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Abstract

In mixed reality applications, a realistic acoustic experi-
ence in spatial environments is as crucial as the visual ex-
perience for achieving true immersion. Despite recent ad-
vances in neural approaches for Room Impulse Response
(RIR) estimation, most existing methods are limited to the
single environment on which they are trained, lacking the
ability to generalize to new rooms with different geometries
and surface materials. We aim to develop a unified model
capable of reconstructing the spatial acoustic experience of
any environment with minimum additional measurements.
To this end, we present XRIR, a framework for cross-room
RIR prediction. The core of our generalizable approach lies
in combining a geometric feature extractor, which captures
spatial context from panorama depth images, with a RIR
encoder that extracts detailed acoustic features from only a
few reference RIR samples. To evaluate our method, we in-
troduce ACOUSTICROOMS, a new dataset featuring high-
fidelity simulation of over 300,000 RIRs from 260 rooms.
Experiments show that our method strongly outperforms a
series of baselines. Furthermore, we successfully perform
sim-to-real transfer by evaluating our model on four real-
world environments, demonstrating the generalizability of
our approach and the realism of our dataset.

1. Introduction
Each environment echoes its own story, creating a distinct
auditory experience. Imagine walking through a museum
where each room’s unique acoustic character brings ex-
hibits to life, immersing you in stories through tailored
soundscapes. To recreate such realistic auditory experi-
ences across different spaces, models must seamlessly and
easily adapt from one environment to another. This cross-
room adaptability is essential for applications like virtual re-
ality and immersive media, where authentic acoustics trans-
form and enhance how we experience sound anywhere in
any environment of interest.

*Work done during the internship at Meta.

Figure 1. Our XRIR framework can predict accurate room impulse
responses (RIR) of any new environment, by integrating the geo-
metric prior learned from a large simulated RIR dataset of diverse
training environments and the nuanced acoustic profile extracted
from a few reference RIR measurements in the new environment.

To model how sound interacts with an environment, a
room impulse responses (RIR) is often measured to capture
how a perfect impulse emitted from the source location re-
flects, is absorbed, diffuses, and gets received at the micro-
phone location, all according to the room’s unique geometry
and surface materials. Traditionally, to fully capture the im-
mersive acoustic field in an environment, hundreds of RIR
measurements are gathered by positioning speakers and mi-
crophones densely throughout the space [31, 37, 42, 49].
However, this process is labor-intensive and costly, espe-
cially when scaling across diverse real-world environments.

Recent deep learning approaches [10, 28, 31, 49] lever-
age implicit neural networks to “compress” these dense RIR
measurements into a single model that can be queried for
RIR at any source-listener pair in a specific room. How-
ever, training these models still requires a large amount of
densely sampled RIRs for each room, as they are designed
to overfit to a single room’s specific geometry and material
properties. When applied to a new environment, these mod-
els must be re-trained with a similarly dense dataset, limit-
ing their practicality for scalable cross-room applications.

Our goal is to develop a model that can handle variations
in room geometry and surface material properties, which
are key factors in shaping each room’s unique acoustic pro-
file. Achieving this goal presents several challenges. First,
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the model should utilize an easily obtainable and standard
visual representation of the environment to extract geomet-
ric properties from any room. Second, given the diverse
and nuanced acoustic properties of different surface materi-
als, we need a way to quickly capture essential cues about a
room’s detailed acoustic characteristics (e.g., energy decay
and reverberation patterns). Third, to ensure generalization,
we need a large-scale and high-fidelity RIR dataset that en-
compasses a wide range of room environments with varied
acoustic materials and geometries, enabling the pre-training
of a cross-room feature extractor.

To address these challenges, we introduce XRIR, a
generalizable model for cross-room RIR prediction, along
with ACOUSTICROOMS, a large dataset comprising over
300,000 realistic RIRs simulated from 260 rooms, specif-
ically curated for this task. Our model features three key
components: i) a Geometric Feature Extractor, which uti-
lizes a vision transformer to process panorama depth images
from the receiver’s perspective, capturing the spatial rela-
tionships between the source and receiver positions within
the room; ii) a Reference RIR Encoder, which extracts
spatio-temporal features from a few reference RIRs, cap-
turing the unique energy decay and reverberation character-
istics associated with room materials; and iii) a Fusion and
Weighting Module, which predicts the target RIR through
a weighted combination of the reference RIRs. By inte-
grating complementary geometric and acoustic features, our
model effectively approximates both structural and material
properties of any room, enabling precise RIR predictions
not only at new locations in the training environments, but
also in any new environment of interest.

We evaluate our model’s performance in both seen and
unseen environments from ACOUSTICROOMS, demonstrat-
ing its capability to predict RIRs at new locations within
known rooms and also effectively generalize to entirely new
environments. Our method consistently achieves state-of-
the-art results across these scenarios, outperforming sev-
eral strong baselines and prior methods. In addition, to as-
sess the model’s real-world applicability, we successfully
perform sim-to-real transfer by deploying our model on
a dataset comprising four real-world environments. This
demonstrates the effectiveness of our framework and also
the realism of RIR simulations in our dataset.

In sum, our main contributions are as follows:
• We propose XRIR, a cross-room generalizable framework

that predicts accurate RIRs for any seen and unseen envi-
ronment, strongly outperforming prior methods.

• We introduce ACOUSTICROOMS, a large-scale dataset tai-
lored for this task, comprising over 300,000 high-fidelity
RIRs simulated from 260 diverse rooms.

• Apart from superior performance on simulated rooms, we
also successfully deploy our model in four real-world en-
vironments, showcasing effective sim-to-real transfer.

2. Related Work

Learning-Based RIR Prediction. Early machine learn-
ing methods for room impulse response (RIR) prediction,
such as Image2Reverb [46] and Fast-RIR [39], utilize a
generative approach conditioned on semantic information
like RGB images of the environment, source and listener
locations, and T60 values. While these approaches pro-
duce plausible RIRs aligned with scene semantics and ba-
sic acoustic constraints, they struggle to reproduce accurate
RIRs at arbitrary locations within the target scene. Recent
advances on implicit neural representations [33, 47] have
inspired a series of works that approximate a function map-
ping spatial coordinates of source and listener locations to
RIRs [31, 38, 42, 49]. Some methods [1, 2, 8, 10, 24, 27, 40]
also condition on room geometry and material properties
of the visual environment. By explicitly modeling the 3D
scene, these methods can render precise RIRs at novel lo-
cations within the same environment they are trained on.
However, they lack the ability to generalize to new environ-
ments, which is the focus of our work.

Closest to our work are Diff-RIR [55] and Few-Shot
RIR [32], both of which also address cross-room RIR gen-
eralization. Diff-RIR learns material coefficients through a
differentiable rendering framework based on planar room
geometry and a few RIR measurements, enabling RIR ren-
dering at any location using the image source method. How-
ever, it requires training a separate model for each room,
making it computationally intensive and less scalable for
large or complex environments. Few-Shot RIR leverages a
limited number of RIR measurements and RGB-D obser-
vations to predict RIRs at new locations by integrating fea-
tures from pose, RGB-D data, and binaural echoes. How-
ever, it does not effectively utilize geometric information as
our method and is only trained and tested in simulation. We
compare our approach with both methods in experiments.

Room Acoustics Simulation. Room acoustic simulation
is crucial for applications in AR/VR [25], architectural de-
sign [35], and far-field speech recognition [22, 36], serv-
ing as a bridge between simulated and real-world acoustics.
Approaches can be generally categorized as wave-based,
geometric-based, or hybrid. Wave-based methods [13] ac-
curately capture low-frequency phenomena but are com-
putationally intensive. Geometric-based methods, such
as [3, 6, 43, 44], efficiently trace sound rays but lack ac-
curacy at low frequencies. Hybrid methods [51] combine
both approaches to balance accuracy and efficiency. We
utilize the hybrid approach [41] from the Treble simulation
platform to simulate high-fidelity RIRs for our cross-room
RIR prediction task, optimizing both accuracy and compu-
tational demands.

Audio-Visual Learning of Room Acoustics. Both vision
and audio provide significant spatial information that re-

5733



veals room properties. Prior methods have combined both
modalities for a series of audio-visual learning tasks re-
lated to room acoustics, including audio spatialization us-
ing visual spatial cues from the environment [16, 19, 20,
26, 34], audio-visual navigation in environments with vary-
ing room acoustic properties [3, 4, 15, 18, 29], learning
image features, scene structures, or human locations from
echoes [12, 17], ambient sound [9], or music [54] in the
room, and using RGB images or videos of a target envi-
ronment to guide sound transfer that aligns with the space’s
acoustics [5, 7, 11, 48, 52]. Our work also integrates both
visual and audio information, but we address a different
challenging task that aims to infer accurate room acoustics
in any new environment.

3. Our Approach
3.1. Problem Formulation
We tackle the cross-room room impulse response (RIR) pre-
diction task, which aims to predict single-channel (omnidi-
rectional) RIRs for any source-receiver pair across diverse
room environments, including those unseen during training.
We aim to develop a generalizable model that can accurately
predict RIRs in any environment without labor-intensive
data collections or training a separate model for each room.
Our model (detailed in Sec. 3.2) achieves this by utilizing
only minimal additional measurements from the new room,
such as only a few panorama depth images and reference
RIR measurements, to quickly adapt to new acoustic envi-
ronments with minimal effort, thereby facilitating general-
ization to previously unseen environments. Next, we for-
mally define the cross-room RIR prediction task by outlin-
ing its data, inputs, and the modeling objective.

Data. Let R = {R1, R2, . . . , RM} represent a dataset of
M rooms, split into a training set, Rtrain ⊂ R, and a test set,
Rtest = R \Rtrain. Each room Rm includes a set of receiver
locations, denoted Lm = {P (m,1)

r , P
(m,2)
r , . . . , P

(m,Nm)
r },

where Nm is the number of receivers in the room. For each
receiver P (m,i)

r in room Rm, RIRs are measured at various
source locations P (m,i,j)

s , resulting in measurements Am,i,j

of the source-receiver pair P (m,i,j)
s and P

(m,i)
r .

Inputs. To capture the necessary observation conditions
for predicting a target RIR At, we define an observation
tuple O = (Ps, Pr, Gr), where Ps is the target source loca-
tion, Pr is the receiver location, and Gr represents the local
geometry near the receiver location Pr, e.g., room bound-
ary points or depth maps around the receiver. Additionally,
we introduce a set of K reference RIRs measured at the tar-
get receiver location Pr from various reference source lo-
cations Pref,s = {P (1)

ref,s, P
(2)
ref,s, . . . , P

(K)
ref,s }. These references,

denoted as Aref = {A(1)
ref , A

(2)
ref , . . . , A

(K)
ref }, are crucial for

capturing essential acoustic characteristics that encode nu-
anced information about room materials. Note that in the

above formulation, while we fix the receiver location and
set reference RIRs at different source locations, exchang-
ing the receiver and source in the input yields an equivalent
alternative formulation.

Modeling Objective. The objective of cross-room RIR
prediction is to train a model F that predicts the target
RIR Ât using the observation tuple O along with the refer-
ence RIRs Aref and their respective source locations Pref,s:
Ât = F (O,Aref,Pref,s). In this formulation, O provides
the geometric and positional context, while Aref and Pref,s
give sparse acoustic observations that help bridge the lack
of explicit material properties by capturing key room acous-
tics characteristics.

Unlike the single-room RIR prediction task [31, 49],
which assumes consistent geometry and material properties
and fits a separate model for each scene, our cross-room
formulation aims to train a single model that generalizes
across multiple scenes with diverse room geometries and
materials, while with the extra condition of only a few RIR
measurements. Models that are designed for single-room
RIR prediction task [31, 49] must be re-trained with dense
data when applied to a new environment. While our method
uses one unified model to predict accurate RIRs across dif-
ferent rooms, seen or unseen. Our formulation can also be
easily adapted to the single-room RIR prediction setting by
fitting dense measurements in the room as in prior work.
Please see supp. for results on single-room experiments.

3.2. The XRIR Model
To solve the cross-room RIR prediction task, we propose a
new architecture, XRIR, which processes not only geome-
try and positional features of source and receiver, but also
leverages the reference RIRs to accurately predict the target
RIR. As illustrated in Fig. 2, XRIR consists of three main
components: i) a Geometric Feature Extractor (Sec. 3.2.1),
which encodes the spatial relationships among the source,
receiver, and room surface geometry, capturing important
geometric features that shape acoustic behavior; ii) a Ref-
erence RIR Encoder (Sec. 3.2.2), which processes the spa-
tiotemporal characteristics of the reference RIRs to extract
features that represent their acoustic properties within the
room.; and iii) a Fusion and Weighting Module (Sec. 3.2.3),
which integrates the spatial features from the Geometric
Feature Extractor with the reference RIR features from the
Reference RIR Encoder, generating a set of weights to com-
bine reference RIRs as the predicted target RIR.

3.2.1. Geometric Feature Extractor
The Geometric Feature Extractor module captures spatial
relationships among the source, receiver, and room ge-
ometries, which is important for accurate acoustic model-
ing. It consists of two geometric sub-modules: the Direct
Path Module, and the Reflection Module. These two mod-
ules emulate the process of sound propagation. The Direct
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Figure 2. System Overview of Our XRIR Model for Cross-Room RIR Prediction. The model architecture consists of three main
components: i) a Geometric Feature Extractor, which captures spatial relationships among the source, receiver, and room geometry; ii)
a Reference RIR Encoder, which extracts spatiotemporal features from reference RIRs; and iii) a Fusion and Weighting Module, which
integrates these spatial and acoustic features to predict the target RIR.

Figure 3. Illustration of the Geometric Feature Extractor. Rec:
Receiver, Tgt Src: Target Source, Ref Src: Reference Source.

Path Module extracts the feature of the direct path between
source and receiver, while the Reflection Module models
the sound propagation path through the reflections from the
room boundaries. A detailed overview of the Geometric
Feature Extractor is illustrated in Fig. 3.

Direct Path Module. To capture the direct path between
each source and the receiver, we concatenate their 3D coor-
dinates. For the target source, we define Pdir = (Ps, Pr),
where Ps and Pr are the coordinates of the source and the
receiver, respectively. For each reference source P

(k)
ref,dir,

we define P
(k)
ref,dir = (P

(k)
ref,s, Pr). Pdir and each P

(k)
ref,dir en-

code locations of every source-receiver pair, thereby encod-
ing the direct path information. To extract their features,
we apply sinusoidal positional encoding [53] followed by
a multi-layer perceptron (MLP) to project them into high-
dimensional vectors, resulting in gdir ∈ R1×Cd for the target
source-receiver pair and g

(k)
ref,dir ∈ R1×Cd for each reference

source-receiver pair.
Reflection Module. Inspired by INRAS [49], we also

model the reflection paths between source and receiver via
the room boundary. But differently, instead of using a
fixed set of bounce points per room, we propose to use a
panorama depth map at the receiver’s location as a proxy

for local room geometry to unify the representation across
different rooms.

Given the panorama depth map Idp ∈ RH×W×3 cen-
tered at receiver’s viewpoint, we first project Idp to a 3D
coordinate map Icoord = Frect(Idp) via an equi-rectangular
projection transformation Frect. Each pixel in Icoord repre-
sents the 3D coordinate of a visible boundary point in the
room from the receiver’s view. Each source in the room has
chance to reflect through these points until finally reaching
the receiver. To model such interactions, we create a set
of reflections-based maps by subtracting the 3D coordinate
map from the source and receiver positions.

To perform the subtraction, it is necessary to unify the
coordinates between the 3D coordinate map and the source
/ receiver positions. We achieve this by projecting the world
coordinates of the sources and the receiver into camera co-
ordinates at the receiver’s position, resulting in the same
coordinate system as the 3D coordinate map. We obtain the
target source position as Prel,s = R(Ps − Pr) and each ref-
erence source location as P (k)

rel, ref = R(P
(k)
ref,s−Pr), where R

is the world-to-camera transformation matrix. Then we cre-
ate reflection-based maps Irf,s for the target source, I(k)rf, ref
for reference sources, as well as Ir,rf for the receiver by
performing subtractions: Is,rf = Prel,s − Icoord, I

(k)
ref,rf =

P
(k)
rel, ref − Icoord and Ir,rf = Icoord − 0, where 0 means the

origin, where the receiver is located.

These reflection-based maps encode the dense interac-
tion between room geometry and the sources / receiver. To
further extract features, we utilize a vision transformer mod-
ule [14] Fvt that partitions each reflection-based map into
patches, aggregates local features, and builds spatial depen-
dencies among patches. This results in compact patch-level
geometry representations: g′r,rf = Fvt(Ir,rf), g′s,rf = Fvt(Is,rf)

and {g′(k)ref,rf = Fvt(I
(k)
ref,rf)}Kk=1, where each feature map has
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dimensionality Np × Cp. Finally, we apply a MLP layer to
project the patch dimension Np to 1, resulting in gr,rf, gs,rf,
and {g(k)ref,rf}Kk=1, respectively.

3.2.2. Reference RIR Encoder
To capture acoustic features related to energy decay and re-
verberation patterns within the room, we leverage reference
RIRs as proxies for the acoustic characteristics at various
source locations relative to the receiver. To encode these
acoustic features, we first compute the log-magnitude spec-
trogram of each reference RIR using the Short-Time Fourier
Transform (STFT): Sref,k = log(∥STFT(Aref,k)∥), where
Sref,k ∈ RF×T . To extract robust acoustic features, we im-
plement the Reference RIR Encoder using ResNet-18, and
use the mean pooled features f (k)

a ∈ Rd from the last layer
to encode each reference RIR.

3.2.3. Fusion and Weighting Module
The Fusion and Weighting Module integrates the outputs
from the Geometric Feature Extractor and the Reference
RIR Encoder to generate the target RIR prediction. This
module combines geometric and acoustic features for ref-
erence sources as well as the geometric features of target
source, finally computing the weights that are applied to
reference RIRs.

Fusion of Geometric and Acoustics Features. For
each reference source, we combine the geometric feature
g
(k)
ref,dir, g

(k)
ref,rf, gr,rf and the acoustic feature f

(k)
a by con-

catenating them along the feature dimension, resulting in:
h
(k)
ref = Concat(g(k)ref,dir, g

(k)
ref,rf, gr,rf, f

(k)
a ).

Similarly, for the target source, we combine the geomet-
ric feature gdir, gs,rf and gr,rf via concatenation, yielding:
h′
t = Concat(gdir, gs,rf, gr,rf). We then project the fused fea-

ture h′
t to ht through a MLP to make the feature dimension

the same as h(k)
ref .

To align the target and reference features, we compute
the attention between the target fused vector ht and each
reference fused vector h

(k)
ref . Specifically, given the refer-

ence fused features Href = {h(k)
ref }Kk=1 and the target fused

vector ht, the attention output Z is computed as:

Z = softmax
(
Href · hT

t√
C

)
⊙Href,

where · and ⊙ denote matrix multiplication and element-
wise multiplication with broadcasting respectively, and
Href ∈ RK×C , ht ∈ R1×C , Z ∈ RK×C . These atten-
tion outputs Z = {zk}Kk=1 for each reference RIR is now
attended by the fused feature of the target RIR.

Time-Aligned Weighting Matrix. Given the attention
outputs Z ∈ RK×C , we next generate a time basis vec-
tor Tb based on the temporal indices of the spectrogram
[0, 1, 2, . . . , T ]. Specifically, we compute T

′

b using sinu-
soidal positional encoding [53] and then apply a MLP layer

to project T
′

b to C, resulting in Tb ∈ RT×C . We generate
the time-aligned weighting matrix W ∈ RK×T by comput-
ing the outer product between Z and Tb: W = Z · TT

b .
Each row of W corresponds to the weights applied to the
log-magnitude spectrogram of each reference RIR, adapt-
ing them to match the temporal structure of the target spec-
trogram. This weighting matrix W effectively shapes each
reference spectrogram to align with the characteristics of
the target RIR.

Finally, we predict the target RIR’s log-magnitude spec-
trogram Spred via the weighted sum of the log-magnitude
spectrograms of the reference RIRs: Spred =

∑K
k=1 Wk ⊙

Sref,k. Wk is the k-th row of the weight matrix W, applied
to the corresponding log-magnitude spectrogram Sref,k.

3.2.4. Training and Inference
During training, we use the magnitude STFT L1 Loss to
compute the error between the magnitude spectrograms of
the predicted target RIR and the ground-truth RIR: LSTFT =
∥ exp(Spred)−exp(Sgt)∥1. Additionally, following [32], we
incorporate an energy decay loss to optimize the decay pat-
terns of the predicted spectrogram. The energy decay loss
LED is defined as: LED = ∥EDC(Spred)− EDC(Sgt)∥1,
where EDC(·) denotes the energy decay curve of RIR in
the frequency domain. The total loss becomes Ltotal =
LSTFT + λLED, where λ is a weight to balance the contribu-
tion of the energy decay loss.

During inference, we randomly samples K RIRs
{Aref,k}k=K

k=1 along with corresponding source locations
{Pref,k}k=K

k=1 from a test room as reference inputs. The
model predicts the magnitude spectrogram of a target RIR,
which is then converted back to a waveform via the Griffin-
Lim [21] algorithm.

4. The ACOUSTICROOMS Dataset
To our best knowledge, there are two prior datasets with a
large number of rooms: SoundSpaces MP3D [3, 32] and
GWA [51]. SoundSpaces MP3D comprises only 83 rooms
with limited material variety (around 100 types), a fixed
one-to-one mapping between semantic labels and acous-
tic coefficients, and a constrained 2D configuration at fixed
heights. This setup restricts real-world applicability, as
actual rooms often contain diverse materials with varying
acoustic properties and require 3D spatial modeling to cap-
ture realistic sound propagation. For GWA, while it in-
cludes a large number of simulated RIRs from a wide va-
riety of synthetic rooms and explicitly models wave propa-
gation, the wave-based method it employs, PFFDTD [23], is
a lower-resolution approach. This method prioritizes com-
putational efficiency, which comes at the cost of reduced
simulation accuracy.

To address the above limitations, we introduce ACOUS-
TICROOMS, a new large-scale, high-quality dataset of sim-
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ulated RIRs specifically designed for robust generalization
across diverse room geometries, sizes, and material prop-
erties. We use Treble Technology’s simulation platform1,
where a more advanced wave-based solver, i.e., the Dis-
continuous Galerkin (DG) Method [41], is supported. Em-
ploying such techniques to simulate RIRs in our dataset is
crucial for achieving cross-room generalization and sim-to-
real transfer applications. ACOUSTICROOMS simulates 260
rooms across 10 categories, featuring 300K simulated RIRs
from different source-receiver pairs and full 3D spatial con-
figurations. Each room includes a randomized material as-
signment from a library of 332 materials across 11 cate-
gories, ensuring diversity in acoustic properties even among
similar geometries. The combination of scale, material di-
versity, and simulation fidelity enables ACOUSTICROOMS
to accurately reflect the acoustics of real-world environ-
ments.

5. Experiments
5.1. Implementation Details
In the ACOUSTICROOMS dataset, RIRs are sampled at
22,050 Hz with a maximum length of 9600 samples (0.435
s). We compute the magnitude spectrogram S with FFT
size 124, window size 62, and hop size 31, yielding a shape
of 63 × 310. Panorama depth maps of room geometry are
rendered at a resolution of 256 × 512 from the receiver’s
location, and source/receiver positions are recorded as 3D
coordinates (x, y, z). For XRIR, we implement a Vision
Transformer block Fvt with 6 multi-head attention layers
(8 heads, hidden size 512). Depth maps are divided into
16 × 32 patches, resulting in all reflection-based features
such as gr,rf and gs,rf of dimension 256 × 512. Direct path
features are calculated using sinusoidal encoding on each
3D coordinate with 20 frequency bins, and are then pro-
jected into 256-dimensional vectors via MLP. For loss cal-
culation, we set λ = 0.01 to balance the STFT loss and the
energy decay loss.

5.2. Baselines
We compare with a series of baselines as well as prior meth-
ods [32, 55]:
• Random Across Rooms: Randomly sample a RIR from

the entire dataset as the prediction for the target RIR.
• Random Same Room: Randomly sample a RIR from the

same room as as the prediction for the target RIR.
• Nearest Neighbor: Sample k-shot reference RIRs and

select the RIR with the closest spatial distance to the tar-
get source as the prediction.

• Linear Interpolation: Linearly interpolate between k-
shot reference RIRs based on the distance between each
reference and the target source location.
1https://www.treble.tech/

• Few-Shot RIR [32]: Few-Shot RIR implements a trans-
former architecture that fuses features from separate en-
coders of multi-modal conditional inputs and then gener-
ates the target RIR by decoding the transformer outputs
via a UNet decoder. We adapt their model to our task
by replacing the binaural echos with our single-channel
reference RIRs (different source and receiver locations)
and using panorama depth images as inputs to the image
encoder instead of egocentric RGBD images.

• Diff-RIR [55]: We compare with Diff-RIR in evaluation
on sim-to-real transfer. The framework utilizes the few-
shot, i.e., 12 reference RIRs, to train a differentiable ren-
dering pipeline to learn acoustics parameters of the room
geometry. For fair comparison, we finetune our XRIR
model pre-trained on ACOUSTICROOMS on the same set
of reference RIRs as Diff-RIR in each room, and then
test on the same test split. Note that Diff-RIR requires
training one model per each room and the training pro-
cess becomes computationally infeasible for large space
with complex room geometries. Therefore, we do not in-
clude it in our comparison on ACOUSTICROOMS.
In addition, for a more complete comparison with prior

methods on RIR prediction, we also adapt our method for
the single-room RIR prediction task and compare with prior
work [31, 49]. Please see Supp. for results.

5.3. Metrics
We evaluate the energy pattern of the generated RIRs
against ground-truth RIRs using three key acoustic metrics,
which are strongly correlated with hearing perception and
commonly used in prior work on RIR prediction [31, 49]:
• Early Decay Time (EDT) Error: To evaluate early re-

flection characteristics, we use the EDT error, which mea-
sures the time taken for the initial 5 dB decay in the en-
ergy curve.

• Clarity (C50): For comparing early-to-late energy ra-
tios, we employ the clarity metric C50, which provides
insights into the prominence of early reflections over later
reverberations.

• T60 Error: We evaluate the accuracy of reverberation
time by comparing the T60 value of the predicted RIR
and the ground-truth RIR. We calculate T60 using T20,
based on a linear fit between −5 dB and −25 dB on the
logarithmic energy decay curve obtained from Schroeder
Backward Integration [45].

5.4. Quantatitive Results on ACOUSTICROOMS

We show cross-room RIR prediction results in both envi-
ronments seen during training as well as unseen new envi-
ronments. As shown in Table 1, our XRIR model signifi-
cantly outperforms all baselines across all metrics (EDT er-
ror, C50 error, and T60 error). In the seen split, our XRIR
model yields the lowest errors across metrics, particularly in
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Method Seen Splits Unseen Splits

EDT error (s) C50 error (dB) T60 error (%) EDT error (s) C50 error (dB) T60 error (%)

Random Across Rooms 0.290 6.831 37.35 0.313 7.802 35.15
Random Same Room 0.129 3.567 12.80 0.172 5.440 16.08
Few-shot RIR [32] (K=1) 0.157 3.957 31.42 0.130 3.225 20.10
Few-shot RIR [32] (K=4) 0.157 4.026 31.63 0.136 3.568 19.30
Few-shot RIR [32] (K=8) 0.174 4.451 32.71 0.187 4.470 21.15
Linear Interpolation (K=8) 0.094 2.421 9.76 0.121 3.090 13.73
Nearest Neighbor (K=8) 0.064 1.717 8.94 0.090 2.667 11.64
XRIR (K=1) 0.046 1.183 9.50 0.075 1.841 13.47
XRIR (K=4) 0.040 1.005 8.15 0.068 1.335 13.28
XRIR (K=8) 0.038 0.940 8.13 0.055 1.457 10.53

Table 1. Cross-Room RIR Prediction Results for Both the Seen and Unseen Splits. We report EDT Error (EDT) in seconds, C50 Error
(C50) in dB, and T60 percentage error (T60), with lower values indicating better performance. For Few-shot RIR [32] and XRIR (Ours),
we evaluate in a few-shot manner by setting the number of reference RIRs K to 1, 4, and 8.

Method Classroom Dampened Room Hallway Complex Room

EDT C50 T60 EDT C50 T60 EDT C50 T60 EDT C50 T60

Random Across Rooms 0.546 8.740 19.03 0.771 18.726 - 0.874 11.025 21.71 0.472 7.392 16.01
Random Same Room 0.160 3.092 3.12 0.099 6.840 - 0.308 6.461 16.61 0.218 4.566 5.66
Linear Interpolation (K=8) 0.113 2.172 4.42 0.058 4.584 - 0.088 2.127 4.55 0.124 2.848 5.17
Nearest Neighbor (K=8) 0.108 1.949 2.71 0.044 3.278 - 0.068 0.990 3.02 0.091 1.936 2.53
Diff-RIR [55] (K=12) 0.113 2.147 12.39 0.100 3.796 - 0.160 2.049 14.34 0.115 2.027 12.76
XRIR (K=8) (Ours) 0.093 1.628 6.25 0.044 3.302 - 0.062 0.954 3.20 0.077 1.688 4.33

Table 2. Sim-to-Real Transfer Results in Four Real Environments from the Hearing-Anything-Anywhere Dataset [55]. We report
EDT Error (EDT) in seconds, C50 Error (C50) in dB, and T60 percentage error (T60). Due to noisy measurements in the dampened room,
resulting in low SNR and invalid T60 calculations on the EDC curve, we omit this metric for the dampened room.

C50 and T60. Our gains persists in the unseen split. In par-
ticular, our model with K = 8 reduces T60 error to around
10%, while other baselines exhibit much higher errors. This
result highlights our model’s robustness in capturing rever-
beration characteristics across different room configurations
and the ability to generalize to unseen environments with
different room acoustic properties.

The Few-Shot RIR approach from [32] does not perform
well ACOUSTICROOMS. We suspect that this is due to two
factors: i) their UNet decoder struggles to reconstruct high-
fidelity RIRs on our data, as it relies on highly compressed
fusion features; ii) their method uses binaural echoes with
co-located source and receiver positions, which fundamen-
tally differ from our setup, where reference RIRs are mea-
sured with the source and receiver at different locations.
This spatial disparity likely impacts feature relevance, lim-
iting its performance on our dataset.

5.5. Sim-to-Real Transfer to Real Environments
To evaluate whether our model can also generalize to real-
world environments, we use four real rooms from the
Hearing-Anything-Anywhere Dataset [55]. We compare
our method against Diff-RIR [55], a physics-based differ-
entiable RIR rendering pipeline that utilizes 12 reference

RIRs per room to predict RIRs for new locations. As shown
in Table 2, our model compares favorably against all base-
lines. In partilar, despite using only 8-shot references, our
method outperforms Diff-RIR that uses 12 reference RIRs
in all acoustic metrics, demonstrating its strong generaliza-
tion capabilities. We observe that our method underper-
forms on the T60 metric compared to the Nearest Neigh-
bor baseline across all four rooms. We suspect this is be-
cause T60, as a global metric, is more sensitive to measure-
ment noise due to its aggregation of all acoustic interactions
within the room. Our learning-based method can struggle
with low SNR beyond the early parts of the waveform, as
it is trained on simulation data with higher SNR than real
room measurements. In contrast, EDT focuses on early re-
flections with high SNR, make it less noise-sensity, and C50
is similarly robust due to noise smoothing in the integration
beyond the early parts. Despite this, our results demonstrate
that XRIR’s effectiveness in adapting from simulated rooms
to real environments, successfully capturing diverse room
acoustics with fewer reference RIRs than prior methods.

5.6. Qualitative Results
We present qualitative results by comparing the predicted
RIRs and acoustic maps between our model XRIR and the
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Figure 4. Qualitative Comparisons of RIR Predictions. We compare the performance of our method and the baselines both in simulated
(top row) and real (bottom row) environments. Room geometry, sample RIR predictions, and the corresponding error metrics are included.
XRIR shows more accurate RIR predictions in both settings.

Figure 5. Qualitative Comparisons of Acoustic Map Predictions in Two Real Environments: a Hallway and a Classroom. We
visualize the acoustics maps by computing the C50 metric at dense locations in the entire room and compare with the ground-truth acoustic
map. XRIR achieves C50 distributions that better matches the ground-truth.

baseline methods, in both simulated and real environments.
RIR Predictions. In Fig. 4, we visualize sample results

of RIR waveforms on a simulated apartment and a real room
with complex geometry. Side-by-side comparison shows
that predicted RIRs from XRIR align more closely with the
ground-truth RIR waveforms in the early part than base-
lines. This observation is consistent with the low acoustics
metrics errors achieved by our method in the quantitative
results shown in Table 1.

Acoustics Maps. Furthermore, we compute the RIRs at
dense locations across the entire real rooms, and compute
the clarity of the predicted and ground-truth RIRs to recon-
struct acoustics maps according to the floor plans. As shown
in Fig. 5, across dense locations in these rooms, overall
XRIR achieves better C50 distribution than Diff-RIR [55]
compared to the ground-truth acoustic maps, especially at
moderate-to-low intensity regions. These qualitative results
demonstrate the effectiveness of XRIR in accurate RIR pre-
diction in both simulation and real-world settings.

6. Conclusion

We presented XRIR, a model designed for generalizable
RIR prediction across diverse room environments. To tackle
the cross-room RIR prediction task, we also introduced a
large-scale, realistic RIR simulation dataset, ACOUSTIC-
ROOMS, which includes diverse room categories, geome-
tries, and material properties. Results under the simulation
settings show that our framework outperforms prior meth-
ods and strong baselines in both seen and unseen environ-
ments. Furthermore, sim-to-real transfer experiments reveal
that our model, pre-trained on simulated data, effectively
generalizes to real-world settings. Future work may focus
on improving modeling techniques, such as using genera-
tive approach as proposed for sound generation [30, 50] to
achieve better performance on acoustic modeling with min-
imal reference RIRs, or dynamically choose the suitable
number of reference RIRs needed depending on the com-
plexity of the environment.
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roomacoustics: A python package for audio room simula-
tion and array processing algorithms. In 2018 IEEE interna-
tional conference on acoustics, speech and signal processing
(ICASSP), pages 351–355. IEEE, 2018. 2

[44] Carl Schissler, Gregor Mückl, and Paul Calamia. Fast
diffraction pathfinding for dynamic sound propagation. 40
(4), 2021. 2

[45] Manfred R Schroeder. New method of measuring reverbera-
tion time. The Journal of the Acoustical Society of America,
37(6 Supplement):1187–1188, 1965. 6

[46] Nikhil Singh, Jeff Mentch, Jerry Ng, Matthew Beveridge,
and Iddo Drori. Image2reverb: Cross-modal reverb impulse
response synthesis. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 286–295,
2021. 2

[47] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in neural
information processing systems, 33:7462–7473, 2020. 2

[48] Arjun Somayazulu, Changan Chen, and Kristen Grauman.
Self-supervised visual acoustic matching. Advances in Neu-
ral Information Processing Systems, 36, 2024. 3

[49] Kun Su, Mingfei Chen, and Eli Shlizerman. Inras: Implicit
neural representation for audio scenes. Advances in Neural
Information Processing Systems, 35:8144–8158, 2022. 1, 2,
3, 4, 6

[50] Kun Su, Xiulong Liu, and Eli Shlizerman. From vision to
audio and beyond: A unified model for audio-visual repre-
sentation and generation. arXiv preprint arXiv:2409.19132,
2024. 8

[51] Zhenyu Tang, Rohith Aralikatti, Anton Jeran Ratnarajah, and
Dinesh Manocha. Gwa: A large high-quality acoustic dataset
for audio processing. In ACM SIGGRAPH 2022 Conference
Proceedings, pages 1–9, 2022. 2, 5

[52] Po-Yao Huang Andrew Owens Gopala Anumanchipalli Tin-
gle Li, Renhao Wang. Self-supervised audio-visual sound-
scape stylization. In ECCV, 2024. 3

[53] A Vaswani. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. 4, 5

[54] Mason Wang, Samuel Clarke, Jui-Hsien Wang, Ruohan Gao,
and Jiajun Wu. Soundcam: a dataset for finding humans us-
ing room acoustics. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 3

[55] Mason Long Wang, Ryosuke Sawata, Samuel Clarke, Ruo-
han Gao, Shangzhe Wu, and Jiajun Wu. Hearing anything
anywhere. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11790–
11799, 2024. 2, 6, 7, 8

5741


