the indirect pose descriptions into explicit ones
and adopts PoseScript (journal version) [10] to generate a
pose. As shown in Table 4, our method archives comparable
performance to the SOTA methods on both benchmarks. In
contrast, the previous LLM-based method, ChatPose, per-
forms poorly on the classical pose generation benchmark,
while the task-specific model, PoseScript, lags in the SPG
benchmark due to limited reasoning ability.

Body Shape Measurement. We evaluate the body shape
measurement accuracy of ChatHuman. We randomly sample
100 images from the HBW validation set [8] and compare
our method with a multimodal LLM, LLaVA [41], and a
SOTA body shape estimation method, CLIFF-BEDLAM [2].
For LLaVA and ChatHuman, we ask them the same question
to inquire about the height, weight, chest, waist, and hip cir-
cumferences of a person and then prompt GPT-3.5 to extract
the value from the model output. The details of the question
and prompt are available in Sup. Mat. CLIFF-BEDLAM pre-
dicts the body shape parameters, which are then converted to
measurements based on the shape-to-measurement function
from SHAPY [8]. Anthropometric measurement errors are
reported in Table 5(a). ChatHuman achieves superior perfor-
mance in most measurements, outperforming the multimodal
LLM competitor LLaVA by 42% and CLIFF-BEDLAM by
15.7% in average metric accuracy.

Human-Object Interaction (Hol). We evaluate the human-
object interaction understanding ability of ChatHuman on
the DECO [68] test set. The ground truth (GT) labels are ob-
tained by converting the vertex-level contact labels into body
part-level contact labels with SMPL'’s vertex-to-part mapping
dictionary. Given a human image, we ask the multimodal
LLM to detect the body parts contacting objects and prompt
GPT-3.5 to extract the body part labels from the answer.
Subsequently, we compare the predicted body parts with
the GT label and compute the average detection precision,
recall rate, and F1 Score. Table 5(b) shows that ChatHuman
achieves SOTA precision and F1 score, demonstrating supe-
rior human-object interaction understanding ability. Notably,
although LLaVA has a high recall rate, its precision and F1
score are rather poor, which means that it tends to predict all
the body parts to be in contact with objects.
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Method Height | Chest | Waist | Hip | Method Precision T Recall 1F1 Score T
LLaVA [41] 6.7 165 229 176 LLaVA [41]  0.26 0.81 0.39
CLIFF-BEDLAM [2] 7.8 8.6 135 70 GPT-4 [47] 0.61 0.48 0.49
ChatHuman 6.7 61 130 6.4 ChatHuman  0.67 0.67 0.63

(a) Comparison of body shape mea-
surement. Measurement errors (in cm)
on HBW [8] are reported.

(b) Comparison of HOI estima-
tion. Precision, Recall, and F1
score on DECO [68] are reported.

Table 5. Comparison of body shape and HOI estimation.

4.4. Ablation Study

Paper-based RAG Mechanism. To improve tool use accu-
racy, we design a paper-based RAG mechanism. We perform
a breakdown ablation to investigate the effect of each com-
ponent and their interactions. The baseline model, created
by removing the RAG operation and trained with instruction-
following data without paper content, is compared in Table
6(a). The baseline model’s success rate (SR) is 0.96 for
seen tools and 0.82 for unseen tools. Adding RAG increases
the SR for unseen tools to 0.89, demonstrating its effective-
ness in zero-shot settings. Further incorporating articles into
training data boosts the performance: the successful rate of
arguments (SRg) rises from 0.93 to 0.95 for the seen tools
and 0.84 to 0.94 for the unseen tools. This suggests that
scholarly articles can help create high-quality instruction-
following data and tool documents due to their detailed use
instructions and diverse application scenarios. For a detailed
analysis of each component’s effect on instructing tool usage,
please see Sup. Mat.

Multiple Tools Invocation. One of the advantages of using
a VLM as an agent is its powerful generalization capacity. To
test the robustness and generalization ability of ChatHuman,
we conduct the following ablation study. During training,
we only include the tool graphs with no more than three
tools, while during evaluation, the user queries might need
up to five tools to solve. Table 6(b) depicts the results. As
shown, ChatHuman exhibits an excellent robustness in this
out-of-domain setting (more than three tools combination)
with an action accuracy higher than 90%.

Tool Result Integration. We first conduct an ablation to
study how the tools can enhance the human understanding
capacity of multimodal LLM. The model without tools is our
multimodal LLM backbone, LLaVA-1.5-7B [41], and the
model with tools is our ChatHuman. The quantitative results
are listed in Table 7. When equipped with tools, the HOI
contact detection F1 score increases from 0.39 to 0.63 and
the average body shape measurement error declines by 38%.
These results demonstrate the effectiveness of tools in enrich-
ing the LLM’s comprehension of human models and behav-
iors. Additionally, we study whether ChatHuman can utilize
its world knowledge to discriminate and improve the tool
performance. We design two discrimination schemes, i.e.,
selection and modification, and conduct an ablation study on
two human-related tasks by comparing ChatHuman with the
SOTA task-specific tools. For the selection scheme, we ex-



Seen Tools

Unseen Tools

Tool Numer SR, SRt SRurgs SR IoU

Paper RAG| SR; SRuq SRug SR IoU | SRy SRy SRuys SR IoU 2 0997 0960 0943 0.928 0.973
X x 10998 0.967 0.928 0.960 0.964|0.946 0.894 0.775 0.822 0.872 3 0.998 0.959 0931 0.932 0.974

X v |1.000 0.967 0.928 0.961 0.965|0.996 0.945 0.842 0.891 0.927 4 0.998 0943 0.928 0.875 0.968

v v' |1.000 0.974 0.950 0.970 0.975|0.999 0.967 0.893 0.954 0.953 5 0.996 0.929 0.899 0.847 0.950

(a) Ablation study of paper-based RAG mechanism.

(b) Ablation study of tool number.

Table 6. Ablations related to tool usage. Successful rate of thought, action, arguments, execution, and IoU are reported.

Method Precision 1 Recall 1 F1 Score 1 Method Height | Chest | Waist | Hip |

0.26 0.81 0.39 6.7 165 229 17.6

0.67 0.67 0.63 6.7 6.1 13.0 64
(a) HOI Contact Detection.

Table 7. Ablation study on the impact of tool usage for human-object

contact detection and body shape estimation.

Height | Chest | Waist | Hip |

w/o Tool
w/ Tool

w/o Tool
w/ Tool

(b) Body Shape Measurement.

Method ~ MPJPE | PA-MPIPE | PA-MPVPE | Method

Tool A 126.2 81.4 101.9 Tool [2] 7.8 86 135 70
Tool B 124.0 84.6 104.7 ChatHuman 6.7 6.1 13.0 6.4
ChatHuman 119.6 78.2 98.3

(b) Body Shape Measurement Error
(a) Mesh Error (in mm) on MixPose. (in cm) on HBW [8].

Table 8. Study revealing how tool use improves human understand-
ing on pose estimation and body shape measurement tasks.

2 m

et 107 m
Waight: 917 kg

GT Label

(b) Tool generates reasonable output

(a) Tool generates unreasonable output

Figure 9. Illustration of how ChatHuman discriminates and inte-
grates tool results. The Agent will fix the unreasonable tool result
and integrate the reasonable tool result to generate a final response.

periment with the pose estimation task and select two SOTA
methods, HMR 2.0 [18] and CLIFF-SMPLity [4, 36], as our
tools to generate two poses of each person. We then prompt
the LLM-based agent to discriminate the results and choose
the better one as the final response. Different tools excel in
different scenarios and, to cover more diverse human poses
and camera views, we build a new benchmark MixPose by
selecting 100 images with extreme camera views from the
MoYo [69] test set, 100 full-body samples and 100 severely-
truncated samples from 3DPW [70] test set. Details of the
prompt and MixPose benchmark are in Sup. Mat. As shown
in Table 8 (a), ChatHuman archives a lower reconstruction
error on the MixPose benchmark, validating the agent’s ef-
fectiveness as a discriminator to improve tool performance.
For the modification scheme, we validate on the body shape
measurement task. We use CLIFF-BEDLAM [2] as tool and
prompt the agent to discriminate and modify the tool result.
The result is reported in Table 8 (b), and Fig. 9. The LLM-
based agent enhances tool performance by using its general
world knowledge to identify and correct unreasonable tool
results, such as height and weight in Fig. 9 (a).

5. Discussion and Concluding Remarks

We introduce ChatHuman, an LLM-based model designed
to learn the use of tools related to 3D humans and assist users
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The woman appears to be tall, with a height of

The man is about 1.76 meters alland weighs
about 182 m, and she weighs 63.2 kg,

approximately 71.28

o)

Considering that she is wearing a high
heel, what's her barefoot height and

"
11 (@5} [ Without the high heel, her height would be
approximately 1.72 m and

her weight would

(a) Ground Truth: 1.96 m tall and weighs 90.7 kg

(b) Ground Truth: 1.75 m talland weighs 60.3 kg

Figure 10. Human interaction can improve the performance and tool
usage accuracy of ChatHuman.

in solving tasks associated with 3D humans. ChatHuman
processes requests from users, analyzes the needs, and uti-
lizes the necessary tools. It then evaluates the tools’ outputs
to respond to the user’s queries.

Limitations. ChatHuman may fail in certain calling sce-
narios, particularly when the user request is vague, and
subsequent LLLM internal analysis cannot rectify an incor-
rect initial function call. However, further interaction with
users can remedy this if they provide additional information.
Fig. 10 illustrates an instance of using body estimation and
face reconstruction tools for avatar creation. Even with the
application and analysis of the tool, outcomes like height
estimation may not be entirely precise. One contributing
factor is the accuracy of the training data; for instance, most
height labels in datasets use the official height of models or
celebrities, which may not account for variations like shoe
height, such as a 7-inch heel. Incorporating more cues from
users, combined with the LLM’s knowledge of the world and
reasoning capabilities, can enhance result accuracy, as shown
in Fig. 10. Our system is currently limited by the academic
methods used. Incorporating better academic methods will
enhance model performance. Notably, adding new tools re-
quires no additional training, allowing our method to evolve
and improve as new techniques are developed.

Future Work. ChatHuman offers several avenues for future
development. In particular, user interaction/dialog offers
opportunities to learn from user feedback. This could exploit
reinforcement learning to refine the model’s understanding.
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