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Abstract

Recently, state space models (SSM), particularly Mamba,
have attracted significant attention from scholars due to
their ability to effectively balance computational efficiency
and performance. However, most existing visual Mamba
methods flatten images into 1D sequences using predefined
scan orders, which results the model being less capable of
utilizing the spatial structural information of the image dur-
ing the feature extraction process. To address this issue,
we proposed a novel visual foundation model called Def-
Mamba. This model includes a multi-scale backbone struc-
ture and deformable mamba (DM) blocks, which dynami-
cally adjust the scanning path to prioritize important infor-
mation, thus enhancing the capture and processing of rele-
vant input features. By combining a deformable scanning
(DS) strategy, this model significantly improves its abil-
ity to learn image structures and detects changes in ob-
ject details. Numerous experiments have shown that Def-
Mamba achieves state-of-the-art performance in various vi-
sual tasks, including image classification, object detection,
instance segmentation, and semantic segmentation. The
code is open source on DefMamba .

1. Introduction

Most existing visual foundation models primarily rely
on convolutional neural networks (CNNs) [25, 28, 32] and
Transformer architectures [9, 24, 33]. However, CNNs are
constrained by their sliding window structure, which limits
the receptive field and significantly impedes global infor-
mation aggregation across the input data. In contrast, Trans-
formers excel in global information aggregation due to their
attention mechanism, but their high computational com-
plexity poses a challenge in achieving a balance between
efficiency and performance. State space models (SSMs)
[12] provide a potential solution to this trade-off. SSMs
aggregate previous features through a hidden state matrix to
update current features, thereby reducing the computational
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Figure 1. Comparison of deformable scanning and other scanning
methods. (a) Raster scanning [23, 47], (b) Local scanning [19],
(c) Continuous scanning [42], (d) Our designed deformable scan-
ning. The blue dots represent the reference points, and the red
dots represent the deformable points. The yellow arrows represent
the fixed scan order, and the red gradient arrows represent the de-
formable scan order. Our method exhibits an enhanced capacity to
accurately capture the structural characteristics of objects, thereby
enabling the development of a more refined scanning approach.

complexity to a linear relationship with the sequence length.
Although SSMs process sequences in a recurrent manner,
SSMs can perform calculations on sequences in parallel af-
ter simplification. Despite these advantages, SSMs strug-
gle to capture long-range dependencies due to the lack of
content-aware perception in the state matrix update process.

Recently, Mamba [11] proposes an improved selec-
tion mechanism designed to optimize the training process
of SSMs. This innovative mechanism introduces content
awareness into the feature extraction pipeline, expands the
effective receptive field, and achieves remarkable perfor-
mance enhancements in various NLP tasks. Consequently,
numerous studies have attempted to extend this approach to
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the broader field of computer vision [1–4, 10, 22, 30, 40,
43, 46]. The principal challenge in this endeavor is how to
effectively map 2D image feature maps into 1D sequences,
without losing essential information. Most existing meth-
ods employ predefined strategies for mapping, such as raster
scanning [23, 47], local scanning [19], and continuous scan-
ning [42]. However, as illustrated in Figure 1, these meth-
ods all rely on a fixed scanning path. This results in adjacent
tokens no longer being adjacent after flattening. Thereby,
they neglect the inherent spatial structure of the image, lead-
ing to the loss of structural information. To address this
issue, QuadMamba [39] determines the scanning window
size based on the amount of information contained in differ-
ent areas of the image. However, the scanning order in each
window is fixed. This leads to an incomplete solution of the
aforementioned issues. GrootV [38] adaptively constructs
a tree topology based on input features and subsequently
extracts features from this topology. Nevertheless, it em-
ploys only adjacent features in constructing the topology
and distributes attention uniformly across the patch. The
aforementioned methods are either based on a fixed scan-
ning order, leading to the loss of structural information, or
treat the information in the perception area equally, result-
ing in insensitivity to variations in object details.

To solve this problem, we proposed a novel frame-
work called DefMamba inspired by deformable mecha-
nisms [6, 36]. However, intuitively applying deformable
mechanisms to SSMs still causes structural information
loss and increases computational complexity. Therefore,
we proposed a deformable state space model and a de-
formable scanning strategy (DS) to prioritize deformable
tokens based on essential information and slide reference
points towards the important area. This approach enables
the SSMs to capture and process relevant features related to
the input more effectively. Specifically, we shifted the ref-
erence point by the generated offset from a fixed position
to an adjustable one that provided more useful information,
thereby facilitating the awareness of changes in object de-
tails. On the other hand, we also dynamically adjusted the
scanning order by the offset vector for obtaining a structure-
aware sequence. In this way, our framework adaptively per-
ceives the variations in object details to find the most suit-
able feature points, and determines the optimal scanning or-
der consistent with the object structure based on the input
image features.

We conducted extensive experiments to validate the ef-
fectiveness of DefMamba across multiple visual bench-
marks, including image classification on ImageNet [8], ob-
ject detection and instance segmentation on COCO [21],
and semantic segmentation on ADE20K [45]. These results
demonstrate that our method outperforms existing SSMs
based approaches on all benchmarks and remains competi-
tive with CNN and transformer-based methods.

2. Related Work

2.1. Mamba for Visual Applications

Numerous studies have successfully integrated Mamba
[11] into visual tasks [19, 23, 27, 29, 31, 38, 39, 42, 47],
demonstrating preliminary achievements. ViM [47] intro-
duces a bidirectional scanning approach to transform 2D
image into 1D sequences, which are then fed into SSM
for global context modeling, marking the first integration
of Mamba into visual tasks. VMamba [23] employs a four-
way scanning algorithm to convert 2D image into 1D se-
quences. PlainMamba [42] modifies the scanning method
from raster to continuous, preserving the spatial dependen-
cies of the image. MSVMamba [31] downsamples the se-
quence based on four scans to reduce computational redun-
dancy and mitigates the issue of information loss. GrootV
[38] constructs a minimum spanning tree on a four-way
plane graph using the differences between adjacent features,
dynamically adjusting the scanning order according to dif-
ferent inputs. QuadMamba [39] adaptively adjusts the win-
dow granularity during the scanning process based on the
information content of the image to better aggregate local
information. While GrootV and QuadMamba can adapt
their scanning methods based on input data, GrootV only
considers the relationships between adjacent elements when
generating the minimum spanning tree, neglecting global
information. On the other hand, QuadMamba still relies on
predefined scanning methods and does not achieve true dy-
namic scanning. In contrast, our DefMamba introduces a
content-aware deformable scanning strategy that allows the
network to dynamically learn the scanning order and the
reference points position.

2.2. Deformable CNNs and Attention Mechanism

Deformable convolution [6, 20, 41, 48] employs a con-
volution kernel that adapts to geometric variations in the in-
put feature map, thereby overcoming the limitations of tra-
ditional convolution, which performs poorly when dealing
with complex targets. Recently, the deformable mechanism
has been extended to visual transformers [9] to enhance
their ability to capture local features and adapt to geomet-
ric variations. DPT [5] proposes an adaptive patch embed-
ding method that dynamically adjusts the position and size
of patches while preserving their semantic information. PS-
ViT [44] introduces a progressive sampling module prior to
ViT [9], which iteratively identifies the most suitable de-
formable point positions for the current image. DAT [36]
integrates the deformable mechanism with the self-attention
mechanism in Transformers for the first time, incorporat-
ing deformable attention into the visual backbone. This ap-
proach learns a set of features corresponding to global key-
points and adapts to spatial variations. Previous approaches
have explored various ways to effectively incorporate de-
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Figure 2. Overview of DefMamba. (a) depicts the overall architecture of our network. (b) illustrates the structure of the deformable Mamba
block. LN means LayerNorm and FFN is a feed-forward network.

formable mechanism into transformer architectures. With
the recent popularity of Mamba [11], we attempted to in-
troduce deformable mechanism into Mamba. However, di-
rectly applying these mechanism has resulted in issues like
the loss of structural information and the necessity for ad-
ditional modules. In this context, our designed DS strat-
egy stands out by effectively prioritizing deformable tokens
while directing reference points toward key areas.

3. Method
In this section, we first summarized the SSMs in Section

3.1. Then, in Section 3.2, we described the overall struc-
ture of the proposed network. Section 3.3 introduces a De-
formable State Space Model (DSSM). Finally, Section 3.4
presents the designed model configurations across multiple
scales.

3.1. Preliminaries
SSMs, including notable implementations like S4 [12]

and Mamba [11], are structured sequence architectures that
combine elements of recurrent neural networks (RNNs) and
CNNs, enabling linear or near-linear scaling with respect to
sequence length. These models, derived from continuous
systems, define a 1D function-to-function map for an input
u(t) ∈ RL to an output y(t) ∈ RL through a hidden state
h(t) ∈ RN . Where t represents time. More formally, SSMs
are characterized by the continuous-time Ordinary Differ-
ential Equation (ODE) [11] presented:

h′(t) = Ah(t) +Bu(t),

y(t) = Ĉh(t),
(1)

where h(t) is the current hidden state. h′(t) is the updated
hidden state. u(t) is the current input. y(t) is the output.
A ∈ RN×N is SSM’s evolution matrix, and B ∈ RN×1,
Ĉ ∈ R1×N are the input and output projection matrices,
respectively.

To enable the application of SSMs in sequence model-
ing tasks within deep learning, they must be discretized,

transforming the SSM from a continuous-time function-
to-function map into a discrete-time sequence-to-sequence
map. S4 [12] and Mamba [11] are examples of dis-
crete adaptations of the continuous system, incorporating a
timescale parameter ∆ to convert the continuous parameters
A, B into their discrete counterparts Ā, B̄. This discretiza-
tion is typically achieved using the Zero-Order Hold (ZOH)
[11] method:

Ā = exp(∆A),

B̄ = (∆A)−1(exp(∆A)− I) ·∆B,

ht = Āht−1 + B̄ut,

yt = Cht.

(2)

While both S4 [12] and Mamba [11] employ a similar
discretization process as outlined in Equation 2, Mamba
distinguishes itself from S4 by conditioning the parameters
∆ ∈ Rb×L×D, B ∈ Rb×L×N , and C ∈ Rb×L×N on the
input u ∈ Rb×L×D through the S6 Selective Scan Mecha-
nism. Here, b represents the batch size, L denotes the se-
quence length, and D signifies the feature dimension.

3.2. Overall Model Architecture
DefMamba uses a common multi-scale backbone struc-

ture similar to many CNNs [25, 28] and Transformers [24].
As illustrated in Figure 2(a), the image I ∈ RH×W×3 is
first divided into patches through a patch embedding layer,
which produces a 2D feature map with spatial dimensions
H/4×W/4 and channel dimensions C. Subsequently, mul-
tiple network stages are used to create hierarchical represen-
tations of dimensions H/8×W/8×2C, H/16×W/16×4C,
and H/32×W/32× 8C. Each stage consists of a stack of
Deformable Mamba (DM) blocks followed by a downsam-
pling layer (except the fourth stage). Finally, the features
are average-pooled and sent to the classification head to ob-
tain the prediction results. In particular, we followed [38]
and used overlapping forms in the patch embedding layer
and the downsampling layers. For specific structural de-
tails, please refer to the Appendix.
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Figure 3. Illustration of Deformable State Space Model. (a) illustrates the processing flow of the deformable state space model for feature
extraction. (b) depicts the processing flow of the deformable scan. The upper part primarily shifts the feature points to enable the model
to focus on more salient regions, while the lower part shifts the token positions to facilitate the discovery of a scanning order that is better
suited to the current input. To clearly illustrate the process, only nine points are depicted in the figure, however, the actual processing
involves a greater number of points. (c) presents the detailed structure of the offset network.

Different from the Mamba structure used in language
models [11], the DM block follows the popular structure of
the Transformer block [9, 24], which consists of two Layer
Norm (LN) layers, an FFN, a DSSM (to be introduced in the
following subsection) and residual connections, as shown in
the Figure 2(b).

3.3. Deformable State Space Model
The overall architecture of the deformable state space

model is presented in Figure 3(a). Inspired by [23, 31, 38],
we employed depthwise convolution to replace the original
1D convolution in the vision mamba block [47] and incor-
porated a deformable branch comprising a deformable scan-
ning and a deformable SSM (DSSM). We maintained the
standard forward and backward branches to ensure stable
model convergence, as our method introduces more spatial
token jumps compared to previous scanning methods, po-
tentially complicating model training and learning. Subse-
quent experiments validate this (Table 4).
Deformable Scanning. Given the issue of mutual interfer-
ence between multiple deformable points, we constrained
the offset of the deformable points in a certain range. This
ensures the relationship between deformable points and ref-
erence points remains invariant, allowing us to approximate
the relationship after deformation using the relationship be-
fore deformation. Furthermore, considering the simplicity
of the computation, we employed a parallel approach to si-
multaneously adjust the reference points and scanning or-
der, thereby reducing the computational burden. The spe-
cific structure is illustrated in the Figure 3(b).

Given an input feature x ∈ RH×W×C , where C denotes

the channel dimension and H,W represent the spatial res-
olution. We first generated the offset o ∈ RH×W×3 using
a subnetwork that utilizes x to output the offset values o for
the reference point and the reference token.

We initially implemented the subnetwork as depicted in
Figure 3(c). The input features are first processed through
a K × K depthwise convolution to capture local features.
Subsequently, GELU, Layer Normalization (LN), and a
1×1 convolution are employed to derive the offset values,
which encompass three dimensions in total. The first two
dimensions represent the offset of the reference point in
two-dimensional space, while the third dimension signi-
fies the offset of the reference token index within the entire
patch. During our experiments, we observed that the offset
of the token necessitates global perception of the features
within the patch, which cannot be achieved solely through
convolution. In light of this, and considering the previous
method’s findings [29, 31] that mamba has redundancy in
the channel dimension, we incorporated a Channel Atten-
tion (CA) mechanism [18] following the depthwise convo-
lution layer. This mechanism mitigates channel redundancy
and facilitates the integration of global contextual informa-
tion. Notably, following the configuration of DAT [36], we
set K to [9, 7, 5, 3] across four stages and omitted the bias
in the 1×1 convolution.

To stabilize the training process, we employed the tanh
function to mitigate the impact of extreme values in o,
where ô = tanh(o). Subsequently, we split ô to 2 parts
along the channel dimension, one with 2 channels and one
with 1 channel, to obtain the point offset ∆p and token in-
dex offset ∆t. As previously mentioned, we needed to fur-
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Method Type #Param. #FLOPs
Top-1
Acc.

RegNetY-800M [28] C 6M 0.8G 76.3
GhostNet 1.3× [13] C 7M 0.2G 75.7
DeiT-Ti [33] T 6M 1.3G 72.2
ViM-T [47] S 7M 1.5G 76.1
EffVMamba-T [27] S 6M 0.8G 76.5
LocalVim-T [19] S 8M 1.5G 76.2
PlainMamba-L1 [42] S 7M 3.0G 77.9
MSVMamba-N [31] S 7M 0.9G 77.3
QuadMamba-Li [39] S 5M 0.8G 74.2
DefMamba-T S 8M 1.2G 78.6

RegNetY-4G [28] C 21M 4.0G 80.0
ConvNeXt-T [25] C 29M 4.5G 82.1
Conv2Former-T [17] C 27M 4.4G 83.2
DeiT-S [33] T 22M 4.6G 79.8
Swin-T [24] T 29M 4.5G 81.3
CoAtNet-0 [7] T 25M 4.0G 81.6
CrossFormer-S [35] T 31M 4.9G 82.5
ViM-S [47] S 26M 5.1G 81.0
VMamba-T [23] S 22M 5.6G 82.2

Method Type #Param. #FLOPs
Top-1
Acc.

LocalVim-S [19] S 28M 4.8G 81.2
LocalVMamba-T [19] S 26M 5.7G 82.7
EffVMamba-B [27] S 33M 4.6G 83.0
MSVMamba-T [31] S 33M 4.6G 82.8
PlainMamba-L2 [42] S 25M 8.1G 81.6
GrootV-T [38] S 30M 4.8G 83.4
QuadMamba-S [39] S 31M 5.5G 82.4
DefMamba-S S 32M 4.8G 83.5

ConvNeXt-S [25] C 50M 8.7G 83.1
Conv2Former [17] C 50M 8.7G 84.1
Swin-S [24] T 50M 8.7G 83.0
CoAtNet-1 [7] T 42M 8.0G 83.3
CrossFormer-B [35] T 52M 9.2G 83.4
VMamba-S [23] S 50M 8.7G 83.6
LocalVMamba-B [19] S 50M 11.4G 83.7
PlainMamba-L3 [42] S 50M 14.4G 82.3
GrootV-S [38] S 51M 8.5G 84.2
QuadMamba-B [39] S 50M 9.3G 83.8
DefMamba-B S 51M 8.5G 84.2

Table 1. Image classification performance on ImageNet-1K validation set. C, T and S indicate the model type of CNNs, Transformer and
SSM. The best results are shown in bold font.

ther constrain ∆p, in order to stabilize training and simplify
the structure. We divided the horizontal and vertical dimen-
sions of ∆p by W and H , respectively, thereby limiting the
offset to the range of a single token. The detailed process is
outlined as follows:

∆p,∆t = Split(tanh(Offset(x)), dims = [2, 1]),

∆̂p = Norm(∆p).
(3)

Then, we sent the point offset ∆̂p, token index offset
∆t, and input feature x to the point offset branch and index
branch, to obtain the final output, respectively.
Point Offset. To obtain feature representations that are
more sensitive to changes in objects, we dynamically
adapted the network’s reference points to deformable points
that contain more relevant information based on the input.
Firstly, we generated reference points p ∈ RH×W×2. The
values in p correspond to the two-dimensional coordinates
of points ranging from (0, 0) to (H − 1, W − 1). To sim-
plify network calculations, we normalized p from its origi-
nal range to [-1, 1], where [-1, 1] represents the point in the
upper left corner and [1, 1] represents the point in the lower
right corner. We then added the reference point p and the
offset to obtain the deformable point p̂ = p+∆p. Since the
offset p̂ contains a decimal part, it cannot be used directly.
Therefore, we used bilinear interpolation to extract features
at the spatial position corresponding to the offset point p̂
from the input x.

When our model performs point offset, the features will
move in space, potentially causing the position encoding
added in the initial stage to become ineffective and thereby

decreasing model performance. To address this, we de-
signed an offset bias based on the relative position encod-
ing in the Swin Transformer. Specifically, given the feature
map of size H × W , the relative coordinate displacement
of points lies within the range of [−H,H] and [−W,W ] in
two dimensions, respectively. Therefore, we set a learnable
relative offset bias matrix R ∈ R(2H−1)×(2W−1). However,
considering that such a matrix would result in a significant
increase in parameter count, we performed a downsampling
operation on this matrix to obtain R ∈ RH×W . At the same
time, we divided the point displacement by 2 to accommo-
date this change. Then we used the point displacement to
calculate the corresponding compensation by interpolating
on R. Finally, this compensation is added to the interpo-
lated features. The specific process is as follows:

p̂ = p+∆p,

x̂ = ϕ(x, p̂) + ϕ(R, p̂),
(4)

where ϕ(x, p̂) represents the use of bilinear interpolation
function to extract the feature corresponding to position p̂
on x.
Index Offset. We modified the scanning order to enable
the model to perceive the structure of the input object ef-
fectively by varying the reference token index and the de-
formable token index. We initially generated the reference
token index tr ∈ RN×1, where N = H×W . The values in
t indicate the token positions within the current patch, rang-
ing from 0 to N−1. To simplify network computations, we
normalized tr from its original range to [-1, 1]. This enables
us to compute the deformable token index td = tr + ∆t.
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Mask R-CNN 1× schedule
Backbone #FLOPs APb APb

50 APb
75 APm APm

50 APm
75

ResNet-50 [15] 260G 38.2 58.8 41.4 34.7 55.7 37.2
Swin-T [24] 267G 42.7 65.2 46.8 39.3 62.2 42.2
ConvNeXt-T [25] 262G 44.2 66.6 48.3 40.1 63.3 42.8
PVTv2-B2 [34] 309G 45.3 67.1 49.4 41.2 64.2 44.4
VMamba-T [23] 286G 47.4 69.5 52.0 42.7 66.3 46.0
LocalVMamba-T [19] 291G 46.7 68.7 50.8 42.2 65.7 45.5
QuadMamba-S [39] 301G 46.7 69.0 51.3 42.4 65.9 45.6
MSVMamba-T [31] 252G 46.9 68.8 51.4 42.2 65.6 45.4
GrootV-T [38] 265G 47.0 69.4 51.5 42.7 66.4 46.0
DefMamba-S 268G 47.5 69.6 51.7 42.8 66.3 46.2

Table 2. Object detection and instance segmentation performance
on MSCOCO 2017 val set. All using Mask R-CNN framework.
APb and APm indicate the mean Average Precision (mAP) of de-
tection and segmentation, respectively

Since the derived td contain decimal components, they can-
not be utilized directly. Consequently, for td, we applied a
sorting algorithm to determine the indices post-offset based
on the magnitude of their values. Finally, we transformed
the offset features x̂ into a 1D sequence according to these
indices, thereby obtaining a content-adaptive image feature
sequence. It is important to note that the sorting algorithm
truncates gradients, rendering the network untrainable. To
address this, we averaged the gradients of the final image
sequence across the dimension and replicate them to ∆t to
approximate the gradient of the scanning order offset.

4. Experiments

4.1. Image Classification
Settings. The image classification experiments are con-
ducted using the ImageNet-1K [8] dataset, which comprises
over 1.28 million training images and 50,000 validation im-
ages across 1,000 categories. Our training setup closely fol-
lows the methodology of previous practices [23, 31, 38],
incorporating various data augmentations such as random
cropping, random horizontal flipping, label-smoothing reg-
ularization, mixup, autoaugment, and random erasing. The
models are trained for 300 epochs using the AdamW [26]
optimizer with a cosine decay learning rate scheduler, in-
cluding a 20-epoch warm-up period. The total batch size is
set to 1,024, with the models trained on 8× A800 GPUs.
The optimizer parameters are configured with betas set to
(0.9, 0.999), momentum set to 0.9, an initial learning rate
of 1× 10−3, a weight decay of 0.05, and Exponential Mov-
ing Average (EMA).
Results. Table 1 presents a comparison of our proposed
DefMamba models (T, S, B) with various state-of-the-
art (SOTA) methods. Specifically, DefMamba-T achieves
78.6% Top-1 Acc., outperforming CNNs based RegNetY-
800M [28] and transformer based DeiT-Ti [33] by 2.3%
and 6.4%, respectively. Moreover, DefMamba-T outper-
formes the recently introduced SSMs models, achieving
2.5%, 2.4%, and 1.3% higher performance than ViM-T

ADE20K with crop size 512

Backbone mIOU
(SS)

mIOU
(MS) #Param. #FLOPs

ResNet-50 [15] 42.1 42.8 67M 953G
Swin-T [24] 44.5 45.8 60M 945G
ConvNeXt-T [25] 46.0 46.7 60M 939G
NAT-T [14] 47.1 48.4 58M 934G
Vim-S [47] 44.9 - 46M -
LocalVim-S [19] 46.4 47.5 58M 297G
VMamba-T [23] 47.9 48.8 62M 949G
PlainMamba-L2 [42] 46.8 - 55M 285G
LocalVMamba-T [19] 47.9 49.1 57M 970G
MSVMamba-T [31] 47.6 48.5 65M 942G
QuadMamba-S [39] 47.2 48.1 62M 961G
GrootV-T [38] 48.5 49.4 60M 941G
DefMamba-S 48.8 49.6 65M 946G

Table 3. Semantic segmentation performance on ADE20K val set.
The crop size is all set to 5122. SS and MS denote single-scale
and multi-scale testing, respectively.

[47], LocalViM-T [19], and MSVMamba-N [31] in terms
of parameter and computational complexity. Moreover, it
reduces the computational burden by 60% while achieving
a performance improvement of 0.7% over PlainMamba-L1
[42]. DefMamba-S achieves 83.5% Top-1 Acc., surpassing
GrootV-T [38] and EfficientVMamba-B [27]. Furthermore,
DefMamba-B achieves an accuracy of 84.2%, exceeding
VMamba-S [23] by 0.6%, demonstrating the effectiveness
of our methods.

4.2. Object Detection
Settings. We evaluated DefMamba on the MSCOCO 2017
dataset [21] using the Mask R-CNN framework [16] for ob-
ject detection and instance segmentation tasks. Following
prior works [24, 31, 38], we utilized backbones pretrained
on ImageNet-1K for initialization. We employed standard
training strategies, including 1 × (12 epochs) with Multi-
Scale (MS) training, to ensure a fair comparison.
Results. As depicted in Table 2, our method outperforms
existing methods on most evaluation metrics. Specifically,
under 1× schedule, DefMamba-S achieves 47.5 in box
mAP (APb) and 42.8 in mask mAP (APm). Our model sur-
passed ResNet-50 [15], Swin-T [24] and ConvNeXt-T [25].
At the same time, our method improved APm by 0.6 points
compared to LocalVMamba-T [19] and QuadMamba-S
[39]. Furthermore, our method exhibited comparable per-
formance to the previous SOTA method, VMamba-T [23],
while reducing the computational load by 4%.

4.3. Semantic Segmentation
Settings. To evaluate the semantic segmentation perfor-
mance of DefMamba, we trained our models using Uper-
Net [37] initialized with pre-trained classification weights
on ADE20K [45] for 160,000 iterations. We employed the
AdamW optimizer [26] with a learning rate set at 6× 10−5.
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Index FB-BB CB [42] LB [19] DB #Param. #FLOPs Top-1
(1)

√
7.3M 1.1G 76.9

(2)
√

8.1M 1.1G 76.5
(3)

√ √
7.5M 1.1G 77.3

(4)
√ √

7.5M 1.1G 77.1
(5)

√ √
8.3M 1.2G 78.6

Table 4. Comparisons with the different scanning branches in the
setting of tiny model size. DB means our deformable branch. The
best results are shown in bold font.

Index DP DT OB CA #Param. #FLOPs Top-1
(1) 7.5M 1.1G 77.0
(2)

√
7.5M 1.2G 77.4

(3)
√

7.5M 1.2G 77.2
(4)

√ √
7.5M 1.2G 77.9

(5)
√ √ √

8.2M 1.2G 78.2
(6)

√ √ √ √
8.3M 1.2G 78.6

Table 5. Comparisons with the different components of proposed
deformable scanning in tiny model size settings on ImageNet-1k.
The best results are shown in bold font.

Our experiments are primarily conducted using a default in-
put resolution of 512 × 512. Additionally, we incorporated
Multi-Scale (MS) testing to assess performance variations.
Results. The DefMamba-S model demonstrates favorable
performance in semantic segmentation compared to vari-
ous SOTA methods, as presented in Table 3. DefMamba-
S achieves a mIOU of 48.8 in single-scale and 49.6
in multi-scale evaluation. This outperforms ResNet-50
[15], Swin-T [24], and ConvNeXt-T [25]. Additionally,
DefMamba-S exceeds the performance of the recent SSM
methods, including GrootV-T [38], QuadMamba-S [39] and
MSVMamba-T [31]. Our method achieves improvements
of 0.3 points, 1.6 points, and 1.2 points, respectively, on the
single-scale mIoU metric.

4.4. Ablation Study

Effect of the Proposed DSSM Structure. To give the
evidence for the effectiveness of the proposed deformable
branch, we conducted a series of experiments over different
branch settings in Table 4. As shown in Table 4, FB-BB
refers to the forward and the backward branches for feature
extraction. CB represents continuous scanning [42] branch.
LB is local scanning [19] branch and DB denotes our pro-
posed deformable branch in Figure 2 (a). By comparing the
results in Table 4 (1) and (5), we observed that the proposed
deformable branch significantly increased the accuracy of
the ImageNet dataset by 1.7% within a reasonable compu-
tational budget, to demonstrate the effectiveness of the pro-
posed deformable branch. Moreover, compared with Table
4 (3), (4) and (5), our method only increased the compu-
tational cost by 0.1G, while significantly improving the ac-
curacy on ImageNet dataset by 1.4%. This further demon-

Image RS DS RS DS

Figure 4. Visualization of activation maps in the specific position.
The position is marker by red and orange point. RS stands for
raster scanning, DS stands for our deformable scanning.

strates that our deformable scanning approach, as opposed
to other fixed scanning methods, is more capable of captur-
ing structural information of objects and enhancing model
performance. From Table 4 (1) and (2), we noted that incor-
porating only the proposed deformable branch would lead
to a decrease in performance due to the increased spatial
token jumps. To achieve more stable training and higher
model performance, we adhered to the previous paradigm
by combining the FB-BB and DB in our proposed model.
Effect of the Deformable Scanning Components. To
thoroughly evaluate the contributions of each component
in our proposed deformable scanning method, we con-
ducted an ablation study in Table 5. As shown in Ta-
ble 5, DP, DT, OB and CA represent the components
of the deformable scanning in Figure 2 (b), respectively.
DP (Deformable Points) involves the process of generat-
ing deformable points, which includes initializing reference
points, an offsets network and a bilinear interpolation. DT
(Deformable Tokens) refers to the process of dynamically
changing the token order based on predicted offsets, which
includes initializing token index and deformable token in-
dex, as well as an offsets network. OB represents the op-
eration of generating offset bias. CA denotes channel at-
tention operation in the offset network. By comparing the
results in Table 5 (1), (2) and (3), we observed that adding
either the DP operation or the DT operation boosting the
baseline (1) performance by 0.2-0.4%, with only a minor
increases in computational costs (0.1G), demonstrated that
the effectiveness of both DP and DT. Moreover, when com-
bining both DP and DT operations (4), the performance fur-
ther improves by 1% compared to the baseline, as shown
in Table 5 (1) and (4). These results strongly prove that
whether adding DT or DP individually, or combining both,
the model can better learn the structure of images and facili-
tate the awareness of changes in object details, thus improv-
ing performance. Furthermore, we run ablation experiments
to confirm the effectiveness of OB and CA by comparing
Table 5 (4) and (5), and Table 5 (5) and (6), respectively.
The experiments validate the effectiveness of our methods.
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(a) Deformable points (b) Raster token index (c) Deformable token index

Figure 5. Visualization of deformable points and deformable token
index. In (a), the orange dots represent deformable points, the
green dots represent reference points, and the red arrows represent
the offset path of the points. In (b) and (c), the gradient from
yellow to green represents the scanning path, with the yellow dots
being scanned first and the green dots being scanned later.

Visualization Results. To better demonstrate the superi-
ority of our deformable scanning strategy, we present the
activation maps of images at different positions for various
methods in Figure 4, marked clearly by red and orange dots
in the image. Specifically, we visualized the activation map
corresponding to the final layer of the second stage using the
method outlined in [23]. As illustrated in the activation map
of the pen in the last line of Figure 4, our method demon-
strates an enhanced ability to focus on the structural and
shape information of objects, even when dealing with com-
plex scenes that contain multiple overlapping objects. This
capability allows for more precise recognition and segmen-
tation, further highlighting the effectiveness of our approach
in capturing essential details.

We also visualized the deformable points and de-
formable token index to intuitively demonstrate the per-
formance of our method, as shown in the Figure 5. In
the red box of Figure 5 (a), we can observe that some fo-
cus points outside the object shift towards the object, Such
movements allow the network to attend to more object in-
formation. Compared with Figure 5 (b), our method (c) ad-
justs the scanning order to emphasize important tokens. For
example, as shown in the first row of the Figure 5, the token
corresponding to the snake’s head is shifted from the mid-
dle position in a raster scan to being the first position in our
method. Such offsets are beneficial for the network to learn
relevant features.

5. Limitation
Despite the strong results of our approach, there is still

a limitation. In cases where the image contains incomplete
object structures or multiple objects arranged in a regular
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Incomplete objects

Regularly spaced objects

Figure 6. Failure cases. The blue dots represent deformable points,
while the black arrows indicate the scanning order after deforma-
tion.

pattern, the deformable scanning strategy may be less effec-
tive. As illustrated in Figure 6, when the image shows only
a portion of a baseball, the deformable mechanism does not
capture complete structural information, resulting in offsets
that are too small and converge towards the predefined scan-
ning method. Meanwhile, when multiple objects are ar-
ranged according to a certain rule, the information variation
between adjacent tokens is minimal. Results in the model
remaining in an indolent learning process.

6. Conclusion

In this work, we made efforts to tackle the challenge
arising from existing Mamba-based methods, which rely on
fixed scanning techniques to extract features. These meth-
ods do not fully leverage the spatial structure information
inherent in images. To overcome this limitation, we pro-
posed a novel foundation model named DefMamba, which
is grounded in DS. This innovative model aims to enhance
the capability of the network to learn and represent com-
plex image structures, as well as to detect subtle changes
in object details. The DS principally comprises two key
operations: the shifting of focus points and the alteration
of the scanning order. The first operation effectively repo-
sitions reference points toward significant regions of inter-
est, thereby enhancing the model’s sensitivity to variations
in object details. The second operation modifies the scan-
ning order to create a structure-aware sequence that is better
aligned with the underlying object structure based on the in-
put features. Extensive experimental evaluations on bench-
mark datasets, including ImageNet, COCO, and ADE20K,
robustly demonstrate that our proposed method outperforms
existing SSMs and remains competitive when compared to
both CNNs and Transformer-based approaches.
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