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Abstract

Concept Bottleneck Models (CBMs) provide an inter-
pretable framework for neural networks by mapping visual
features to predefined, human-understandable concepts.
However, the application of CBMs is often constrained by
insufficient concept annotations. Recently, multi-modal pre-
trained models have shown promise in reducing annotation
costs by aligning visual representations with textual concept
embeddings. Nevertheless, the quality and completeness
of the predefined concepts significantly affect the perfor-
mance of CBMs. In this work, we propose Hybrid Concept
Bottleneck Model (HybridCBM), a novel CBM framework
to address the challenge of incomplete predefined concepts.
Our method consists of two main components: a Static Con-
cept Bank and a Dynamic Concept Bank. The Static Con-
cept Bank directly leverages large language models (LLMs)
for concept construction, while the Dynamic Concept Bank
employs learnable vectors to capture complementary and
valuable concepts continuously during training. After train-
ing, a pre-trained translator converts these vectors into
human-understandable concepts, further enhancing model
interpretability. HybridCBM is highly flexible and can be
easily integrated with existing CBMs to improve both inter-
pretability and performance. Experimental results' on mul-
tiple datasets demonstrate that HybridCBM outperforms
current state-of-the-art CBMs and achieves comparable re-
sults to black-box models. Additionally, we propose novel
metrics to assess the quality of learned concepts, showing
that they perform comparably to predefined concepts.

1. Introduction

Deep Neural Networks (DNNs) have become increasingly
dominant in various fields, including computer vision, nat-
ural language processing, and speech recognition. How-
ever their complex and deep structures present a significant
challenge to interpretability, often earning them the label
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Figure 1. Our proposed concept-trainable CBM reduces the need
for meticulously designed concepts by incorporating learned con-
cepts (e.g., ‘yellowish throat’), thereby enhancing interpretability
and performance while minimizing manual design effort.

of ‘blackbox’ [23]. Addressing this challenge is crucial
not only for ensuring accurate predictions, but also for pro-
viding scientists and engineers with more accessible tools
for designing, developing, and debugging models. Inter-
pretability is particularly critical in domains such as health-
care [10], medicine [33], education [7], and finance [28],
where high-stakes decision-making requires transparency
and trustworthiness to ensure reliability and accountabil-
ity. Therefore, there has been a growing focus on research
aimed at developing interpretable models. While post-hoc
explanation methods [34, 37, 55] have gained popularity,
they often fall short by providing unfaithful representations
of the model’s underlying computations [35].

A natural approach to improving interpretability in
DNNs is to design inherently interpretable models that
leverage high-level concepts to describe features extracted
by black-box models [36], imitating the way humans en-
code and understand the world[20]. One notable approach
following such methodology is the Concept Bottleneck
Models (CBM) [17]. CBMs operate by first predicting
concepts from image representations mid-way through the
decision-making process. These models pair each image
with its predefined concepts and are trained in an end-to-end
manner—initially predicting concepts and subsequently us-
ing these predictions to make final decisions. While this
method of concept prediction enhances model interpretabil-
ity, it often faces two fundamental challenges: (1) it is per-
ceived to underperform compared to black-box models [11],
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and (2) the requirement for precise annotations for each
concept significantly limits their broader application.

To mitigate these shortcomings, recent research has ex-
plored multimodal pretrained model-based CBMs [15, 52,
54], leveraging CLIP [32] to establish correspondences be-
tween visual and textual representations, thereby reducing
the reliance on costly concept annotations. Specifically,
CLIP encodes images and human-understandable concepts
into a shared feature space, enabling the creation of a con-
cept bottleneck by directly mapping visual representations
to concept embeddings instead of through manual annota-
tions. Regarding the trade-off between interpretability and
performance, some studies [15, 38, 52] have emphasized
the construction of high-quality concept banks through ef-
ficient concept selection. However, establishing a compre-
hensive concept bank remains a significant challenge [53],
often constrained by the inherent limitations in language
expressiveness and precision. In response, other research
efforts have explored the integration of a residual linear
layer to address the issue of incomplete concept extraction
[39, 54], albeit at the cost of interpretability. For exam-
ple, ResCBM [39] introduces optimizable vectors to cap-
ture missing concepts, utilizing a candidate concept bank in
the residual component to regularizing these vectors toward
specific candidates during training. However, the model is
limited by the scope of the candidate concept bank, restrict-
ing its ability to learn concepts outside the predefined set.
Additionally, the effectiveness of the residual structure re-
mains an open question.

In this work, we propose the Hybrid Concept Bottleneck
Model (HybridCBM), specifically designed to address the
challenges of incomplete concept representation, predefined
concept bank dependence, and scalability issue by dynam-
ically discovering new concepts directly from visual repre-
sentations. Different from prior methods that rely on resid-
ual structure or external concept banks, our approach incor-
porates a hybrid concept bank comprising both a static and a
dynamic concept bank. Initially, we establish the static con-
cept bank by leveraging a large language model (LLM) like
GPT-3.5 [27, 31], which is celebrated for its broad world
knowledge [12, 30, 45]. For instance, in Figure 1, when
prompted about a palm warbler, GPT-3.5 provides informa-
tion such as ‘feeds on the ground’. This textual descrip-
tions is then encoded into embeddings by the text encoder
of CLIP. Next, we initialize a set of optimizable vectors that
form the dynamic concept bank. These vectors are refined
to identify concepts present in the input image but absent
from the static concept bank. To further enhance the con-
cept discovery, we pre-train a concept translator, such as
GPT-2 [31], to translate these newly discovered unknown
concepts into textual descriptions, a process we term as
‘concept labeling’. To evaluate the understandability, visual
relevance and factual accuracy of the dynamic concepts, we

further design a set of evaluation metrics, some of which

are based on Vision-Language Model (VLM) GPT-40°. Our

main contributions can be summarized as follows:

1. Innovative Hybrid Concept Bank: Our model intro-
duces a hybrid concept bank that combines static and dy-
namic concepts, allowing it to adapt and refine its inter-
pretative capabilities dynamically. This structure lever-
ages both predefined expert knowledge while enabling
the discovery of new relevant concepts.

2. Seamless Integration of LLM Technologies: By em-
ploying advanced language models (LLM for defining
static concepts, translating new concepts and VLM for
evaluation) alongside the visual-textual bridging capa-
bilities of CLIP, our model bridges the gap between vi-
sual representation and textual interpretation.

3. Enhanced Interpretability and Performance: Our ap-
proach maintains high interpretability through transpar-
ent concept labeling, while improving performance by
discovering new concepts from visual information.

2. Related Work

Interpretable Neural Networks. One way to build an in-
terpretable neural networks is the use of a concept-based
explanation [3, 13, 15, 21, 29, 38, 43, 49]. Concept Bot-
tleneck Models (CBMs) [17] are among the most popu-
lar approaches for making predictions based on human-
interpretable concepts but require labor-intensive concept
annotations for each image. Similarly, Concept Activation
Vectors (CAVs) [ 14] represent concepts as normal vectors to
the decision boundaries that separate positive and negative
samples of a concept, though they also need extra datasets to
train SVMs for each concept. Owing to the simple structure
based on human-defined concepts, there have been studies
aiming to alleviate these drawbacks, e.g., costly concept an-
notation and trade-off between interpretability and perfor-
mance. Post-hoc Concept Bottleneck (PCBM) [54] utilizes
ConceptNet [42] to obtain concepts and Leveraging CLIP
to generate bottlenecks by projecting visual representations
into the concept subspace. However, PCBM-h [54] incorpo-
rates a residual linear predictor that compensates for miss-
ing concepts by directly adding logits to PCBM’s predictor.
While this modification helps to recover accuracy, it does so
at the expense of interpretability. The label-free CBM [26]
uses CLIP for concept annotation, allowing arbitrary visual
backbone to be transformed into an CBM without the need
for labeled concept data. Labo [52] concentrates on con-
cepts selection after generating candidate concepts through
LLM. ResCBM [39] builds on PCBM-h’s residual structure
by using a candidate concept bank to guide and refine opti-
mizable vectors. However, the model’s expressive potential
is limited by the extent of the candidate concept bank.

Zhttps://openai.com/index/hello-gpt-4o/
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Figure 2. Overview of the Hybrid Concept Bottleneck Model (HybridCBM), which is designed for interpretable concept learning and
labeling. First, a Concept Translator is pre-trained to do concept-labeling. Next, a pretrained alignment model (CLIP) is used to obtain
embeddings of predefined concepts, forming the Static Concept Bank. The Dynamic Concept Bank learns missing concepts and aligns its
distribution with the Static Concept Bank to create the final concept bottleneck. Finally, an interpretable concept-based predictor classifies

targets based on the concept scores.

CLIP in Image Captioning. Multimodal pretrained mod-
els like CLIP [32], trained on over 400 million image-text
pairs using unsupervised contrastive loss, exhibit impres-
sive capabilities in image captioning tasks [1, 19, 46]. Pre-
vious studies, such as [24] and [40], have primarily used
CLIP as a visual encoder for captioning tasks, while [19]
projects visual embeddings into CLIP’s text embedding
space to preserve visual information. However, these ap-
proaches often underutilize CLIP’s aligned multi-modal la-
tent space. Similar to [19, 24], we collect image-caption
pairs and a vast corpus to train a GPT-2 from scratch as our
concept translator, fully leveraging CLIP’s latent space and
bridging the gap between image and concept embeddings
and their corresponding textual descriptions.

3. Method

We provide an overview of our methodology in Figure 2.
Our model incorporates a hybrid concept bank and a pre-
trained concept translator (Section 3.2). The concept bank
consists of a set of optimizable vectors, which are refined
to discover new concepts through a concept-interpretability
training scheme (Section 3.3). As a result, the learned
concepts are not only discriminative and orthogonal but
also aligned with human-understandable semantics. The
pre-trained concept translator performs concept labeling by
mapping these learned, initially unknown vectors to mean-
ingful human concepts. Finally, we apply a sparse linear
layer over the similarity scores between hybrid concepts

and images, enabling us to identify the specific concepts
the model relies on for its decisions.

3.1. Problem Formulation

Consider a dataset D = (x,y), where each image z is

paired with a label y € ). We use the image encoder Fi, g

and text encoder F;,; of CLIP [32] to map images and text

into a shared d-dimensional feature space, respectively. A

pre-trained concept translator 7 then maps these shared d-

dimensional features back to textual concepts. In order to

store the interpretable information of the model, we con-
struct a hybrid concept bank E¢ € RVo X4, comprising:

« Static Concept Bank Es € RVs*?, Contains text fea-
tures Fipi(c) € R? extracted by the text encoder Fiu;.
Each row corresponds to a predefined concept Cs =
{c1,¢2,...,cng} generated from a large language model.

+ Dynamic Concept Bank Ep € RVP x4, Consists of a
set of randomly initialized learnable vectors e; € R? that
are optimized to capture missing visual-specific features.
After training, These vectors could be mapped to the tex-
tual concept space Cp = {c1,ca, . .. ,CNp} by the trans-
lator 7, where each concept ¢ = T (e).

The overall hybrid concept bank is defined as Fc = Eg &

FEp, where & denotes concatenation. The total number of

concepts in the bank is indicated by No¢ = Ng + Np. To

compute the concept scores, we utilize the CLIP image en-
coder to extract the image feature f = F, (x) € RY

Therein, the similarity between f and F¢ is computed using

projection length, resulting in the concept score S € RVe,
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which reflects the presence of particular concepts in the
image z: S; = || f|lycos(f,Ec) = f - ECT, where *
denotes Lo normalization and cos is the cosine similarity.
Since S provides a unique representation for each image,
it serves as a concept bottleneck. These per-image repre-
sentations can be naturally used to support an interpretable
classification. Following the existing CLIP-based CBMs
[26, 52, 54], we train a linear layer as the concept classifier
¢ : 9 = ¢(S),R¥e — Y to make final predictions in the
label space based on the concept scores. In our perspective,
we intend to improve the performance and learn abundant
concepts from the visual information at the same time. This
can be solved by the following optimization problem:

(Lo (007 Bs @1 Ep )y)]

+ AQ2(¢) + T,

min [E
& ED (z,y)~D

D

where L.5(7,y) is the cross-entropy loss function, {2 is a
complexity measure used to promote sparsity in the linear
layer, )\ is the regularization strength and I represents the
optimization objective for the Dynamic Concept Bank Ep,
introduced in Section 3.3.

3.2. Hybrid Concept Bank Establishment

Previous methods, such as Labo [52], generate a set of
relevant concepts and then form a concept bank through
the submodular selection method. However, the predefined
concepts often suffer from inherent flaws due to their lim-
ited scope, and the selection process may inadvertently omit
important information. To address these issues, we pro-
pose a Hybrid Concept Bank that dynamically discovers
concepts directly from the visual representation, combining
both a Static Concept Bank and a Dynamic Concept Bank.

Static Concept Bank. Following Labo, we utilize GPT-3.5
to generate a set of candidate concepts for each class name
y € Y with prompts such as “describe what the <CLASS
NAME> looks like”. After initially generating 500 concepts
per class, we perform concept selection to ensure a balanced
representation. Specifically, we select IV concepts for each
class using both submodular and random selection methods
for comparison. Assume K = |}, this process yields a
total of Ng = N x K concepts, which are then encoded by
the text encoder F;,; of CLIP and fixed during training.

Dynamic Concept Bank. Unlike the static counterpart,
the Dynamic Concept Bank is initialized with a set of con-
cept vectors eq € R?, which are optimized through the
proposed Concept-Interpretability Training Scheme (Sec-
tion 3.3). Thus, it can adaptively capture the unique and
rich visual-specific features during the training process.

Concept Labeling. To enhance the interpretability of

learned concepts, we pre-train a concept translator using
GPT-2 [31] architecture to invert the CLIP text encoder.

Following recent work [19, 24, 50], we use prefix language
modeling for training. Details of the pre-training process
are provided in Appendix B.2. The translator maps each
concept embedding e to its textual description c through
¢ = T (e), assigning semantic meaning to the learned con-
cepts and improving interpretability.

3.3. Concept-Interpretability Training Scheme

The previous CLIP-based CBMs rely solely on predefined
concepts, often overlooking the potential of learning con-
cepts directly from visual representation. Since CLIP maps
both images and texts into a shared feature space, we could
then leverage this capability to optimize the dynamic con-
cept bank E'p based on the given image embedding f. To
achieve this, we introduce a concept-interpretability train-
ing scheme that regularizes E'p through multiple loss func-
tions. The goal is to obtain a set of learnable concepts that
are discriminative, diverse, and semantically aligned with
human-understandable meanings, thereby enhancing both
model interpretability and performance.

Discriminability Loss. The discriminability loss ensures
that learned concepts are highly activated for images of their
own class and less activated for images of other classes.
We first divide the dynamic concept vectors into several
subsets corresponding to the classes, such that EFp =
{EL,FE%, ... ,EE}, where K is the number of classes.
Each subset E¥, contains Np/K dynamic concept vectors
associated with class k. To encourage vectors ¢, € E%
to learn specific information of images within class k& and
incorporate semantic information from the class name, we
define the intra-class loss:

e =k {—F-an+alm = Fuk)-al} @

where f = Fimg(z) is the image feature, Fy,¢ (k) is the
class embedding, cy, is the sampled concept vector for class
k from the distribution of vectors E¥ via reparameteriza-
tion®, « is a hyperparameter and m is a margin used to pre-
vent excessive similarity to class k, with a value of 0.85 as
defined in Label-Free [26]. To ensure that concepts are dis-
tinct between different classes, we further define the inter-
class loss:

Lipter = (yr — 1) {_f Okt ‘m — Frar(k) - CAk‘} 3

The total discriminability loss is defined as Lg;s = Linra+
BLinter, Where (3 is a balancing hyperparameter.

Orthogonality Loss. To enhance the diversity of dynamic
concept embeddings and reduce redundancy, we introduce
an orthogonality loss, which comprises two components:

3¢ = up + o, - €, with puy, and o, being the mean and standard devi-
ation of E% respectively, and € ~ N(0, I) is sampled from the standard
normal distribution.
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intra-class diversity and inter-bank diversity. First, we pro-
mote the dynamic concept embeddings within the same
class to be orthogonal to each other. Specifically, we de-
fine the intra-class diversity loss as follows:

K
1 1
‘COT —intra — E — E ék it ék . (4)
t t K P (ND/K)2 = D,i D7]|

where egi and e’B, ; are dynamic concept embeddings as-
sociated with class &k, K is the number of classes, and Np
is the total number of dynamic concepts. Second, to mini-
mize redundancy between static and dynamic concepts, we
define the inter-bank diversity loss as follows:

Ns Np

NSIND Z Z [€s.i - €p,l 4)

i=1 j=1

£ort—i’mfe7‘ =

where eg; and ep ; are static and dynamic concept em-
beddings, respectively, and Ng is the number of static
concepts. The total orthogonality loss is then defined as
l:ort = Eort—intra + [-"o’r't—intew

Distribution Alignment Loss. To enhance consistency be-
tween the distributions of dynamic and static concepts, we
employ the Sinkhorn divergence [8], an entropy-regularized
version of the Sinkhorn distance. We define the distribu-
tion alignment loss as: Laign = Sagiv,e(Ep, Es), where
G iv,e denotes the Sinkhorn divergence, Ep € RNpxd and
Es € RNs*d are the dynamic and static concept embed-
dings, respectively. This loss encourages the distribution of
dynamic concepts to align with that of static concepts, thus
promoting semantic consistency and interpretability.

Overall Loss Function. The total loss function com-
bines the classification loss with the proposed regularization
terms £ = Ecls + )\dis»cdis + )\ort»cort + )\align»caligm where )\disv
Aort> and Agiign are hyperparameters to balance the losses.

4. Experiments
4.1. Experiments Setup

Dataset. We collect image-caption pairs from MSCOCO
[4] and then compile a large corpus from ConceptNet [42]
and MSCOCO, which also includes concepts generated by
GPT-3.5. After filtering out concepts that contain fewer
than 15 words, the dataset includes 1,738,985 concepts and
566,747 image-concept pairs, used to pre-train our concept
translator for translating both image and text embeddings.
We also perform comprehensive experiments on 11 clas-
sification datasets, covering a broad spectrum of domains,
including: ImageNet [9], CIFAR-10 and CIFAR-100 [18],
Food-101 [2], FGVC-Aircraft [22], Flower-102 [25], CUB-
200-2011 [48], UCF-101 [41], DTD [6], HAM10000 [47]
and RESISC45 [5]. Each dataset is split into training, vali-
dation, and test sets, as per standard practices.

Baselines. To evaluate our model, we compare it with a

linear probe and several interpretable methods.

* Linear Probe. Following the implementation of CLIP
[32], we train a logistic regression model using cuML’s
L-BFGS solver with an L2 penalty term, directly from
the visual representations encoded by CLIP.

* PCBM [54]. PCBM conceptualizes each class as a node
in ConceptNet [42] and aggregates neighboring nodes as
concepts. PCBM-h [54] introduces an additional clas-
sifier that maps image embeddings into the label space,
serving as residual shortcuts to the original classifier.

» Labo [52]. Labo employs a submodular function to select
concepts for each class from candidate concepts gener-
ated by LLM. Unlike other models, it uses dot-product,
without any normalization, to determine the presence of
particular concepts in an image.

* ResCBM[39]. Building on PCBM-h, ResCBM utilizes
ConceptNet [42] to construct a candidate concept bank.
It optimizes a set of vectors to align with some concepts
from this bank, thereby enhancing the interpretability.

Implementation Details. The hybrid concept bank is con-
structed with a default ratio of 0.5 between the dynamic and
static concept bank, ensuring an equal number of concepts
for each class. Our model is trained using the Adam [16] op-
timizer within the PyTorch Lightning framework. We save
checkpoints that achieve the highest validation accuracy and
perform evaluations on the test set. Further details can be
found in the supplementary material.

4.2. Classification Performance

Few-shot Comparison. To assess the performance gap be-
tween HybridCBM and ‘black-box’ models, we compare
our method with the linear probe (LP) in a few-shot setting.
We follow the few-shot evaluation protocol introduced by
CLIP [32]. Specifically, we randomly sample 1, 2, 4, 8, and
16 images per class from the training set and use all avail-
able images in the fully-supervised setting. For all experi-
ments, we use CLIP-ViT-L/14 as the backbone and compare
the performance with submodular [52] and random static
concept selection methods. As shown in Table 1, the mean
test accuracy across all datasets indicates that HybridCBM
performs similarly to LP in the fully-supervised setting and
significantly surpasses LP in the few-shot scenario. Fig-
ure 3 presents detailed comparisons across eight datasets,
with the last three provided in the appendix.

CBMs Comparison. We further compare HybridCBM
with other CBMs and employ CLIP-RNS50 as the back-
bone to ensure fairness. Additionally, since our dynamic
concepts are derived from visual representation, we cre-
ate a variant called CaptionCBM, where N /K images for
each class are sampled and translated into captions to re-
place the dynamic concepts. As summarized in Table 2,
despite strong baselines like LaBo, and ResCBM, Hybrid-
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Figure 3. Comparison of test accuracy between HybridCBM with submodular and random selection methods, and Linear Probe across 8

datasets. The x-axis denotes the number of labeled images.

Method 1 2 4 8 16 Full  Avg
Linear Probe 5230 64.60 71.94 7833 8155 86.84 72.59
Labo N/A  NA NA NA NA 8572 N/A

o 58.64 69.52 7508 7871 8193 8683 75.12

HybridCBM
z'andom) 57.58 66.69 74.62 78.02 80.98 86.82 74.16

Table 1. Mean accuracy across all datasets, at different shots.

Method Interpretability CIFAR-10 CIFAR-100
Linear Probe X 88.8 70.1
PCBM-h [54] X 87.6 69.9

PCBM [54] v 84.5 56.0
Label-Free [26] v 86.3 65.2
Labo [52] v 87.6 65.2
ResCBM [39]Jr v 88.0 67.9
CaptionCBM v 81.8 60.7
HybridCBM v 88.03 68.38

Table 2. Test accuracy comparison between HybridCBM and on
CIFAR-10 and CIFAR-100. t indicates the reported performance. *

CBM achieves state-of-the-art performance on CIFAR-10
and CIFAR-100, and delivers results comparable to LP.

4.3. Interpretability of the dynamic concepts

In addition to evaluating classification performance, we as-

sess the interpretability of the learned concepts in this sec-

tion using the following metrics:

¢ Concept Purity: This metric measures how well each
concept aligns with its respective class, reflecting the abil-
ity of the concepts to capture class-specific features. For
each class k, we compute the average cosine similarity
between the normalized embedding of the concept é; and
the class name ﬁtmt(k).

K
1 .
Purity = % E (ér - Frat(K)) (6)
k=1
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where K is the total number of classes, and é;, denotes the
mean embedding of concepts for class k. Higher purity
indicates stronger alignment with class-specific features.
Concept Separation: The Separation metric quantifies
how distinct the learned concepts are across classes, cap-
turing their semantic independence. We calculate the av-
erage cosine similarity between the mean concept embed-
dings of all distinct class pairs, excluding self-similarity.

K K

Separation = 1 — Iﬂ%—l) Z Z (é;i-¢5) (1)

i=1 j=i+1

where é; denotes the mean embedding of concepts for
class ¢. Higher separation indicates greater independence
between concepts of different classes in semantic space.
Semantic Alignment: To ensure semantic alignment be-
tween translated concepts and intended dataset classes,
we use GPT-3.5 to evaluate each translated concept’s ac-
curacy in representing a specific class with a binary “yes”
or “no” response. The validation metric, “Semantics”, is
calculated as the proportion of concepts that GPT-3.5 cor-
rectly associates with the intended classes, reflecting the
semantic interpretability. The detailed information is pro-
vided in Appendix B.3.

Np
1
Semantics = — 6(LLM c;,classes), 1 8
7 DL ) ®

where LLM (c;,classes) represents the response to
whether concept ¢; belongs to one of the classes, and
is a binary function that returns 1 for “yes” and O other-
wise. To mitigate potential limitations of the LLM, we
emphasize comparing the relative size of static and dy-
namic concept groups over absolute absolute values.
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Selected and random concepts show their contributions to class relationships and inter-concept dependencies.

Loss Concept Purity Separation Semantics Precision@t
Bank (%) (%) (%) (%)
. (Subﬁa}}(ﬁfﬂar) 19.3 86.2 38.3 48.5
ot e | 192 824 30.9 473
Dynamic 0.1 100.0 0.01 0.05
Leis+dis ~ Dynamic 71.9 76.9 30.0 34.8
Legrais  Dynamic | 72.0 77.1 28.9 34.1

Lr‘ s . .

+o‘i’t¢gffgn Dynamic 39.8 80.0 32.8 46.2

Table 3. Evaluation of HybridCBM’s static and dynamic concepts
across various metrics.

¢ Concept-Image Relevance: As shown on the right in
Figure 5, to evaluate the accuracy of the concepts align-
ing with the actual content of each image, we use the
ability of GPT-40 in image understanding to calculate
the retrieval Precision@t. For a sampled image of each
class, we measure the average proportion of ¢ concepts
that GPT-40 confirms as relevant.

VLM (c;t,img),1)
t

1 o 5(
PrecisionQt = e Zl 9
where VLM (¢; +,9mg) is the response of GPT-40 and K
is the total number of classes. c; ; is ¢ concepts of class 7.

Concept Analysis. We perform concept analysis on the
CUB dataset. Figure 4 compares the correlation structures
of dynamic and static concepts. In Figure 4a, the Concept-
Class Correlation Map shows that our dynamic concepts
align closely with their corresponding classes while ef-
fectively capturing diversity across classes. The Concept-
Concept Correlation Map further highlights the diversity
among concepts. Notably, regions with higher coefficients

reflect natural semantic relationships between certain class
names, such as “red-eyed vireo” and “white-eyed vireo”.
The pattern also seen in the Class-Class Correlation Map.
The weight matrix of the classifier in Figure 4a reveals
that the dynamic concept part has a more pronounced di-
agonal compared to the static concept, indicating that dy-
namic concepts are more discriminative and align better
with their corresponding classes. In Figure 4b, we present
similar relation maps of concepts selected by a submodular
function and randomly selected concepts from each class.
The selected concepts are more cohesive with their classes,
whereas the randomly selected concepts, despite belonging
to each class, do not exhibit clear patterns. Table 3 details
the evaluation metrics proposed. For static concepts, sub-
modular selection achieves a higher semantics score than
random selection (38.3% vs 30.9%). For dynamic concepts,
after introducing the loss functionsLg;s, Lort, and Lagign.,
the semantic score of dynamic concepts improved to 32.
8%, approaching static concepts. This indicates that our
proposed loss functions effectively enhance the alignment
and discriminative power of dynamic concepts.

Interpretability. Interpretability can be divided into pattern
and case interpretability. Pattern interpretability focuses on
general patterns the model has learned, providing insight
into its global behavior and how features influence classes.
For example, a classifier’s weight matrix reflecting bias to-
ward each class. Case interpretability explains the model’s
decisions for individual instances, offering a local under-
standing of why a specific prediction was made for an im-
age—for instance, concept scores indicating how strongly
certain concepts are present. Following MMCBM [51], We
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@& Concept Retrieval

You are an expert binary concept classifier,

capable of determining whether a given concept
has any form of relationship with the provided
image. If it has any relationship with the image,

* most abundant albatross species

respond with “yes”. Otherwise, respond with "no".

* sometimes called the "black albatross’
* known as the black-browed albatross

>

Class Case interpretability
Name static concepts dynamic concepts
Llays 4-6 white eggs 1.black and white albatross
g Laysan 2.black and white striped 2-1 ¢ albat L
O | Albatross body Jlargest albatross species
§ tlé)f?::x];)e/’ phyllo dough 1.light brown center
. . 2.a food is arranged on
2| Baklava 2 filled with nuts and 2 large platter
é sweetened with syrup
5 1.popular choice for making
@ o
z Clematis garlands and wreaths l.lgrg,e »a seed plant
S b L : 2.violet
= .borne on a climbing vine

(no, yes, yes)

Figure 5. On the left, the top-2 static and dynamic concepts for randomly selected classes across three datasets are presented, focusing on
case interpretability. The concept retrieval process with vision-language model GPT-4o is illustrated on the right.

concepts Ratio of Dynamic Concepts

Method class [0 02 04 06 08 1
LP N/A 87.09 N/A N/A N/A N/A N/A
5 83.21 84.46 8545 86.08 86.34 86.78
Hybrid 10 84.27 8547 86.28 86.51 86.87 87.13
(submodular) 15 8475 85.84 86.45 86.78 87.08 87.25
20 84.93 86.09 86.44 86.84 86.88 87.24
5 80.95 84.04 8528 8596 86.07 86.53
Hybrid 10 82.88 8528 86.30 86.62 86.82 87.13
(random) 15 83.65 85.81 86.54 86.80 86.89 87.25
20 83.85 86.09 86.66 86.86 87.06 87.24

Table 4. Ablation average results on 10 datasets for varying the
ratio of dynamic concepts under different methods.

Method Metric Lets  Letssdis fglr‘f”““ fgi‘;igffgn
S ) accuracy 84.60  84.36 84.29 84.54
Hybrid (submodular) ion@t 0047 348 34.1 462
. accuracy 84.50 84.16 83.91 84.17
Hybrid (random) precision@t  0.044 348 35.5 472

Table 5. Ablation results for varying training loss with a dynamic
concept ratio of 0.5 and 10 concepts per class.

use the attention matrix, computed as .S; x W, where W is
the classifier’s weight, to show that the prediction is based
on specific concepts within the image. As illustrated in Fig-
ure 5, we show the case interpretability by selecting the top
2 concepts for each image. we evaluate case interpretability
by computing retrieval precision@t, measuring how accu-
rately the top 5 identified concepts align with the image con-
tent. The results are shown in Table 3, where the static con-
cepts serve as a baseline for comparison with the dynamic
concepts; we focus on relative differences due to the poten-
tial limitations of GPT-40. The dynamic concepts, across
all loss functions, achieve 46.2%, closely approaching the
static concepts’ performance of 47.3%. This demonstrates
that dynamic concepts offer high interpretability and can ef-
fectively serve as an alternative to static concepts.

4.4. Ablation Study

Dynamic Concept Bank Ratio. To examine the impact of
dynamic concept ratios on performance, we test various ra-
tios on 10 datasets except ImageNet, as shown in Table 4.

As the dynamic concept ratio increases, performance will
also improve. Notably, using random concepts per class
results in an performance drop compared to the submodu-
lar selection method. Furthermore, employing learned con-
cepts, even at a ratio of 0.2, significantly improves perfor-
mance.

Concept-Interpretability Loss. Table 5 reports the accu-
racy and precision@t (t=5) of learned concepts across dif-
ferent combinations of loss functions, comparing the Hy-
brid (submodular) and Hybrid (random) methods. A slight
decrease in accuracy is observed as additional terms are
added to the L. but significantly improves precision@t.
This suggests a trade-off, where additional constraints,
while slightly reducing accuracy (e.g., accuracy drops from
84.60 to 84.29 for the Hybrid (submodular) method), en-
hance concept interpretability.

5. Conclusion

In this paper, we introduced HybridCBM, a novel hy-
brid concept bottleneck model designed to enhance inter-
pretability and performance by combining both static and
dynamic concept banks. Unlike traditional CBMs, our
method allows the model to dynamically discover new con-
cepts during training, thus expanding its ability to capture
unique and relevant features. Our approach also incorpo-
rates a concept translator to provide human-readable inter-
pretations for the learned dynamic concepts, making the
model’s decision process more accessible and understand-
able. Through extensive experiments on various datasets,
our method achieves comparable accuracy to ‘black-box’
models while retaining transparency, bridging the gap be-
tween interpretability and performance. We believe that
HybridCBM represents a significant step forward in the de-
velopment of interpretable machine learning models. Fu-
ture work could further explore methods for optimizing the
accuracy of concept labeling and exploring more sophisti-
cated strategies for dynamic concept discovery.
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