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Abstract

Despite the significant progress in continual image segmen-
tation, existing arts still strive to balance between stabil-
ity and plasticity. Additionally, they are specialist to spe-
cific tasks and models, which hinders the extension to more
general situations. In this work, we present CUE, a novel
Continual Universal sEgmentation pipeline that not only in-
herently tackles the stability-plasticity dilemma, but unifies
any segmentation across tasks and models as well. Our key
insight: any segmentation task can be reformulated as an
understanding-then-refinement paradigm, which is inspired
by humans’ visual perception system to first perform high-
level semantic understanding, then focus on low-level vision
cues. We claim three desiderata for this design: Continuity
by inherently avoiding the stability-plasticity dilemma via
exploiting the natural differences between high-level and
low-level knowledge. Generality by unifying and simplify-
ing the landscape towards various segmentation tasks. Ef-
ficiency as an interesting by-product by significantly reduc-
ing the research effort. Our resulting model, built upon this
pipeline by complementary expert models, shows significant
improvements over previous state-of-the-arts across various
segmentation tasks and datasets. We believe that our work
is a significant step towards making continual segmentation
more universal and practicable.

1. Introduction
Deep neural networks have shown great success in various
computer vision tasks [23, 37, 48]. Conventionally, they are
trained in a single-shot manner without considering further
updates. As a result, they may lack the flexibility to handle
situations that evolve over time. Typical solutions include
either re-training the networks with both previous and new
data or fine-tuning the networks solely on new data. Nev-
ertheless, the former is computationally intensive, while the
latter poses a great challenge of preserving previous knowl-
edge and is known as the catastrophic forgetting [36]. With
the hope of mimicking humans by gradually acquiring new
concepts in a continual fashion, continual learning has been
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Figure 1. We present CUE, a novel pipeline with key properties of
generality and continuity that not only unifies segmentation across
models and tasks, but sets new state-of-the-art on continual seg-
mentation by a significant margin as well.

proposed and receives increasing attention. Recently, var-
ious approaches have been proposed for continual classifi-
cation [17, 28, 39, 57, 60, 61, 72]. A few attempts extend
their successes to the field of continual semantic segmenta-
tion [6, 8, 18, 53, 67, 69]. Typically, a cross-entropy loss
is applied to handle new knowledge together with a regu-
larization like knowledge distillation (KD) [27] to preserve
old knowledge. How to carefully balance between stability
(i.e., preserve previous states) and plasticity (i.e., incorpo-
rate new knowledge) becomes the main stream of current
research.

Though groundbreaking, the stability-plasticity dilemma
still poses a great challenge in segmentation tasks. To get
a clearer understanding of why this dilemma happens, we
start by examining how forgetting impacts the network in
continual updates. For the first time, we reveal that the
high-level knowledge (i.e., semantic understanding) and the
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low-level knowledge (i.e., boundary prediction) show dis-
tinctive sensitivity to forgetting. Specifically, we observe
that the network preserves a holistic semantic understanding
across steps by correctly identifying objects in a given scene
while failing to predict faithful boundaries. This inherent
difference reveals a crucial reason why stability and plastic-
ity cannot be simultaneously achieved by previous arts: A
regularization that enforces enough stability for low-level
knowledge could be too restrictive for high-level knowl-
edge, excessively sacrificing its plasticity; while a proper
constraint for high-level knowledge could be too flexible to
effectively preserve low-level knowledge.

Based on this understanding and motivated by humans’
visual perception system [9]. For the first time, we pro-
pose to decouple high-level and low-level knowledge by re-
formulating segmentation tasks into an understanding-then-
refinement pipeline. In this pipeline, the model first focuses
on high-level semantic understanding by identifying ”what”
and ”where” of objects in a scene, then grounds them to
low-level vision cues for final predictions. By this design,
we can achieve better Continuity by simultaneously attend-
ing to both plasticity and stability instead of naively bal-
ancing between each other. This is achieved by applying
suitable constraints for high-level and low-level knowledge,
respectively. On top of that, it simplifies the landscape of
Generality by unifying any image segmentation task into a
bio-inspired pipeline. This spans across semantic, instance
and panoptic segmentation, as well as complex ones like
language-guided segmentation and beyond, greatly promot-
ing the reusability and transferability of techniques under
the same pipeline. Notably as a by-product, it brings bet-
ter Efficiency by utilizing the fast convergence speed of
high-level knowledge (Sec. 3.3 and Fig. 2c) to significantly
reduce the computational cost. This benefit helps to pave
the way towards scaling to larger networks and datasets.
Our resulting model follows this novel pipeline and lever-
ages complementary expert models to handle semantic un-
derstanding and visual refinement. Extensive experiments
demonstrate that our method significantly surpasses exist-
ing works across datasets and tasks on both the aspects of
higher performance and less gap to upper-bound, as shown
in Fig. 1. Our contributions are summarized as follows:
• We reveal that the distinction of forgetting between high-

level and low-level knowledge is a key towards simulta-
neous plasticity and stability, which was never explicitly
considered before.

• We propose a novel segmentation pipeline by decoupling
the high-level and low-level knowledge, greatly simplify-
ing the landscape of continual universal segmentation by
properties of Continuity, Generality and Efficiency.

• We conduct experiments to validate the effectiveness of
the pipeline, which shows significant improvements over
previous state-of-the-arts across datasets and tasks.

2. Related Work
Continual Learning. The continual learning problem has
been extensively studied in image classification. The most
commonly used techniques can be roughly divided into
rehearsal methods and regularization methods. Rehearsal
methods exploit a memory to preserve a fraction of previ-
ous training data and replay it when learning new knowl-
edge, including replaying original images [3, 56, 57], gen-
erative replay [22, 55], intermediate feature replay [29, 72]
and memory management [46, 47, 64]. Balanced fine-
tune [5] and classifier re-balancing [28] are further intro-
duced to ease the bias towards new categories caused by
imbalance between memory data and new data. Regular-
ization methods aim to keep the consistency between the
previous network and the current one. Earlier works focus
on parameter constraints [1, 36, 68] which are rarely seen
recently. Modern ones apply constraints on the interme-
diate embeddings [15, 17, 21, 31, 65] and the output log-
its [28, 39, 57, 66]. These constraints are typically carefully
designed KD losses to trade between stability and plasticity.
Continual Segmentation. Based on the above successes,
some works extend these techniques to the field of segmen-
tation. [6] proposes a logits distillation approach targeting
background shift problem, and [53] makes improvements
over it. Feature distillation [18, 42, 52, 69] is also a popu-
lar choice for better stability in continual updating. There’s
a bloom of replay-based methods recently, including using
previous data [8], external data [51] and intermediate fea-
tures [53] for replay. Among them, [73] sets a strong base-
line by powering replay with reinforcement learning.
Universal Image Segmentation. Traditionally, semantic
segmentation performs a per-pixel classification task [48],
while instance segmentation groups pixels based on ob-
ject instances [26]. Recently, panoptic segmentation [34]
has been proposed to achieve a unification of them. Upon
all three, the concept of universal image segmentation has
emerged to unify all of them into a single framework [12,
13, 30]. Among all universal models, Maskformer [12] and
Mask2former [13] are widely recognized as pioneer works,
which are inspired by the success of DETR [4] handling ob-
ject proposals in the scope of transformers. Following this
design, more recent works [74, 75] even extend the con-
cept of universal segmentation to vision-language tasks like
open-vocabulary and referring segmentation.

Notably, recent research combining Mask2former and
existing continual learning techniques has emerged to per-
form continual panoptic segmentation [7, 24, 33]. How-
ever, these methods are a simple combination of existing
arts, which still face the stability-plasticity dilemma as pre-
vious works and is limited to generic-vision segmentation
tasks. Unlike them, our work aims at inherently tacking the
stability-plasticity dilemma and unifying any segmentation
task under a generalized pipeline.
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(a) Examples of predictions across steps.
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Figure 2. In segmentation, we define the high-level knowledge as identifying an object’s category and it’s rough location (i.e., semantic
understanding) and the low-level knowledge as predicting faithful boundaries. (a) Two examples are visualized to demonstrate that low-
level knowledge suffers more on forgetting. (b, c) We measure IoU at boundary areas [11] and center areas as proxies for low-level and
high-level knowledge, respectively. We validate that low-level knowledge suffers more on forgetting (b) and converges slower (c).

3. Preliminaries
3.1. Problem Definition
In continual segmentation tasks, the learning process is
composed of a series of T learning steps. At each step
t ∈ {1, 2, ..., T}, a new training set Dt = {(xn, yn)} is
given where xn and yn denote an image and its annotation.
A set of new categories Ct is introduced together with Dt.
Generally, only Ct is labeled in Dt while the others (C1:t−1

and Ct+1:T ) are marked as background. It’s assumed that
the classes at each step are disjoint, i.e.,

⋂T
t=1 Ct = ∅. The

network is trained sequentially on each step. The goal of
step t is to preserve the knowledge of C1:t−1 while acquir-
ing the knowledge of Ct and finally obtain a model that per-
forms well on all the classes seen so far.

3.2. Diving Into the Dilemma
In continual segmentation, the stability-plasticity dilemma
still poses a great challenge to make it more practicable.
But is there a way we can achieve both of them simultane-
ously? Bearing this question, we start by analyzing how the
performance deteriorates in later updates. Without loss of
generality, we opt for VOC2012 15-1 setup with 6 steps to
present an analysis. The details of this setup can be found
in Sec. 5.1. Two representative methods based on CNN
architecture (MiB [6]) and Transformer (ViT) architecture
(CoMFormer [7]) are used as examples.

We visualize two samples as in Fig. 2a to compare the
models’ predictions before and after continual updates. It
can be observed that the models are prone to making mis-
takes at boundary areas after updates. Specifically, both
models fail to preserve enough low-level knowledge to gen-
erate faithful boundaries when further updates are involved.
On the contrary, while the boundaries are corrupted, they
still recognize the objects and give correct responses at most
parts of them. Especially at center areas where the models
remain high confidence (measured using entropy of output
logits; lighter color means lower entropy, thus higher con-
fidence). This indicates that the models still hold a correct
high-level semantic understanding of the given scene.

To further validate this conclusion beyond qualitative re-
sults, we opt for boundary IoU [11] to quantify low-level
knowledge. Pixels not considered as boundaries are also
measured, and we term this metric as center IoU, which
measures the overall accuracy without boundary and can
serve as a proxy for high-level knowledge. We compare
the changes of these two metrics between the initial and last
step, which is plotted in Fig. 2b. It clearly shows that after
several learning steps, the boundary IoU drops significantly,
indicating serious forgetting for low-level knowledge. In
contrast, the center IoU decreases moderately, indicating
higher robustness for high-level knowledge.
Discussion. From the pioneer experiments, it’s evident that
the high-level and the low-level knowledge have a natural
distinction on forgetting. This is also intuitive, as it’s similar
to our humans’ memory. Thinking about a situation that we
try to recall things happened long ago. It’s hard to clearly re-
member every detail (like predicting accurate boundaries at
pixel-level), but we can still have a vague memory of them
(like roughly identifying what and where of an object). This
understanding helps to dive deeper into the defects of con-
ventional segmentation pipeline. Generally, a segmentation
model follows an encoder-decoder pipeline as in Fig. 3 (Up-
per). The main problem is that the low-level and high-level
knowledge are implicitly entangled in the whole process.
As a result, a constraint in favor of plasticity could be too
flexible to preserve low-level knowledge, while one in favor
of stability could be too rigid for handling upcoming high-
level knowledge. This explains why existing arts can only
balance between stability and plasticity instead of attending
them simultaneously.

3.3. Towards Continual Universal Segmentation
We believe the key to boosting continual segmentation is
to decouple high-level and low-level knowledge and dif-
ferentiate their constraints to construct a more promising
pipeline. Inspired by humans’ visual perception system [9]
that prioritizes global properties over details, we propose
that any image segmentation task can be reformulated as an
understanding-then-refinement paradigm. In this pipeline,
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Figure 3. Illustration of the differences between conventional
pipeline and our solution. We explicitly decouple high-level and
low-level knowledge into semantic understanding part and visual
refinement part, and use positional proposal as a more stable inter-
mediate representation than intermediate embedding.

the model first specializes in global semantic understanding
and gives class-aware positional proposals. Then it concen-
trates on grounding each proposal to low-level vision cues
for final predictions, as shown in Fig. 3 (Lower).

To this end, we first claim its Continuity by effortlessly
attending to both plasticity and stability instead of merely
balancing between them. With this decoupled design, we
can distinguish the constraints to pursue more plasticity for
high-level knowledge while ensuring enough stability for
low-level knowledge. Additionally, we claim its General-
ity by unifying image segmentation across tasks and models
via mimicking humans’ visual system. This not only pro-
vides a new insight for future research aiming at general
segmentation, but also promotes the reusability and trans-
ferability of future techniques under this pipeline.

As an interesting by-product, we point out that this de-
sign helps in Efficiency by utilizing the fast convergence
speed of high-level knowledge. We track the same metrics
as in Sec. 3.2 at the training phase (specifically, the initial
step of VOC 15-1 setup of CoMFormer), and plot the re-
sults in Fig. 2c. As can be seen, the center IoU quickly
rises at the very early stage and significantly slows down
afterward, while the boundary IoU converges much more
slowly and keeps rising as more iterations are involved.
Similar phenomena are also observed in generative models,
which mainly focus on semantic learning at the early train-
ing stage [59]. By making the semantic understanding part
handle novel categories while keeping the visual refinement
part relatively fixed, we could significantly reduce the GPU
hour with fewer training iterations, which holds its unique
benefit when scaling up to larger networks and datasets.

Lastly, we also claim better output consistency across
steps for this pipeline. Traditionally, the dense image em-
bedding is served as an intermediate representation, from
which the predictions are directly decoded. This requires
pixel-level accuracy for image embedding. Any slight
change could result in inconsistent outputs across steps

(Fig. 3 Upper). In our pipeline, we use positional proposal
as a better intermediate representation. It’s more tolerant to
the inevitable changes that happen in continual updating as
it does not require pixel-level accuracy to represent objects,
as shown in Fig. 3 (Lower). This is a desired attribute to
ensure better consistency in predictions across steps.

4. Method
In this section, we introduce a framework based on our
novel pipeline as in Fig. 4. Firstly, we present the seman-
tic understanding part, which is based on a DETR-like [4]
design (Sec. 4.1 to Sec. 4.3). To better fit it into continual
updating, we integrate it with techniques including sepa-
rated handling of things and stuff (Sec. 4.2), semantic-aware
query initialization and grouped matching (Sec. 4.3). After
that, we present the visual refinement part, which combines
proposals with low-level visual cues to get final predictions
(Sec. 4.4). Finally, we discuss how this framework is up-
dated in a continual manner (Sec. 4.5).

4.1. Feature Extraction and Enhancement
Conventional universal works [13, 30] are limited to
generic-vision tasks. In this work, we’d like to explore our
pipeline beyond this to the field of language-guided seg-
mentation. We distinguish the designs for generic-vision
and language-guided tasks: In generic-vision tasks, image
inputs I are passed to the vision encoder to generate visual
embeddings Zv. In language-guided tasks, an additional
text encoder is applied. Referring expressions or vocabu-
laries are used as text inputs T to extract text embeddings
Zt. These embeddings are then fed into the enhancer which
is composed of several transformer layers with the follow-
ing difference. For generic-vision tasks, we adopt standard
self-attention (Self-Attn) to enhance the visual embeddings.

Z
′

v = Zv + Self-Attn(Zv) (1)

For language-guided tasks, we adopt bi-directional cross-
attention (Bi-XAttn) as a common practice to make the vi-
sual and text embeddings mutually aware of each other [45].

(Z
′

v,Z
′

t) = (Zv,Zt) + Bi-XAttn(Zv,Zt) (2)

4.2. Separating Things and Stuff
Generally in DETR-like segmentation models [12, 13, 38],
things and stuff categories are processed together without
distinguishing each other. While we observe that in con-
tinual updating, things and stuff categories tend to interfere
with each other. We hypothesize that this might result from
the difference between how network recognizes things and
stuff. Things categories (e.g., person, vehicles, animals)
have well-defined and class-related geometry. This makes
the network rely more on the shape to recognize them. For
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Figure 4. Framework overview. This framework is composed of two expert models specializing in semantic understanding and visual
refinement. the understanding part follows a DETR-like [4] architecture with continual-oriented designs to generate class-aware positional
proposals. The refinement part uses SAM [75] to ground each proposal to low-level details and produce final predictions.

stuff categories (e.g., river, sky, mountain) that do not have
a stationary geometry, the texture serves as a more impor-
tant clue. This difference might forcibly distract the net-
work from the previous recognition pattern if they are pro-
cessed together in continual updates. As the decoder takes
the responsibility for semantic understanding by attending
queries to visual embeddings, we adopt two independent
decoders for things and stuff respectively to address this.

We distinguish the two decoders as follows: The things
decoder follows the design of MaskDINO [38] which con-
sists of a mask head and a detection head. We’d like to
exploit the mutual benefits of combining detection and seg-
mentation to enhance the decoder’s localization ability and
ensure the outputs hit targets more accurately especially for
small objects. For stuff categories, they often span across a
large area which is easy to localize. We only predict masks
for stuff categories using the Mask2former decoder [13].

Notably, general segmentation models need to handle
low-level details to generate accurate predictions at pixel-
level. This usually requires the queries to interact with
multi-scale, high resolution embeddings by multiple layers
of transformer decoder blocks to gradually refine the out-
puts, which is computationally intensive. In contrast, our
goal is to only achieve a holistic semantic understanding
by identifying the category and coarse position for each
object in a given scene without paying attention to low-
level details. Our decoders only attend to lower resolution,
single-scale embeddings (e.g., 1/16 image size when us-
ing ViT vision encoder with a patch size of 16) with fewer
transformer decoder layers and also predict lower resolu-
tion masks. This significantly boosts the efficiency by de-
creasing the token length of each decoder layer and the total
number of decoder layers.

The mask proposals are obtained by dot-product be-
tween object embeddings Q output by decoder and vi-
sual embeddings Z

′

v. To assign class label to mask pro-
posals, we use cosine similarity between Q and text em-
beddings Z

′

t (language-guided) or a learnable embedding
E serving as classifier weight (generic-vision) to predict

logits and assign label to proposals. For both decoders,
we adopt cross-entropy loss Lce for class prediction, bi-
nary cross-entropy loss and DICE loss [63] for mask loss
Lmask = λbceLbce + λdiceLdice. For things decoders, L1
loss and GIoU loss [58] are additionally used as box loss
Lbox = λL1LL1 + λgiouLgiou to apply to the detection
head. Following DETR-like models, auxiliary losses of the
same form are added after each decoder layer. Formally, the
loss is computed as follows.

Lthings = λclsLce + Lmask + Lbox

Lstuff = λclsLce + Lmask

L = Lthings + Lstuff

(3)

4.3. Query-based Micro Designs
Semantic-aware Query Initialization. Previous works [6,
18, 43, 69] have shown that a proper initialized classifier can
benefit performance by decreasing the mismatch between
embeddings and classifier weights. In DETR-like decoders,
queries directly interact with embeddings by dot-product
in cross-attention, which is very similar to how classifier
weight interacts with embeddings in per-pixel classification
based segmentation. We point out that proper initialized
queries also provide similar benefits. Generally, there are
two types of query initialization methods for DETR-like de-
coders, which are static query [4] and dynamic query [70].
Though the dynamic query can solve the mismatch prob-
lem by dynamically initializing queries from embeddings
of current batch, the query selection is affected by the re-
cency bias problem [28] in continual learning and causes
biased initialization, which is not desired. Because of this,
we adopt the static query and gradually increase the num-
ber of queries at each step with proper initialization. Due to
the bipartite matching mechanism [4], each query does not
strictly correspond to a category, making one-to-one initial-
ization between new category prototypes and queries sub-
optimal. We choose to initialize each new query qnew at
the start of current step t based on the average of prototypes
of new categories pc with small Gaussian noise to differen-
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tiate each other.

qnew =
1

|Ct|
∑
c∈Ct

pc + λgaussianN (0, 1) (4)

Grouped Matching. As the queries introduced at step t are
designed to represent Ct. Instead of matching between all
categories and queries as in [4, 13, 38], we group queries by
learning steps and only perform matching between queries
and categories belonging to the same step. This design pro-
vides two benefits: 1) It better avoids the natural instability
of bipartite matching by preventing previous queries being
matched to current categories and vice versa, thus avoiding
unnecessary noise in optimization. 2) Unmatched queries
are considered as no-obj and are suppressed during opti-
mization. Due to the data imbalance problem in continual
learning, previous categories are relatively rare. This could
cause previous queries to be overly suppressed and result
in forgetting. If all the categories within a group are not
presented in input, this query group can be ignored in opti-
mization to avoid excessive suppression on them.

4.4. Conditioned Mask Prediction
There exist several choices for handling low-level vision
details. These methods range from conventional edge de-
tectors like OWT-UCM [2], to recent segmenters like Sim-
pleClick [44], RITM [62] and SAM [35]. In this work, we
adopt the SAM to perform class-agnostic mask prediction
conditioned by proposals in Sec. 4.2. The SAM decoder is
designed to handle point, box, and mask input. We choose
point input due to that it gives overall better results and is
flexible by combining multiple points to better represent an
object. The binary mask proposals obtained in Sec. 4.2 are
converted to SAM point inputs as follows: We resample
each proposal to a resolution of 16×16 and directly change
high confidence foreground pixels to a set of points repre-
senting an object. These prompts are batched and sent to the
SAM decoder to get a batch of binary masks. Each binary
mask is then assigned to the category of the corresponding
proposal. After that, we merge them and perform standard
postprocess as in [13, 38] to obtain the final predictions.

4.5. Continual Updating
To differentiate the constraints for high-level and low-level
knowledge as discussed in Sec. 3.3, we update the semantic
understanding part without any KD but with only a small
memory as a weak constraint. In contrast, we completely
freeze the visual refinement part and utilize the transfer-
ability of low-level vision cues to handle novel categories,
which is widely exploited by areas like unsupervised seg-
mentation [32] or open-vocabulary segmentation [40].

There are two common approaches tackling the back-
ground shift [6] in continual segmentation, which are spe-
cialist KD [6, 53] and pseudo labeling [18, 42]. Given that

we do not adopt KD to maximize the plasticity in semantic
understanding, we use the standard pseudo labeling instead
on missing old class annotations. Note that compared to
existing arts that also adopt pseudo labeling, we can better
avoid the risk of error accumulation caused by noisy pseudo
labels via better cross-step consistency, which is discussed
in Sec. 3.3 and further presented in Appendix.

5. Experiments

5.1. Implementation Details

Datasets. Following existing works, we evaluate generic-
vision segmentation including semantic segmentation on
PASCAL VOC 2012 [19] and ADE20K [71], and panoptic
segmentation on ADE20K. We also extend to COCO [41]
for additional instance and panoptic segmentation evalua-
tion. We further explore our model on language-guided
segmentation on COCO and RefCOCOg [50], which is pre-
sented in the appendix due to the space limit.
Protocols and Evaluation. There exist three different pro-
tocols for continual segmentation [52]: sequential, disjoint
and overlapped. Following common practice [7, 18, 33, 53],
we stick to the overlapped protocol in our benchmark as
it’s regarded as the most realistic and challenging one. The
benchmark setup is termed as No −Nn, where No and Nn

denote the number of classes introduced at initial step and
each incremental step, respectively. For example, a 15-1
setup of a dataset containing 20 classes in total means 15
classes are given at the first step, 1 class is incrementally
added per following step, resulting in 6 steps in total. The
performance of old classes C1, new classes C2:T and all
classes C1:T are reported together and are denoted as old,
new, all, respectively. The model is evaluated on the official
validation sets after finishing all learning steps. The offline
training results serving as a theoretical upper bound are also
provided and denoted as Joint. Due to possibly different
model architectures, we group models with different upper
bound and provide their corresponding Joint results. To en-
sure a fair comparison, we additionally focus on the gap to
the upper bound, which is measured as 1− perf.

Joint . We report
the improvement of our model on this gap at the bottom of
the table, denoted as ∆ perf. gap (lower is better). We use
the mIoU (mean Intersection-over-Union) [20], AP (aver-
age precision) [41] and PQ (panoptic quality) [34] for se-
mantic, instance, and panoptic segmentation, respectively.
Implementation and Training. To have a comparable
backbone scale to previous works using ResNet-101 [25],
we adopt ViT-B [16] as the backbone with DINO-v2 [54]
pre-training. For language-aware tasks, we adopt BERT-
base [14] as language encoder. The feature enhancer is
composed of L = 3 Transformer blocks. Both the things
decoder and stuff decoder are composed of L = 2 Trans-
former decoder blocks. We use AdamW [49] optimizer with
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Table 1. Semantic segmentation results on PASCAL VOC 2012. Our results are the average of 3 runs with standard deviation. ’-M’ suffix
denotes method with memory. We mark the one with the least performance gap in bold and the second one in underline.

Method 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps) 10-1 (11 steps)
old new all old new all old new all old new all

MiB [6] 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7 12.2 13.0 12.6
PLOP [18] 75.3 37.3 73.5 75.7 51.7 70.0 65.1 21.1 54.6 44.0 15.5 30.4
RCIL [69] - - - 78.8 52.0 72.4 70.6 23.7 59.4 55.4 15.1 34.3

RECALL-M [51] 68.1 55.3 68.6 67.7 54.3 65.6 67.8 50.9 64.8 65.0 53.7 60.7
SSUL-M [8] 77.8 49.7 76.4 78.4 55.8 73.0 78.3 49.0 71.3 74.0 53.2 64.1

ALIFE-M [53] 76.7 52.2 75.5 77.6 55.2 72.3 66.0 38.8 59.5 - - -
Joint 77.6 77.7 77.6 79.5 71.5 77.6 79.5 71.5 77.6 78.5 76.6 77.6

AMS-M [73] 79.4 42.8 77.6 79.3 55.8 73.7 78.5 50.8 71.9 - - -
Joint 79.4 72.9 79.1 79.7 72.3 77.4 78.8 72.6 77.3 - - -

CUE-M (Ours) 87.6 77.4 87.1 87.2 82.8 86.1 86.0 77.9 84.0 83.3 75.5 79.5
±0.08 ±0.45 ±0.12 ±0.11 ±0.23 ±0.14 ±0.16 ±0.73 ±0.22 ±0.19 ±0.82 ±0.34

Joint 87.7 89.9 87.8 87.6 88.4 87.8 87.6 88.4 87.8 87.3 88.3 87.8
∆ perf. gap (↓) +0.31% -14.95% -1.10% -0.05% -15.64% -2.90% +1.45% -16.93% -2.66% -1.16% -15.42% -8.04%

Table 2. Semantic segmentation results on ADE20K. Our results are the average of 3 runs with standard deviation. ’-M’ suffix denotes
method with memory. We mark the one with the least performance gap in bold and the second one in underline.

Method 100-50 (2 steps) 50-50 (3 steps) 100-10 (6 steps) 100-5 (11 steps).
old new all old new all old new all old new all

MiB [6] 40.5 17.1 32.7 45.5 21.0 29.3 38.2 11.1 29.2 36.0 5.6 25.9
PLOP [18] 41.8 14.8 32.9 48.8 20.9 30.4 40.4 13.6 31.5 39.1 7.8 28.7
RCIL [69] 42.3 18.8 34.5 48.3 25.0 32.7 39.3 17.6 32.1 38.5 11.5 29.6

SSUL-M [8] 42.7 17.5 34.3 49.1 20.1 29.7 42.8 17.6 34.4 42.8 17.7 34.5
ALIFE-M [53] 42.2 23.5 36.0 48.9 26.1 33.8 41.1 23.0 35.1 - - -

Joint 43.5 29.4 38.8 50.3 32.7 38.8 43.5 29.4 38.8 43.5 29.4 38.8

AMS-M [73] 44.0 24.9 37.7 - - - 43.8 25.1 37.6 43.3 18.5 35.1
Joint 44.3 28.2 39.0 - - - 44.3 28.2 39.0 44.3 28.2 39.0

CoMFormer [7] 44.7 26.2 38.4 - - - 40.6 15.6 32.3 39.5 13.6 30.9
ECLIPSE [33] 45.0 21.7 37.1 - - - 43.4 17.4 34.6 43.3 16.3 34.2

Joint 46.9 35.6 43.1 - - - 46.9 35.6 43.1 46.9 35.6 43.1

CUE-M (Ours) 58.5 46.8 54.6 63.6 46.6 52.3 58.0 46.5 54.2 57.9 39.9 51.9
±0.06 ±0.24 ±0.10 ±0.08 ±0.12 ±0.10 ±0.17 ±0.25 ±0.20 ±0.16 ±0.42 ±0.22

Joint 58.9 49.7 55.8 64.7 51.4 55.8 58.9 49.7 55.8 58.9 49.7 55.8
∆ perf. gap (↓) -0.00% -5.87% -1.19% -0.69% -9.42% -6.61% +0.40% -4.56% -0.72% +0.09% -14.68% -3.01%

a weight decay of 5e-2. An initial learning rate of 1e-4 is
used for the initial learning stage and 1e-5 for the follow-
ing stages. It is decayed at 0.9 and 0.95 fractions of the
training procedure by a factor of 10. We train our model
for 10 epochs on VOC2012, 20 epochs on ADE20K and 15
epochs on COCO with a batch size of 16. We use a crop size
of 518 × 518 for the understanding part, and a crop size of
1024× 1024 for SAM in the visual refinement part. We set
the memory size to 100 for VOC2012 and 300 for ADE20K
and COCO, which is identical to [8, 73]. We use a data aug-
mentation of random resized crop jittering between 0.5 and
2.0, random horizontal flipping and random color jittering.
We use single-scale inference without data augmentation.

5.2. Main Results
Semantic Segmentation Benchmark. We evaluate our ap-
proach on continual semantic segmentation on PASCAL
VOC 2012 and ADE20K due to their popularity. The re-
sults are reported in Tab. 1 and Tab. 2 respectively with four
different setups. Note that among works utilizing mem-
ory (marked by ’-M’ suffix), RECALL and ALIFE apply

a larger memory than us. AMS uses reinforcement learn-
ing to select optimal samples. These implements bring ex-
tra benefits and result in unfair comparison. From both
benchmarks, we see that recent works achieve promising
stability by sophisticated constraints. Some even freeze the
network to pursue extreme stability (SSUL and ECLIPSE).
These designs do help a lot to old class performance es-
pecially when dealing with multiple learning steps. As a
trade-off, none of them achieves equal plasticity for new
classes. In contrast, due to our decoupled design to apply
suitable constraints to high-level and low-level knowledge
separately. Our approach provides comparable stability to
existing works while achieving significantly better plastic-
ity simultaneously, which is demonstrated by the clear mar-
gin over previous SOTAs on new and can be consistently
observed across setups and datasets.

Panoptic Segmentation Benchmark. We evaluate our ap-
proach on continual panoptic segmentation on ADE20K
and present the results in Tab. 3. On this more challeng-
ing task, we observe similar conclusions as in semantic seg-
mentation. Existing models prefer stability to effectively
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Table 3. Panoptic segmentation results on ADE20K. Our results are the average of 3 runs with standard deviation. Results of [6, 18] and
50-50 results of [8] are taken from ECLIPSE. We mark the one with the least performance gap in bold and the second one in underline.

Method 100-50 (2 steps) 50-50 (3 steps). 100-10 (6 steps). 100-5 (11 steps).
old new all old new all old new all old new all

MiB [6] 35.1 19.3 29.8 42.4 15.5 24.4 27.1 10.0 21.4 24.0 6.5 18.1
PLOP [18] 41.0 26.6 36.2 45.8 18.7 27.7 30.5 17.5 26.1 28.1 15.7 24.0

CoMFormer [7] 41.1 27.7 36.7 45.0 19.3 27.9 36.0 17.1 29.7 34.4 15.9 28.2
ECLIPSE [33] 41.7 23.5 35.6 46.0 20.7 29.2 41.4 18.8 33.9 41.1 16.6 32.9

Joint 43.2 32.1 39.5 50.2 34.1 39.5 43.2 32.1 39.5 43.2 32.1 39.5

CUE (Ours) 51.4 35.7 46.2 61.4 33.8 43.0 50.6 35.4 45.5 50.3 31.5 44.0
±0.13 ±0.19 ±0.14 ±0.09 ±0.17 ±0.12 ±0.21 ±0.34 ±0.24 ±0.23 ±0.55 ±0.34

Joint 51.7 38.2 47.2 62.3 39.6 47.2 51.7 38.2 47.2 51.7 38.2 47.2
∆ perf. gap (↓) -2.89% -7.16% -4.97% -6.92% -24.6% -17.1% -2.04% -34.1% -10.5% -2.18% -30.7% -9.93%

preserve low-level knowledge but inevitably sacrifice plas-
ticity. Our approach keeps the leading position across all
setups and achieves substantial gain in terms of plasticity.
On top of the previous results, this further demonstrates
our model’s ability across different tasks. Note that our ap-
proach is the only one using memory here. However, this
does not impact the leading position of ours considering the
memory is designed as a weaker substitute to KD (Sec. 4.5)
and provides minor gain in ablation.

Table 4. Ablation study on ADE20K panoptic with 100-10 setup.

Method 100-10 (6 steps)
old new all

base model 44.8 24.5 38.0
+ memory 46.2 25.1 39.2
+ separating things and stuff 49.0 31.8 43.2
+ query initialization 49.7 33.5 44.3
+ grouped matching 50.6 35.4 45.5

Table 5. Computational complexity of representative methods.

Method Arch FLOPs FPS epochs

MiB [6] CNN 134G 25.6 60
RCIL [69] CNN 186G 9.3 60

CoMFormer [7] ViT 586G 4.0 128
CUE (Ours) ViT 147G 63.5 20

5.3. Ablation Study
Effect of each components. We investigate the effect of
each component on ADE20K panoptic segmentation with 6
steps and present the results in Tab. 4. Starting from a base
model without memory and all the techniques introduced in
Sec. 4.2 and Sec. 4.3, the model already demonstrates its
ability by showing comparable results to previous SOTA.
This validates and highlights the superiority of our novel
pipeline. By gradually adding continual oriented designs,
we observe steady improvements. Among all of them, sep-
arating the decoders of things and stuff provides the most
gain, validating its unique benefit in continual segmenta-
tion when handling both things and stuff. The memory only
contributes a minor gain. It might because that the training
data of ADE20K already contains plenty of old categories,
which serve as an implicit memory.

Computational complexity. We analyze computational
complexity on ADE20K semantic segmentation against two
CNN-based models (MiB [6] and RCIL [69]) and a ViT-
based model (CoMFormer [7]). We report floating-point
operations (FLOPs), frame per second (FPS) and conver-
gence speed (Training epochs) as in Tab. 5. Note that
backward FLOPs cannot be accurately measured, we use
training FPS as a proxy for forward FLOPs plus backward
FLOPs. All results are obtained on the identical platform
with a single NVIDIA RTX 3090 GPU using official imple-
mentations. Our model has a FLOPs on par with MiB us-
ing standard Deeplab-v3 [10], less than RCIL using a mod-
ified version and significantly less than CoMFormer based
on Mask2Former. Due to that our model does not attend to
high resolution embeddings, it achieves a much faster train-
ing FPS by significantly reducing the backward FLOPs, sig-
nificantly reducing its training costs.

6. Conclusion and Limitation

In this work, we present CUE, which is the first step towards
making continual segmentation more universal and practi-
cal. We first perform an in-depth analysis of why existing
arts strive to balance between stability and plasticity. Build
upon this and inspired by humans’ visual perception system,
we introduce a novel universal segmentation pipeline which
possesses properties of continuity, generality and efficiency.

Nevertheless, we consider our work as a preliminary to
continual universal segmentation. It’s far from the truly uni-
versal model and needs further exploration, Still, we be-
lieve that our proposed pipeline can unleash its potential
beyond what is presented in this paper, and provide valu-
able insights to the research community to make continual
segmentation more universal and practicable.

7. Acknowledgment

This work is supported by the National Natural Science
Foundation of China under Grant 62176246. This work is
also supported by Anhui Province Key Research and Devel-
opment Plan (202304a05020045), Anhui Province Natural
Science Foundation (2208085UD17) and National Natural
Science Foundation of China under Grant 62406098.

29424



References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.
2

[2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-
tendra Malik. Contour detection and hierarchical image seg-
mentation. IEEE transactions on pattern analysis and ma-
chine intelligence, 33(5):898–916, 2010. 6

[3] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha,
and Jonghyun Choi. Rainbow memory: Continual learning
with a memory of diverse samples. In CVPR, 2021. 2

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020. 2, 4, 5, 6

[5] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
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