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Figure 1. Gallery of the proposed AvatarArtist. Each row features several triplets, where the first column of each triplet is the source
image. The subsequent two images in each triplet are results that follow the pose and expression of the driving image, as demonstrated in
the bottom right corner of the first three columns. Specifically, our method is applicable to an open domain, encompassing a diverse range
of categories including 3D cartoons, video game characters, sculptures, skulls, etc.

Abstract

This work focuses on open-domain 4D avatarization,
with the purpose of creating a 4D avatar from a portrait
image in an arbitrary style. We select parametric tri-
planes as the intermediate 4D representation, and propose
a practical training paradigm that takes advantage of
both generative adversarial networks (GANs) and diffusion
models. Our design stems from the observation that
4D GANs excel at bridging images and triplanes without

supervision yet usually face challenges in handling diverse
data distributions. A robust 2D diffusion prior emerges as
the solution, assisting the GAN in transferring its expertise
across various domains. The synergy between these experts
permits the construction of a multi-domain image-triplane
dataset, which drives the development of a general 4D
avatar creator. Extensive experiments suggest that our
model, termed AvatarArtist, is capable of producing
high-quality 4D avatars with strong robustness to various
source image domains. The code, the data, and the models
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will be made publicly available to facilitate future studies.

1. Introduction
Avatarization (dynamic) from one single portrait image has
become a fundamental ability of AI content generation. It
enables the transfer of motion and expression from a source
video to a digital avatar while preserving both motion
accuracy and subject identity. This technology has broad
applications in virtual reality, social media, gaming, and
online education, facilitating efficient character production
and enhancing interactive experiences in computer vision
and computer graphics.

Studies on avatarization can mainly be categorized as
2D and 4D aspects. The 2D-based methods [20, 56–
58, 76, 77, 82] typically employ a self-supervised learning
scheme, with monocular video stream data accompanied
by facial landmarks or implicit motion representations [57].
More recently, the emergence of powerful generative mod-
els, such as diffusion models, which can handle various
types of images, has further advanced the field. Some
2D methods [42, 67, 71] incorporate prior knowledge from
diffusion models (e.g., Stable Diffusion [54]), enabling
them to effectively handle multi-style avatarization (e.g.,
cartoon, realistic).” Despite achieving impressive results,
these 2D methods fail to accurately represent 3D structures.
Geometric distortion and content inconsistency often arise
when the head pose undergoes significant rotation. More-
over, the iterative computation of diffusion models incurs
substantial costs for generating each frame of animated
videos, significantly increasing the overall computational
burden.

On the other hand, 4D-based methods [9, 14, 33,
43, 84] leverage neural rendering pipelines [27, 45] and
3DMM [32] for efficient avatarization where 3D geomet-
ric consistency is maintained across multiple viewpoints.
During model inference, these models animate the image
feature first then a camera pose to perform neural rendering
of target view generations. Despite the demonstrated
success, these methods suffer from a lack of 4D data from
diverse domains. The human portrait animation is restricted
to a limited domain and is difficult to generalize as that of
2D-based methods.

“Having examined both 2D and 4D-based avatarization
methods, we intuitively assume that if sufficient and well-
suited 4D datasets covering diverse domains were avail-
able, it would be possible to develop a 4D avatarization
approach for open-domain inputs using diffusion models.”
Recently, Rodin [65, 78], a diffusion-based single-image-
guided static avatar generation method, has demonstrated

* This work is done partially when Hongyu is an intern at Ant Group.
§ Joint corresponding authors.

impressive performance in the synthetic digital domain.
To train this model, a dataset of image-3D representation
pairs was constructed using multi-view digital human data.
Inspired by this, we believe that an appropriate 4D dataset
for our method should consist of image-4D representation
pairs spanning multiple domains.

In this work, we propose AvatarArtist, a diffusion-based
4D avatarization model. It is challenging to obtain multi-
view, multi-expression 4D captures to create image-4D
representation pairs with a fitting process similar to Rodin.
Therefore, we resort to synthetic data generation. Fortu-
nately, we found that 4D GANs, such as Next3D [60, 84],
can greatly assist in this process. Specifically, Next3D
proposed a parametric triplane 4D representation, which
divides the traditional triplane [7] into dynamic and static
components. The dynamic part is aligned with the 3DMM
mesh [32, 64] in UV space, allowing expression changes
through mesh rasterization and rendering. With Next3D,
we can generate an unlimited amount of image-parametric
triplane data simply by sampling, but only for single
realistic domain due to the mode collapse issue of GAN.
Hence we propose to finetune Next3D to efficiently obtain
multiple GANs of diverse domains. While training Next3D
only requires 2D images and their corresponding 3DMM
meshes, achieving effective multi-domain fine-tuning de-
mands diverse and comprehensive data coverage across var-
ious domains. To overcome this limitation, we leverage 2D
diffusion models [54] to enrich the diversity of the training
data. Specifically, we utilize the SDEdit [44] pipeline
and landmark-guided ControlNet to transfer portrait images
(e.g., FFHQ) from the realistic domain to other domains.
This process ensures coherent pose and expression between
the output and input 2D portraits, allowing us to reuse
the 3DMM mesh of the 2D portrait from the realistic
domain in non-realistic domains. Consequently, we can
train 4D GANs for different domains and generate image-
parametric triplane datasets across multiple domains. The
entire data generation process combines the advantages of
both diffusion models and GANs: diffusion models provide
multi-domain data for the GAN, while the GAN transforms
2D images into 4D representations in an unsupervised
manner.

Using this dataset, we could adopt the latent Diffusion
Transformer (DiT) [49] to model its distribution. The
process begins with training a VAE to compress triplanes
into latent representations, followed by employing a DiT to
generate latent guided by a single portrait image. Although
the diffusion model is able to generate triplanes effectively,
there are still two issues for rendering high-quality frames
from these planes. First, not like Rodin which uses a simple
MLP decoder for the digital domain, rendering triplanes
from multiple diverse domains into high-quality images
is much more challenging. Second, Parametric triplanes
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Figure 2. The overall training pipeline of our method. We first generate 2D images from different domains using a 2D diffusion model.
These images are then used to train 4D GANs for each domain. Subsequently, the trained 4D GANs generate image-4D representation
pairs across domains, which are used to train DIT and the rendering model.

primarily focus on motion modeling but are less effective
in preserving identity. Next3D employs a CNN to enhance
identity preservation, but we found the performance of
CNN degrades significantly in the open domain. To address
these, we introduce a motion-aware cross-domain renderer
based on ViT [69] that incorporates features from the source
image, improving cross-domain rendering ability and pre-
serving the identity information. Additionally, we use an
implicit motion representation, similar to Portrait4D [14],
to avoid artifacts caused by mesh inaccuracies. Compared
to baseline methods, our approach delivers superior quan-
titative and qualitative performance, offering high visual
fidelity, accurate identity representation, and precise motion
rendering.

2. Related Work
We address one-shot, open-domain image-driven talking
face generation, which synthesizes a talking head video
from a single reference portrait and a sequence of driv-
ing expression images. This section provides a concise
overview of previous talking head generation methods,
broadly categorized into 2D talking face generation and
3D-aware talking portrait synthesis, along with a brief
discussion on stylized 3D avatar generation.

2.1. 2D Talking Face Generation
Great progress has been made in image-driven 2D talking
head generation [4, 16, 19, 36, 41, 56–58, 63, 72, 74,
76, 77]. Numerous approaches harness the capabilities
of Generative Adversarial Networks to synthesize high-
fidelity talking head videos, most of which fall into the
warping-then-rendering scheme. The identity features are
first encoded from the reference image and then warped
according to the driving signals, finally being rendered into
a sequence of talking portraits. More specifically, various
types of motion representation, such as landmarks [57,
76], depth [24], and latent code [4], are exploited to
deduce the warping field, ensuring that the synthesized
portraits exhibit expressions and motions that faithfully
correspond to the driving signals. With the advent of
diffusion model-based image generation, several methods
employ large pre-trained diffusion models to assist in the

task of one-shot talking face generation. By leveraging
the powerful prior of pre-trained diffusion models, recent
methods [42, 67, 71] have demonstrated that they possess
strong generalization capabilities when handling various
styles of reference portraits. However, due to a lack of
understanding of three-dimensional structures, these 2D-
based methods often exhibit obvious geometric distortions
when handling larger head movements. Additionally, they
lack the ability to control the viewpoint of the generated
images with precision.

2.2. 3D-aware Talking Portrait Synthesis
To achieve high geometric fidelity in synthesizing portraits
with varying head poses, researchers have introduced in-
termediate 3D representations that capture facial geometry
and pose, ensuring structural accuracy across viewpoints.
A major breakthrough in novel view synthesis is Neural
Radiance Fields (NeRF)[7, 10, 25, 33, 34, 43, 45, 61, 73,
75, 86], which enables precise 3D reconstructions with
explicit camera control. NeRF has been widely adopted in
3D-aware one-shot talking head generation, enhancing 3D
coherence and pose control for more natural outputs. More
recently, GAGAvatar[9] leveraged 3D Gaussian Splatting
(3DGS) to accelerate generation while maintaining high
quality.

However, most methods [66] rely on in-the-wild video
data, making 3D learning from monocular videos highly
ill-posed due to depth ambiguity, lighting variations, and
facial occlusions. Some approaches incorporate 3D super-
vision from monocular 3D face reconstruction [11, 13, 17],
multi-view lab-captured videos[25, 86], or synthetic multi-
view data[14, 15]. While these improve results, they are
constrained by limited high-quality 3D data and training
challenges. As a result, there remains no open-domain, one-
shot 4D portrait generation method capable of generalizing
across diverse conditions.

2.3. Stylized Avatar Generation
To generate avatars across different domains, some meth-
ods [1, 3, 28, 29, 31, 37, 50, 59, 62] use CLIP as a constraint
or leverage diffusion models to generate reference images,
which are then utilized to create stylized avatars based
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Figure 3. The pipeline of dataset generation.We use text prompts to transform images from the realistic domain to the target domain
while ensuring pose and expression consistency with SDEdit [44] and landmark-guided ControlNet [80]. This enables direct reuse of the
original mesh, avoiding errors in non-realistic domain extraction. After domain transfer, we train 4D GANs to generate image-parametric
triplane pairs, which serve as data for the next stage. The parametric triplane comprises dynamic and static components, with the dynamic
region aligned to the mesh.

on text prompts. Additionally, StyleAvatar3D [79] and
Rodin [65, 78] collect domain-specific datasets to train
generative models for stylized avatar synthesis. While
these methods significantly advance stylized avatar genera-
tion, they do not focus on single-image-guided, animatable
avatar creation. Meanwhile, other approaches [2, 18, 48,
85] employ CLIP as a constraint and text as guidance to
fine-tune GAN models, enabling the generation of stylized
portrait images that align with textual descriptions. Al-
though these methods demonstrate strong manipulation ca-
pabilities for stylized portraits, they cannot directly generate
avatars.

3. Method

We aim to develop a system that generates a 4D avatar from
an open-domain image Is, driven by the motion of a target
individual It. The key to training a deep generative model
for open-domain avatarization is a large-scale, high-quality
dataset. In Sec.3.1, we introduce how GANs and image
generation techniques help construct diverse and consistent
training data. With this dataset, we use a latent Diffusion
Transformer (DiT) to model the 4D distribution (Sec.3.2).
To ensure accurate motion transfer while preserving the
source identity, we further employ a motion-aware cross-
domain renderer (Sec.3.3). The overall training pipeline is
shown in Figure2. Next, we detail each component.

3.1. Data Curation from 4D GANs
Benefiting from adversarial training, the recent GAN meth-
ods have demonstrated great potential in generating high-
quality 4D avatars in an unsupervised manner using non-
multiview images and 3DMM meshes only. Therefore,
we would like to fully leverage this capability of GANs
to curate 4D data. Nonetheless, the instability of GAN

training easily caused mode-collapse, failing to cover the
distribution of different modes. In this section, we will
discuss how to properly use GAN to generate open-domain
image-4D representation pairs data.
Base GAN Model. We select Next3D [60, 84] as our base
GAN model for generating the 4D dataset, given its training
efficiency and the proposed robust 4D representation (para-
metric triplane). Specifically, as shown in Figure 3, given
a randomly sampled latent code z, the mapping network
translates z into an intermediate latent vector, which will
modulate conv layers of StyleGAN to generate a parametric
triplane ∈ R256×256×4×32. The parametric triplane consists
of two parts: a static component representing non-facial
regions and a dynamic component aligned with the 3DMM
mesh in UV space. During inference, given a specific
mesh, the dynamic part is deformed through rasterization
and combined with the static part to form a triplane with
expressions. Then neural rendering and a super-resolution
module are applied to generate the final image. We follow
Next3D and use FaceVerse [64] to extract the correspond-
ing parametric mesh. Multi-Domain Tuning. To train
Next3D models across various domains, the first priority
is to obtain diversified images from different domains and
extract the corresponding 3DMM meshes. However, it
is very challenging to accurately obtain 3DMM meshes
for non-realistic portraits. To address this issue, we use
the pre-trained 2D diffusion model to generate the target
domain from realistic images given specific prompts, so
that the 3D meshes from realistic domains can be re-used.
Specifically, given a portrait from the realistic domain,
we add noise over this image with specific strength [44]
and then denoise it by StableDiffusion to generate high-
quality and diversified images of the target domain under
the guidance of prompts. However, corrupting the images
with noise also raises challenges in maintaining the original
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Figure 4. The pipeline of DiT. We first train a VAE to compress
the parametric triplane into a latent space, and then train a DiT to
denoise the noisy latent. We incorporate features from DINO [5]
and CLIP [53] into the DiT to guide the generation process.

expression. Hence, we also incorporate the facial landmark
through ControlNet [80], which provides the conditional
signals of expression. As a result, the newly sampled image
from the target domain could closely align with the pose and
expression of the source realistic image, enabling the direct
transfer of 3DMM mesh labels from the realistic domain to
the target domain.

Through the pipeline mentioned above, we totally col-
lected image data from 28 different domains (anime, lego,
etc.) transferred from FFHQ [26]. To ensure the efficiency
of the data pipeline and avoid model collapse, for each
domain, we generate 6,000 images only and use this data to
finetune independent GAN from the Next3D model trained
with FFHQ [26]. We follow the DATID-3D [28] to use the
ADA loss and density regularization loss to guarantee the
diverse content generation ability of GAN during tuning.
Data Synthesis. We utilize the trained multiple 4D GANs
to build two datasets. 1) The image-parametric triplane
paired dataset. We randomly sampled poses and meshes
of portrait images from the FFHQ dataset, which are then
fed into the 4D GAN with a random z to generate images in
different identities along with corresponding triplanes. For
each domain, we generated 20K samples, resulting in a total
of 20K × 28 = 560K image-triplane pairs. 2) The multi-
view, multi-expression image-parametric triplane dataset.
These data assist in learning our motion-aware cross-style
renderer. We generate both static and dynamic components
following the portrait4D [14]. The dynamic data, which
are responsible for head reenactment, consists of synthetic
identities with multiple expressions per subject and varying
camera poses for each expression. The static data, on the

other hand, are employed to enhance the generalizability
of 3D reconstruction and contain only a single expression
per identity, also with varying camera poses. Expressions
(meshes) in the dynamic dataset are sampled from the
VFHQ dataset [70], while those in the static dataset are
sampled from the FFHQ dataset. All camera poses are
sampled from FFHQ.

3.2. 4D Generation
Recently, the latent diffusion model has shown great poten-
tial in modeling complex data distributions like images [51],
videos [52], and triplanes [6, 55, 65]. Following this trend,
this section will depict how we leverage latent diffusion for
4D generation. As shown in Figure 4, we will first introduce
a triplane VAE to compress the triplane representations into
a latent space, followed by training an image-conditioned
DiT [49]. All the data used for training was sourced from
our curated datasets.
Triplane VAE. For training efficiency, the DiT [49]
is trained in a compact latent space by default. To
achieve this, we propose a triplane variational autoencoder
(VAE) [30] to obtain the latent code of the triplane repre-
sentations. Specifically, our VAE compresses the triplane
∈ R256×256×4×32 to latent zt ∈ R64×64×4×8. To optimize
the VAE model, we compute the L1 loss between the
reconstructed planes and input triplanes. Meanwhile, we
also get depth and rendered images to calculate L1 and
LPIPS losses, respectively. We did not apply adversarial
loss since we found it introduced training instability. For
more details, please refer to our supplementary material.
Image Guided Diffusion Transformer. We follow the
Direct3D [68] and PixArt-α [8]to build our image-guided
DiT. For the noised latent zt we flatten it to a sequence
and send it to the DiT as input. We separately extract
the semantic and detailed information from conditional
images and inject them into each DiT block. For semantic
information, we use CLIP [53] to extract the image’s
semantic embeddings, which are then integrated with the
model via cross-attention. To capture fine-grained details,
we employ the DINO [47] to extract image tokens. In
each DiT block, we concatenate the image tokens with the
flattened zt and feed them into a self-attention layer to
model the intrinsic relationship between the image tokens
and zt. During training, we leverage the objective of
IDDPM [46] and predict the noise and variance at each time
step t. We also randomly drop the conditional image with
a probability of 10% to enable classifier-free guidance [23]
during inference.

3.3. Motion-Aware Cross-Domain Renderer
In the rendering process of Next3D, a CNN refines the
rasterized parametric triplane to protect the identity infor-
mation and eliminate identity leakage caused by rasteriza-
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Figure 5. The pipeline of motion-aware cross-domain renderer.
We use an encoder to extract the feature from the source image.
This feature is sent to a ViT to predict results under the guidance
of generated parametric triplane and motion embedding. Finally,
a decoder processes the output of the ViT and fuses it with the
results of rasterization to produce the final output.

tion. However, we found that this rendering approach fails
to achieve acceptable quality in our setting (see Figure 8).
Since our parametric triplane is generated from different
domains, a simple rendering network cannot effectively
resolve identity leakage across various domains. Addi-
tionally, inaccurate mesh extraction sometimes leads to
mismatched expressions in the generated results.

To address these issues, we propose a motion-aware
cross-domain renderer. As shown in Figure 5, we first
employ an encoder EI to extract features from the source
images, which are subsequently fed into a Vision Trans-
former (ViT) model [69]. In the ViT model, we inject
the parametric triplane generated by DiT into the self-
attention mechanism, which aims to neutralize facial ex-
pressions and canonicalize poses inspired by [14], thereby
eliminating expression-specific information from the source
image. Then, we change the expression with motion
embedding [63] by injecting it with cross attention. This
embedding is an implicit representation without spatial
information, thus preventing identity leakage. The output of
the ViT is decoded to match the resolution of the rasterized
parametric triplane, after which it is fused with the triplane.
Finally, we apply volumetric rendering followed by super-
resolution techniques to generate the final output Io. The
Io, rendered from a novel camera viewpoint, preserves
the identity features from the source image Is meanwhile
following the facial expression of the target image It. For
training this model, we adopt the loss terms following
the [14, 61, 83]. For more details, please refer to our
supplementary material.

4. Experiments
In this section, we first illustrate our implementation details.
Then, we compare our method with existing methods
qualitatively and quantitatively. We compare our approach
with both 2D and 4D reenactment methods. Specifically,
we include comparisons with 2D techniques such as Live-
Portrait [20] and XPortrait [71], as well as 4D methods like
InvertAvatar [84] and Portrait4Dv2 [15]. Finally, an abla-
tion study validates the effectiveness of our contributions.
More results are provided in the supplementary files.

4.1. Implementation Details
During the training of the Next3D, we extract facial poses
and corresponding 3DMM meshes from the FFHQ dataset
using FaceVerse [64]. All domains are fine-tuned based on
a GAN pre-trained on the FFHQ dataset, with each domain
iterating over a total of 300K images. For VAE training,
we adopt the same training framework as the VAE used in
Stable Diffusion. We utilize the AdamW optimizer [38]
with a learning rate of 1e-4. The VAE model is trained
on an NVIDIA A100 (80G) GPU for 100K steps with a
batch size of 32. Our diffusion model follows the network
configuration of DiT-XL/2 [8, 49, 68], consisting of 28
layers of DiT blocks. The diffusion model is trained with
1000 denoising steps using a linear variance scheduler. We
employ the AdamW optimizer with a learning rate of 1e−4

and train the model for 800K steps. During inference, we
use 19 steps of the DPMSolver [39], with a guidance scale
set to 4.5. For the motion-aware cross-domain renderer, we
train on a total of 12 million images across all domains. For
more details, please refer to the supplementary materials.

4.2. Qualitative Results
As shown in Figure 6, we present a visual comparison of
the results of self-reenactment and cross-reenactment tasks.
The first column contains the input images, with the bottom-
right corner showing the target image and the larger images
representing the source images. The first row displays
the self-reenactment results. We observe that InvertA-
vatar exhibits noticeable artifacts, while XPortrait shows
misalignment in pose compared to the target. Although
Portrait4D and LivePortrait achieve relatively good results,
there are inconsistencies in the expression, particularly in
the eye and mouth regions, when compared to the target.
In contrast, our method produces more consistent results,
achieving better alignment with the target in both pose and
expression.

For the cross-reenactment, our source images are from
non-realistic domains, while the target expressions are
extracted from real-human domains. We observe that both
InvertAvatar and Portrait4D struggle to handle portraits that
significantly differ from real-human domains effectively.
InvertAvatar tends to exhibit severe geometric distortions
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XPortraitLivePortraitInput Ours InvertAvatar Portrait4Dv2

4D Methods 2D Methods

Figure 6. Qualitative comparison with SOTA methods. The leftmost column in the figure shows the input images, with the bottom-right
corner representing the target image. The first row displays the results of self-reenactment, while the following three rows show the results
of cross-reenactment. It can be observed that our method achieves superior performance in terms of expression and pose consistency, as
well as identity preservation.

Table 1. Quantitative evaluation of state-of-the-art methods and our approach on the VFHQ dataset [70]. For self-reenactment, both the
source and target images are from the VFHQ dataset. For cross-ID reenactment, the source images are generated from different domains,
while the target motions are from VFHQ. ↓ indicates lower is better while ↑ indicates higher is better. Red highlights the best result, and
Blue highlights the second-best result.

Method Self reenactment Cross reenactment
LPIPS ↓ FID ↓ ID ↑ AED ↓ APD ↓ FID ↓ CLIP ↑ AKD ↓ APD ↓

LivePortrait [20] 0.27 46.49 0.65 0.025 4.28 100.3 0.91 4.92 139.35
XPortrait [71] 0.31 60.29 0.63 0.036 18.07 78.6 0.89 10.67 237.4

InvertAvatar [84] 0.42 84.71 0.32 0.049 15.58 194.7 0.64 20.78 134.9
Portrait4Dv2 [15] 0.29 66.60 0.58 0.034 5.08 140.5 0.75 7.13 63.3

Ours 0.26 52.62 0.69 0.032 11.72 89.3 0.84 2.58 52.3

and fails to adequately animate the source image. Por-
trait4D, on the other hand, suffers from identity leakage
and generates content that lacks precision. While 2D-based
methods preserve the identity of the input image, they fail
to ensure that the pose aligns with the target image. In
contrast, our method demonstrates exceptional performance
when handling non-realistic domains, achieving good ac-
curacy in both expression and pose consistency, as well as
identity preservation.

4.3. Quantitative Results

The quantitative results are summarized in Table 1. We
evaluate our method on 100 VFHQ video clips[70] through
self-reenactment and cross-reenactment tests. For self-
reenactment, the source image is either the first frame
or a random intermediate frame from the video, while
for cross-reenactment, we use 50 source images from
different domains with target images from VFHQ. To

10764



Table 2. Ablaiton study on the FFHQ [26] dataset. The source
images are generated from different domains, while the target
images are from FFHQ. The Next3D rendering means replacing
our render model with simple CNN.

Method Cross reenactment
FID ↓ CLIP ↑ AKD ↓ APD ↓

Next3D render 130.72 0.73 5.89 42.93

Ours 68.69 0.86 2.56 40.89

Input w/o ControlNetw/o SDEdit Full

A 3D render of a stone golem head in fantasy movie

A 3D render of a face in Pixar style

Figure 7. Visualization of ablation study on data generation
methods. It is only when combining SDEdit and ControlNet
that we can ensure the generated images retain both the same
expression and pose as the original images. The corresponding
prompts are shown above images.

assess image quality, we compute LPIPS[81] and FID[22].
Identity consistency is measured using the ID metric[12] for
self-reenactment and CLIPScore[53] for cross-reenactment,
as the ID metric is unreliable for non-human domains.
Expression accuracy is evaluated with Average Expres-
sion Distance (AED)[35] for self-reenactment and Average
Keypoint Distance (AKD)[40] for cross-reenactment, as
3DMM struggles with non-realistic humans. Additionally,
Average Pose Distance (APD) is used to assess pose con-
sistency, with pose information extracted using[21]. As
shown in Table 1, our method performs slightly worse than
2D approaches in self-reenactment, but remains comparable
while surpassing 4D methods in overall effectiveness. In
cross-reenactment, although 2D methods better preserve
identity, our approach achieves higher accuracy in capturing
pose and expression, demonstrating the advantages of 4D-
based techniques.

4.4. Ablation Study
We analyze the impact of different data generation pipelines
and the performance of each module in our model.

Effectiveness of Different Data Generation Methods.As
shown in Figure 7, the leftmost column presents the input
images, all from the realistic domain. Without SDEdit,
ControlNet provides some control over expressions, but
the generated results still deviate significantly from the
originals (w/o SDEdit). When using only SDEdit without
ControlNet, the results preserve the pose, but the expres-
sions still show noticeable discrepancies (w/o ControlNet).

Input Next3D renderer Ours

Figure 8. Visualization of ablation study on motion-aware cross-
domain renderer. The Next3D rendering approach involves using
a CNN as a replacement for our render model.

By combining ControlNet and SDEdit, we achieve images
that maintain both the expression and pose of the original,
while shifting entirely to a different domain (Full). This
enables the reuse of 3DMM data from the realistic domain
to train 4DGANs in various domains.

Effectiveness of Models. We design the motion-aware
cross-domain renderer to better capture the appearance
information from the original image, thereby enhancing
fidelity. Additionally, since 3DMM is not perfectly ac-
curate, we incorporate motion embedding to assist in the
animation process. As shown in Figure 8, we replaced our
renderer with a CNN similar to the one used in Next3D.
The results exhibited significant identity leakage (i.e., facial
artifacts resembling the target subject’s mesh), and the
generated expressions did not accurately match the target
(e.g., eye regions in the second row). In contrast, our
method better preserves the source identity, and the implicit
motion embedding effectively corrects motion inaccuracies
from the mesh. The corresponding quantitative metrics in
Table 2show that our approach outperforms all compared
methods across all evaluated metrics.

5. Conclusion
We propose AvatarArtist, a 4D avatar generation model
for open-domain inputs. We use a parameterized triplane
as a 4D representation and employ 4D GANs to build an
open-domain image-triplane dataset. Specifically, a 2D
diffusion model generates images from various domains,
which train domain-specific 4DGANs to produce data for
our model. Our model consists of DiT and a motion-aware
cross-domain renderer. DiT converts the input image into a
parameterized triplane, while the renderer refinement mod-
ule synthesizes and optimizes results. Experiments show
that AvatarArtist effectively handles open-domain inputs,
successfully transferring target motion while preserving
appearance and geometric consistency.
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