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Figure 1. GenProp. We propose a generative video propagation framework (GenProp), which can seamlessly propagate any first frame
edit through the video. GenProp supports a wide range of video applications, including (a) complete object removal with effects such
as shadows and reflections, (b) background replacement with realistic effects, (c) object insertion where inserted objects have physically
plausible motion (i.e., blueberries falling while spoon goes up), (d) tracking of objects and their associated effects, and (e) multiple edits
(outpainting, insertion, removal) at a single inference run.

Abstract

Large-scale video generation models have the inherent abil-
ity to realistically model natural scenes. In this paper, we
demonstrate that through a careful design of a generative
video propagation framework, various video tasks can be
addressed in a unified way by leveraging the generative

power of such models. Specifically, our framework, Gen-
Prop, encodes the original video with a selective content
encoder and propagates the changes made to the first frame
using an image-to-video generation model. We propose a
data generation scheme to cover multiple video tasks based
on instance-level video segmentation datasets. Our model
is trained by incorporating a mask prediction decoder head

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17712



and optimizing a region-aware loss to aid the encoder to
preserve the original content while the generation model
propagates the modified region. This novel design opens
up new possibilities: In editing scenarios, GenProp allows
substantial changes to an object’s shape; for insertion, the
inserted objects can exhibit independent motion; for re-
moval, GenProp effectively removes effects like shadows
and reflections from the whole video; for tracking, GenProp
is capable of tracking objects and their associated effects
together. Experiment results demonstrate the leading per-
formance of our model in various video tasks, and we fur-
ther provide in-depth analyses of the proposed framework.

1. Introduction
Recently, large-scale video generation models [7, 17, 18,
32, 35, 42, 46, 57] have shown impressive performance,
generating highly realistic videos while being able to sim-
ulate the complexities of the real world. In this rapidly
evolving domain, following works in video generation have
extended the text-to-video (T2V) generation to image-to-
video (I2V) [2, 5, 32, 53, 60], and are further exploring
various video editing tasks such as video inpainting [65],
appearance editing [34, 43], object insertion [31], usually
focusing on that specific task. In this paper, we bring a new
perspective, observing that many of such video applications
can be modeled as a general video propagation problem.

Video propagation itself is not a new concept, with
traditional methods often relying on optical flow [9, 44],
depth [6, 55], radiance fields [33], and atlases [20, 24] to
propagate the changes in sparse intermediate frames (typ-
ically the first frame) to the rest of the video. However,
such approaches can be prone to error accumulation, lead-
ing to limited robustness and generalization ability. Further-
more, they often focus on a single task [9, 33] or entail re-
training for a specific task for propagation [28, 31, 34, 61].
In contrast, we extend the first-frame editing and design a
more general framework for generative video propagation
encompassing various editing scenarios by leveraging video
generation models’s power in modeling real-world scenes.

Our model, GenProp, is able to propagate the changes
in the first frame to the whole video while keeping other
parts consistent to the original video, without requiring
any additional motion predictions (e.g., optical flow). This
general formulation enables many downstream applications
such as removal, insertion, replacement (object and/or back-
ground), text-based editing, outpainting and even object
tracking, some of which are shown in Fig. 1. We further
demonstrate that our model is also able to expand the scope
of what is usually achievable in each task, specifically: (1)
substantial shape modifications in object editing tasks, (2)
independent motion of inserted objects in insertion tasks,
(3) removal of object effects like shadows and reflections

Edited first frame

Text  prompt
"A man sits on the couch, 

floating in the universe."

Video Propagation Result

Video Sequence

Selective Content

Encoder

Image-to-Video

Model

Injection Weight

Figure 2. Model Overview. During inference, our framework takes
in the original video as input through a selective content encoder
(SCE) to retain content in unchanged regions. Changes applied to
the first frame are propagated throughout the video using an I2V
model while other regions remain intact.

in removal tasks, and (4) accurate tracking of objects along
with their associated effects. Note that unlike existing video
editing models that often require a dense mask labeling for
all individual frames (e.g., for object removal), GenProp
does not require any mask input, thanks to the propagation-
based approach, greatly simplifying the editing process.

Our model architecture consists of two main compo-
nents as shown in Fig. 2: the Selective Content Encoder
(SCE) that encodes the information of the original video,
and the I2V generation model that takes in the edited first
frame for propagation. The training objective is to allow
SCE to selectively encode the features of the unchanged
parts of the video, while preserving the generation capa-
bilities of I2V models to propagate the altered parts. To
effectively disentangle these two functions, we introduce
a region-aware loss and penalize the gradients within the
modified region for SCE, as ideally, SCE should not en-
code content in the edited area. For training the model, we
propose using synthetic data derived from video instance
segmentation datasets. As shown in the attention map visu-
alizations in Fig 3, we observe that GenProp indeed attends
to the region to be modified and the I2V model is guided to
generate (propagate) the new content into those regions. To
further aid the model, we incorporate an auxiliary decoder
head during training to predict the modified region.

Our contributions are summarized as follows:
• We extend first-frame editing to a general generative

video propagation framework, which propagates changes
in the first frame to the entire video using the generative
power of I2V models, enabling broader applications.

• We carefully design our model, GenProp, with a Selec-
tive Content Encoder (SCE), dedicated loss functions and
a mask prediction head and propose a synthetic data gen-
eration pipeline for training this model.

• Our model supports various downstream applications
such as removal, insertion, replacement, editing, and
tracking. We observe that it supports outpainting, with-
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out task-specific data during training.
• Experiment results show that our model outperforms

SOTA methods in video editing and object removal while
expanding the scope of existing tasks including tracking.

2. Related Work
Video Propagation. Traditional methods are typically de-
signed for a single task and often require retraining for new
tasks [9, 21, 33]. Many approaches address propagation
by first tracking instance masks, then performing inpaint-
ing [25, 26], with segmentation often as the initial step.
SAM 2 [39], the current SotA tracking model, can track the
masks accurately and efficiently. Some methods rely on op-
tical flow [9, 44] or depth [6, 55] to ensure consistent motion
and spatial coherence. CoDef [33] uses deformation fields
from the source video to guide edits from the first frame.
While these representations aid motion tracking and struc-
tural consistency, they add complexity and may limit flexi-
bility, especially with significant shape changes or complex
backgrounds. Depth, sketches, and optical flow can also be
combined with diffusion models [11, 29, 48, 52, 56].

Diffusion-based Video Editing. Most diffusion-based
video editing methods rely on text control, where the pri-
mary goal is to make edits that are coherent to text prompts
while preserving the unchanged regions of the video. Some
methods utilize text-to-image models for zero-shot editing
through attention control [6, 14, 23, 37, 41, 47, 49]. Some
other works require intermediate variables like optical flows
or depth maps to stabilize motion. Others rely on per-case
fine-tuning to adapt to specific motion [4, 30, 50, 62], but
this approach is typically slow and prone to generate similar
results from the original video due to reconstruction tuning.
SORA [32] denoises the noised videos under the target de-
scription to do editing. These methods are generally limited
to altering the appearance rather than making significant
changes to object shapes. Additionally, because of unclear
attention maps, especially in complex scenes, background
changes often lack precision and coherence. InsV2V [8]
and EVE [43] edit videos based on text instructions but
are also limited to appearance changes. Some recent ef-
forts have attempted to directly edit motion based on text
prompts [22, 58, 63], but their resulting video output tends
to strike a balance between the text-based guidance and the
original video’s motion, which can be hard to control.

Image-to-Video Generation and Editing. Image-to-video
(I2V) generation models take an input image along with
a text prompt to generate a sequence of frames, making
them a foundational application in video generation due to
its familiarity and versatility. Notable open-source mod-
els include Stable Video Diffusion [5], I2VgenXL [60], and
SparseCtrl [16], while high-performance commercial mod-
els, such as Gen-2, PikaLabs [2], SORA [32], and Movie

Input Frame #16

Propagated by Ours #16

Inference Step: 1 Inference Step: 10 Inference Step: 20

Inference Step: 30 Inference Step: 40 Inference Step: 50
min

max

Figure 3. Attention Map Visualization. We observe that the atten-
tion maps gradually focus on the regions to be removed and the
I2V model is guided to generate new content in those regions.

Gen [35], further push the boundaries in this field.
Several methods propagate edits from the first frame.

For example, some works [13, 40, 55, 56] rely on first-
frame edits but require auxiliary inputs like optical flow or
depth maps for motion continuity. VideoSwap [15] uses
sparse key points to control the motion. AnyV2V [27] and
VideoShop [12] can also propagate first-frame edits across
a video sequence; however, as a training-free framework, its
generalization ability is limited. I2VEdit [34], in contrast,
necessitates learning motion LoRAs [19] for each video
clip, adding computational complexity. Revideo [31], built
on Stable Video Diffusion (SVD), enables control over the
generation using the edited first frame and a specified mo-
tion trajectory. However, its approach involves masking
parts of the input video with a black square, which removes
significant information and restricts the method in handling
complex background edits and large shape alterations.

3. Method
Generative video propagation has the following key chal-
lenges: (1) Realism – changes in the first frame should be
naturally propagated to the following frames, (2) Consis-
tency – all other regions should remain consistent to the
original video, and (3) Generality – the model should be
general enough to be applicable to multiple video tasks. In
GenProp, we leverage an I2V generation model for (1); we
introduce a selective content encoder and a mask prediction
decoder and train the model with a region-aware loss to ad-
dress (2); and we propose a data generation scheme and also
benefit from the versatile I2V model for (3).

3.1. Problem Formulation
Given an input video V = {v1, v2, . . . , vT } with T frames,
let v′1 denote the modified first frame. The goal is to prop-
agate this modification, producing a modified video V ′ =
{v′1, v′2, . . . , v′T }, where each frame v′t (for t = 2, . . . , T )
retains the modification applied to the key frame v1 while
maintaining consistency in both appearance and motion
throughout the sequence. We employ a latent diffusion
model that encodes pixel information in the latent space.
With a slight abuse of notations, we continue using vt for
this latent representation. In formal terms, during inference,
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Figure 4. Training Framework of GenProp. Our framework integrates a Selective Content Encoder and a Mask Prediction Decoder on top
of the I2V generation model, enforcing the model to propagate the edited region while preserving the content in the original video for all
other regions. With synthetic data augmentations and task embeddings, our model is trained to propagate various changes in the first frame.

GenProp generates each frame v′t as:

v′t = G(E(V ), v′1, t), ∀t ∈ {2, . . . , T}, (1)

where G is the I2V generation model guided by the selective
content encoder (SCE), E(V ).

For training, we use synthetic data constructed from ex-
isting video instance segmentation datasets to create paired
samples (details given in Sec. 3.4). We define a data gener-
ation operator D that constructs training data pairs (vi, v̂i)
from an original video sequence V . Let D(V ) denote the
synthetic data generation operator applied to the original
video sequence, where:

(vi, v̂i) ∈ D(V ), ∀i ∈ {1, . . . , T}. (2)

Then V̂ = {v̂1, v̂2, . . . , v̂T } is the synthetic video sequence.
GenProp is trained to satisfy the following objective across
all frames i ∈ {2, . . . , T}:

min
E

T∑
i=2

L(G(E(V̂ ), v1, i), vi) (3)

where L is a region-aware loss designed to disentangle the
modified and unmodified regions, enforcing stability in the
unchanged areas while allowing for accurate propagation in
the edited regions (details in Sec. 3.3). To ensure that the fi-
nal output adheres to real video data distributions, synthetic
data is fed exclusively to the content encoder. The I2V gen-
eration model, however, uses the original video, preventing
the model from inadvertently learning synthetic artifacts.

3.2. Model Design
To preserve the unchanged parts of the original video and
only propagate the modified regions, we integrate two addi-
tional components to the base I2V model: Selective Content
Encoder and Mask Prediction Decoder, as shown in Fig. 4.

Selective Content Encoder. The architecture of our SCE
is a replicated version of the initial N blocks of the main
generation model, similar to ControlNet [59]. After each
encoder block, the extracted features are added to the corre-
sponding features in the I2V model, allowing a smooth and
hierarchical flow of content information. The injection layer
is one multilayer perceptron with zero initialization which
will also be trained. Furthermore, for bidirectional informa-
tion exchange, the features of the I2V model are fused with
the SCE’s input before the first block. This lets SCE be
aware of the modified regions so that it can selectively en-
code the information in the unchanged region as intended.

Mask Prediction Decoder. The Mask Prediction Decoder
(MPD) is designed to estimate the spatial regions requir-
ing editing, helping the encoder disentangle changes from
the unchanged content. While SCE utilizes the initial N
blocks of the I2V model, MPD mirrors this by using the
final block along with one multilayer perceptron (MLP) as
the final layer. It takes the latent representation from the
penultimate block, which contains rich spatial and temporal
information, and processes it through the MLP layer. This
restores the temporal dimension, matching it to the number
of video frames. The final output is trained to match the in-
stance mask of the video via an MSE loss [10] LMPD. This
guides the model to focus on the edited regions and signifi-
cantly improves the accuracy of the attention maps.

3.3. Region-Aware Loss
In our training process, we use instance segmentation data
to ensure that both the edited and unedited regions receive
appropriate supervision. We design a Region-Aware Loss
(RA Loss), shown in Fig. 5, to balance the loss of both re-
gions, even when the edited areas are proportionally small.

For an input video V̂ = {v̂1, v̂2, . . . , v̂T } and instance-
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Figure 5. Region-Aware Loss. This loss helps the model to disen-
tangle the edited region from the original content.

level masks M = {m1,m2, . . . ,mT }, where mt ∈
{0, 1}H×W indicates edited regions in frame v̂t, we apply
Gaussian downsampling over the spatial dimensions and re-
peat over the temporal dimension to obtain a mask m̃t that
is aligned to the shape of the latent representation of the
video. The loss is separately computed for the mask and
non-mask region, giving:

Lmask = Et∼U(1,T )

[
Ld(m̃t · vout

t , m̃t · vt)
]

and (4)

Lnon-mask = Et∼U(1,T )

[
Ld((1− m̃t) · vout

t , (1− m̃t) · vt)
]
,

where Ld denotes the diffusion MSE loss that measures
the pixel-wise error between the generated frame vout

t and
ground truth vt.

To further reduce the SCE’s influence on the masked re-
gions, we add a gradient loss Lgrad that minimizes the ef-
fect of the masked area in the encoder’s input. Instead of
computing second-order gradients, we approximate using a
finite difference:

∆f =
f(E(V̂ + δ))− f(E(V̂ ))

δ
(5)

where f(E(V̂ )) represents the encoder’s feature, and δ is a
small perturbation. The gradient loss is defined as:

Lgrad = Et∼U(1,T ) [m̃t · ∥∆f∥2] . (6)

The RA Loss L is a weighted sum of all three terms to en-
sure sufficient supervision on both masked and unmasked
areas:

L = Lnon-mask + λ · Lmask + β · Lgrad + γ · LMPD (7)

3.4. Synthetic Data Generation
Creating a large-scale paired video dataset can be costly
and challenging especially for video propagation, as it is
difficult to encompass all video tasks. To address this, we
propose to use synthetic data derived from video instance
segmentation datasets. In our training, we use Youtube-
VOS [54], SAM-V2 [39], and an internal dataset. However,
this data generation pipeline can be applied to any available
video instance segmentation dataset. Specifically, we adopt

a mix of augmentation techniques to the segmentation data,
tailored to various propagation sub-tasks: (1) Copy-and-
Paste: Objects from one video are randomly segmented and
pasted into another, simulating object insertion; (2) Mask-
and-Fill: The masked region undergoes inpainting, creat-
ing realistic edits within selected regions; (3) Color Fill:
The masked area is filled with specific colors, representing
basic object tracking scenarios. For (3), V will be sent to
E and v̂1 will be sent to G in Eq. 3. Each synthetic data
type aligns with a distinct task, enabling our model to gen-
eralize across diverse applications. Task embeddings cor-
responding to these augmentation methods are injected into
the model, guiding the model to adapt based on the aug-
mentation type. Note that despite the variety of data cre-
ation methods and tasks, the core function of SCE remains
consistent: encode the unedited information while the I2V
model maintains the generative capabilities to propagate the
edited regions. More details about each augmentation tech-
nique are provided in the Supplementary Material.

4. Experiments

4.1. Implementation Details
As GenProp is a general framework, we experiment with
both a DiT architecture similar to Sora [32] and a U-Net ar-
chitecture based on Stable Video Diffusion (SVD) [5] as the
base video generation model. For the former, it is trained for
I2V generation on 32, 64, and 128 frames at 12 and 24 FPS,
with a base resolution of 360p. SCE (24 blocks) and MPD
are trained while the I2V model is frozen. The results can be
upscaled to 720p using a super-resolution model. The learn-
ing rate is set to 5e-5 with a cosine-decay scheduler and a
linear warmup. An exponential moving average is applied
for training stability. A gradient norm threshold of 0.001
prevents training instability. Classifier-free guidance (CFG)
value is set to 20, and the data augmentation ratio is set to
0.5/0.375/0.125 for copy-and-paste/mask-and-fill/color fill.
In the RA loss, λ is 2.0, β is 1.0, and γ is 1.0. All exper-
iments were conducted on 32/64 NVIDIA A100 GPUs for
different architectures. We find that the DiT backbone has
a better video generation quality. Our main results are from
this DiT variant while the ablation studies are conducted
with the SVD-based architecture. Please refer to the Sup-
plementary Material for the results based on SVD.

4.2. Comparisons
As generative video propagation is a new problem, we com-
pare the SotA methods in each of the three sub-tasks of
GenProp. Note that our model is able to handle these tasks
within the same model and further cover additional tasks
such as outpainting as well as combinations of these sub-
tasks as shown in the bottom row of Fig. 1. We provide
extensive results in the Supplementary Material.
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“The man sits at couch and the background is Wildebeest crossing the Mara River.”“A goat slowly walking.”

Figure 6. Visual Comparison in Multiple Video Tasks. GenProp demonstrates versatile editing capabilities, (a) allowing seamless modifi-
cation of objects into those with vastly different shapes with independent motion and (b) enabling background edits. For object removal,
GenProp excels at (c) effectively removing object effects together with the object and (d) realistically reconstructing large occluded areas.
It is further able to perform instance tracking of objects and their effects when solid color fills are given as the first frame (see (e)).

Diffusion-based Video Editing In Fig. 6 (a) and (b), we
compare GenProp with other diffusion-based video edit-
ing methods, including text-guided and image-guided ap-
proaches. InsV2V [8] relies on instruction text for con-
trolling generation. However, due to its limited training

data, it struggles with significant shape changes and does
not support object insertion. Pika [2] also uses text prompts
to edit within a box region, but it performs poorly when
the object’s shape changes substantially and cannot han-
dle background edits or object insertion. AnyV2V [27]
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Method
Classic Test Set Challenging Test Set

PSNRm ↑ CLIP-T ↑ CLIP-I ↑ GenProp preference % PSNRm ↑ CLIP-T ↑ CLIP-I ↑ GenProp Preference %
Alignment Quality Alignment Quality

InsV2V [8] 28.999 0.3049 0.9737 60.00 60.00 28.842 0.2906 0.9718 81.82 75.00
AnyV2V [27] 32.090 0.3050 0.9676 95.56 86.67 28.338 0.3302 0.9576 97.78 95.56
Pika [2] 32.568 0.3226 0.9923 62.22 55.56 31.329 0.3023 0.9886 88.89 86.67
ReVideo [31] 31.765 0.3196 0.9777 75.56 71.11 29.920 0.3226 0.9798 84.44 82.22
GenProp (Ours) 33.837 0.3229 0.9825 - - 32.163 0.3336 0.9904 - -

Table 1. Video editing benchmark compared to existing models. PSNRm measures the consistency outside the edited region. CLIP-T and
CLIP-I measure text alignment and frame consistency. User study shows the percentage of users who preferred Ours over the compared
method on alignment (left) and quality (right). GenProp significantly outperforms the other methods on the Challenging Set.

Method CLIP-I ↑ GenProp Preference %
Alignment Quality

SAM + Propainter 0.9809 82.22 75.56
ReVideo [31] 0.9728 86.36 77.27
GenProp (Ours) 0.9879 - -

Table 2. Object removal comparison to other methods. GenProp
outperforms baselines on consistency, alignment, and quality.

is a training-free method that uses the first frame to guide
editing. While it handles appearance changes, it fails when
there are large shape or background modifications, often re-
sulting in degradation or ghosting effects. Like InsV2V and
Pika, it also cannot insert objects. We use ReVideo [31]
to manage large shape changes by first removing an object
and then re-inserting it, but this two-stage process has draw-
backs. The box-based region can cause blurry boundaries,
and object motion is affected by the original point tracking,
leading to accumulated errors. Additionally, the box region
limits its ability to edit complex backgrounds effectively.

Video Object Removal For object removal, we compare
GenProp with a traditional inpainting pipeline, where we
cascade two SotA models to achieve a propagation-like in-
painting, since traditional methods require a dense mask an-
notation for all frames: SAM-V2 [39] for mask tracking,
then Propainter [64] for inpainting the regions in the esti-
mated masks. As shown in Fig. 6 (c) and (d), GenProp has
several advantages: (1) no need for a dense mask annota-
tion as input; (2) removal of object effects like reflections
and shadows; (3) removal of large objects and natural fill-
ing within large areas.

Video Object Tracking We compare GenProp with
SAM-V2 [39] on tracking performance in Fig. 6 (e). Since
SAM-V2 is trained on the large-scale SA-V dataset, it is ex-
pected that SAM-V2 often produces more precise tracking
masks than GenProp. Additionally, GenProp is slower than
real-time tracking methods like SAM-V2. However, it has
notable advantages. Due to its video generation pretraining,
GenProp has a strong understanding of physical rules. As
shown in Fig. 6, unlike SAM-V2, which struggles with ob-

Method CLIP-T ↑ CLIP-I ↑
w/o MPD 0.3252 0.9834
w/o RA Loss 0.3261 0.9825
GenProp (Ours) 0.3316 0.9872

Table 3. Ablation study. Both MPD and RA loss can improve the
success rate of editing and the quality of the output video.

ject effects like reflections and shadows due to limited and
biased training data, GenProp can consistently track these
effects. This highlights the potential of approaching classic
vision tasks with generation-based models.

Quantitative Results We conduct a quantitative evalua-
tion on several test sets. For video editing (reported in
Tab. 1), we evaluate on two types of test sets: (1) Classic
Test Set, which is TGVE [51]’s DAVIS [36] part and its
“Object Change Caption” as the text prompt, focusing on
object replacement and appearance editing; (2) Challeng-
ing Test Set, which is 30 manually collected videos from
Pexels [1] and Adobe Stock [3] including large object re-
placement, object insertion and background replacement.
For (2), the first frame is edited using a commercial photo
editing tool. For Pika [2], we use the online boxing tool,
running it three times for each result. For ReVideo [31], we
select a box region, then to track appearance changes, we
use its code to extract the original object’s motion points.
For edits with significant shape changes, we first remove
the original object and then insert the new object, assign-
ing a future trajectory. For assessing the consistency in
the unchanged regions, we measure the PSNR outside the
edit mask, denoted as PSNRm. For cases with large shape
changes, we apply a rough mask over the original and edited
regions, only calculating the PSNR on areas outside these
masks. For text alignment, we compute the cosine similar-
ity between the CLIP [38] embeddings of the edited frame
and the text prompt (CLIP-T) [31, 34, 51]. For consistency,
we calculate the distance between CLIP [38] features across
frames (CLIP-I) [31, 34, 51]. As shown in Tab. 1, GenProp
outperforms the other methods on most metrics, especially
on the Challenging Test Set. Pika exhibits better consis-
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Figure 7. Visual comparison of model variants, showing the effect
of MPD training (top), RA loss (middle) and Color Fill (bottom).

tency on the Classic Test Set, as its bounding box performs
reasonably well when object shapes remain relatively un-
changed. ReVideo degrades on multiple objects.

For object removal, we collect 15 videos with complex
scenes, including object effects and occlusions, as existing
test sets lack coverage of these cases. For SAM, we click
on the object and side effects to ensure complete coverage.
As shown in Tab. 2, GenProp achieves the highest consis-
tency, while ReVideo may produce bounding box artifacts,
and ProPainter struggles with object effects.

As quality metrics often do not correctly capture the real-
ism of the generated results, we use Amazon MTurk [45] to
conduct a user study with a total of 121 participants. Each
participant views videos generated by GenProp and a ran-
dom baseline, along with the original video and the text
prompt. They are asked two questions: 1) Which video
aligns better with the instructions? 2) Which video is vi-
sually better? Participants then select one video for each
question. In Tables 1 and 2, we show the percentage of
time users prefer Ours over the competing baselines (align-
ment/quality). GenProp outperforms all baselines by a large
margin, especially on the Challenging Test Set.

4.3. Ablation Study
Mask Prediction Decoder In Tab. 3, we evaluate the ef-
fect of MPD on the Challenging Test Set, showing that it can
improve both Text Alignment and Consistency. As shown in

Fig. 7 rows 1 and 2, without MPD, the output mask is often
highly degraded, leading to worse removal quality. With-
out explicit supervision with MPD, the model may be con-
fused which part to propagate and which part to preserve
in the original video, causing partially removed objects to
reappear in the following frames. MPD helps the disentan-
glement and both the removal results and predicted masks
become more accurate with MPD, allowing for full object
removal even with heavy occlusion.

Region-Aware Loss In Tab. 3, we further test the effec-
tiveness of the proposed RA Loss on the Challenging Test
Set. A core challenge in GenProp is that SCE can mistak-
enly select all regions from the original video including the
edited areas, weakening the I2V generation ability due to
the reconstruction loss. As shown in Fig. 7 rows 3-5, with-
out RA Loss, the original object tends to gradually reappear,
hindering the propagation of the first-frame edit (the green
motor). With RA Loss, the edited areas are able to be prop-
agated in a stable and consistent way.

Color Fill Augmentation Color Fill augmentation is an-
other crucial factor for addressing the propagation failure.
While copy-and-paste and mask-and-fill augmentations al-
low the model to implicitly learn object modifications, re-
placements, and deletions, color filling explicitly trains it
for tracking, guiding the model to maintain modifications
made in the first frame throughout the sequence, with the
prompt “track colored regions”. As shown in Fig. 7 rows
6-8, changing the girl into a small cat is challenging due
to the significant shape difference. However, with color fill
augmentation, GenProp successfully propagates this large
modification throughout the sequence.

5. Conclusion
In this paper, we design a novel generative video prop-
agation framework, GenProp, that harnesses the inherent
video generation power of I2V models to achieve various
downstream applications including removal, insertion and
tracking. We demonstrate its potential by showing that it is
able to expand the range of achievable edits (e.g., remove
or track objects together with their associated effects) and
generate highly realistic videos, without relying on tradi-
tional intermediate representations like optical flow or depth
maps. By integrating a selective content encoder and lever-
aging an I2V generation model, GenProp consistently pre-
serves unchanged content while dynamically propagating
the changes. Synthetic data and the region-aware loss fur-
ther enhance its ability to disentangle and refine edits across
frames. Experimental results demonstrate its effectiveness,
establishing it as a robust, flexible solution that surpasses
prior methods in scope and precision. In the future, we plan
to extend the model to take in more than one key frame edits
and uncover additional video tasks that can be supported.
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beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017. 7

[37] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei,
Xintao Wang, Ying Shan, and Qifeng Chen. Fatezero: Fus-
ing attentions for zero-shot text-based video editing. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023. 3

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, 2021.
7

[39] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
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