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Figure 1. LUCAS: A novel approach for high-fidelity Layered Universal Codec Avatars. We disentangle face and hair into a layered
structure, supporting both real-time mesh-based avatar (45 FPS on mobile) and high-fidelity Gaussian avatar generation. Our universal
layered prior model also enables accurate expression and pose transfer, even for unseen subjects, while maintaining visual quality.

Abstract
Photorealistic 3D head avatar reconstruction faces crit-

ical challenges in modeling dynamic face-hair interac-
tions and achieving cross-identity generalization, particu-
larly during expressions and head movements. We present
LUCAS, a novel Universal Prior Model (UPM) for codec
avatar modeling that disentangles face and hair through a
layered representation. Unlike previous UPMs that treat
hair as an integral part of the head, our approach sepa-
rates the modeling of the hairless head and hair into distinct
branches. LUCAS is the first to introduce a mesh-based
UPM, facilitating real-time rendering on devices. Our lay-
ered representation also improves the anchor geometry for
precise and visually appealing Gaussian renderings. Ex-
perimental results indicate that LUCAS outperforms ex-
isting single-mesh and Gaussian-based avatar models in
both quantitative and qualitative assessments, including
evaluations on held-out subjects in zero-shot driving sce-
narios. LUCAS demonstrates superior dynamic perfor-
mance in managing head pose changes, expression trans-
fer, and hairstyle variations, thereby advancing the state-
of-the-art in 3D head avatar reconstruction. Project page:
https://lsn33096.github.io/LUCAS/.

1. Introduction
Photorealistic 3D head avatars are vital for authentic com-
munication in virtual and augmented environments, where

capturing subtle expressions and head movements is cru-
cial [33, 44, 55]. High-quality avatars enhance experiences
in telecommunications, social VR, virtual training, and
healthcare by ensuring accurate geometry and appearance,
particularly in dynamic scenarios involving facial and hair
deformations [7–9, 11, 12, 15–17, 26–32, 38, 46, 60, 61].
Recent advances in Codec Avatars [22, 35] have achieved
remarkable photorealism through sophisticated rendering
techniques and volumetric primitives. But these methods
often demand significant computational resources, posing
challenges for real-time rendering on mobile devices.

Pixel Codec Avatars (PiCA) [37] tackle performance
challenges by introducing a pixel-level decoder that dynam-
ically adjusts texture resolution in screen space. This ap-
proach enables efficient real-time rendering on mobile de-
vices through direct per-pixel color decoding, eliminating
the need for fixed texture maps or vertex-based representa-
tions. However, PiCA is a personalized model that requires
time-consuming per-identity training, which limits its scala-
bility. Additionally, its single-mesh representation struggles
with accurately reconstructing hair, often resulting in arti-
facts such as hair tails appearing on shoulders or unnatural
hair deformation during head movements.

Universal avatar reconstruction approaches [5, 23] have
advanced cross-identity generalization, enabling codec
avatars to generalize from universal prior models (UPM)
trained on data from multiple users. However, these meth-
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Figure 2. Layered representation enables adaptive alignment
between face and hair. LUCAS’s independent face and hair de-
formation captures subtle hair movements in response to facial ex-
pressions, unlike single-mesh avatars that are globally controlled.
ods encounter significant challenges in hair modeling and
dynamic scenarios. Their simplistic representations and in-
accurate guide meshes often lead to misaligned geometry
and limited hair modeling capabilities, hindering natural de-
formation during expressions and head movements.

To address these challenges, we propose LUCAS
(Layered Universal Codec Avatars), a layered representa-
tion that separates face and hair components, allowing them
to deform independently while maintaining precise align-
ment. This design enables more accurate hair dynamics
by using shared encoding features but decoding them sepa-
rately for the face and hair. For instance, as shown in Fig. 2,
when the subject gazes upward and frowns, the hair natu-
rally lowers toward the eyebrows. In contrast, single-mesh
representations lack the flexibility to disentangle face and
hair movements as separate factors, leading to interdepen-
dent deformations. Smoothness regularization further ex-
acerbate this issue by enforcing coupled motion. LUCAS
overcomes these limitations, enabling realistic and indepen-
dent deformation for natural movement. LUCAS follows a
universal training strategy, training the UPM on data from
multiple users, which allows it to generalize easily to un-
seen users and generate realistic codec avatars. Addition-
ally, we show that our layered mesh design improves the
anchor geometry for precise and visually appealing Gaus-
sian renderings [18]. In summary, our contributions are:
• We introduce LUCAS, the first mesh-based Universal

Prior Model that enables cross-identity generalization
while maintaining real-time rendering on devices.

• The first compositional Universal Prior Model for the
head, featuring a layered representation for both the hair-
less head and hair, which significantly enhances the qual-
ity of both face and hair rendering.

• LUCAS demonstrates improved dynamic performance in
managing head pose changes, expression transfers, and
hairstyle variations, even on unseen subjects in zero-shot
driving scenarios.

2. Related Works
3D Head Avatar Reconstruction. Early approaches to
head avatar reconstruction were primarily based on 3D

Morphable Face Models (3DMFMs) [4], which used lin-
ear combinations of prototype vectors for shape and tex-
ture generation, later extended with blendshapes for ani-
mation [21]. However, these manual blendshape-based ap-
proaches were limited in expressiveness and required sig-
nificant effort to create. Deep learning has revolutionized
this field, introducing non-linear models through VAEs [43]
and GANs [48] for more complex facial representations.
Lombardi et al. [33] pioneered joint modeling of shape
and appearance using VAEs, while works like Bagautdinov
et al. [2] and Ranjan et al. [43] employed mesh convolu-
tions for detailed geometry capture. FLAME [24] incor-
porated linear blend skinning for jaw and neck movements
but had difficulty conveying subtle expressions. Recent ad-
vances have focused on improving rendering quality and
generalization. The Pixel Codec Avatar (PiCA) [37] intro-
duced dynamic texture resolution through pixel-based de-
coding, departing from traditional fixed texture maps [33]
and vertex-based representations [64]. However, PiCA’s
subject-specific nature and single-mesh representation limit
its scalability and hair modeling capabilities. Universal
models like LatentAvatar [57] and URAvatar [23] have at-
tempted to address generalization across identities, but of-
ten struggle with preserving person-specific details and han-
dling large deformations, particularly in hair regions. Cao et
al. [5] proposed a shared expression space across identities,
but accurate guide meshes remained challenging, affecting
reconstruction quality. Our work addresses these limitations
by combining PiCA’s efficient and accurate pixel-based ren-
dering with a Universal Prior Model for cross-identity gen-
eralization. Crucially, we introduce a layered representa-
tion that separates face and hair components, enabling better
alignment and optimization compared to single-mesh ap-
proaches while maintaining high visual fidelity across dif-
ferent identities, expressions and poses.

3D Hair Modeling. Hair modeling in 3D avatar recon-
struction has been explored through various approaches.
Traditional strand-based methods, whether using multiview
stereo [36, 40] or single-view inference [6, 56, 62, 63], fo-
cus on explicit strand geometry recovery. While these meth-
ods can achieve high geometric accuracy, they are often
computationally intensive and impractical for mobile VR
applications. Alternative approaches have explored differ-
ent representations for hair modeling. HeadCraft [47] com-
bines parametric head models with StyleGAN-generated
displacement maps for animation control and detail preser-
vation. Volumetric methods like Neural Volumes [34] and
MVP [35] have demonstrated impressive results in hair ren-
dering, with HVH [53] and NeuWigs [54] further improving
hair animation through layered modeling. However, these
person-specific models often struggle with generalization to
novel identities. While recent works have attempted to ad-
dress generalization through pixel-aligned information [42]
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Figure 3. Dehaired Head and Hair Geometries. Our method
precisely disentangles dehaired head from hair for different users.

or cross-identity hypernetworks [5], they either face chal-
lenges with complex geometry or depend heavily on pre-
cise head mesh tracking. Our method focuses on a univer-
sal compositional representation that separately models face
and hair components using efficient mesh-based representa-
tions, enabling real-time rendering while maintaining visual
quality across diverse hairstyles and identities.

Compositional Avatar Representation. Compositional
modeling has emerged as a promising direction for improv-
ing the quality and controllability of 3D avatars. For face
and accessories, MEGANE [22] demonstrated the benefits
of compositional modeling by combining surface geometry
and volumetric representation for eyeglasses, enabling ac-
curate geometric and photometric interactions with faces.
DELTA [10] proposed a hybrid explicit-implicit representa-
tion to disentangle face and hair components, but primarily
focused on static reconstruction and hairstyle transfer. For
head avatars, RGCA [45] and URAvatar [23] have shown
the advantages of separately modeling head and eye regions
for better eye dynamics and relighting effects. Works like
GALA [19] and LayGA [25] have introduced layered repre-
sentations that decompose body and clothing, showing im-
proved results in clothing dynamics and detail preservation.
TECA [58] further extends compositional modeling to text-
guided avatar generation. Unlike previous works that treat
the head as a single entity or focus on static composition, we
introduce a layered representation specifically designed to
capture the complex dynamic interactions between face and
hair during expressions and pose changes. Our approach
uniquely combines compositional modeling with a univer-
sal prior model, enabling consistent expression transfer and
pose-dependent hair dynamics across different identities.

3. Methods

Our approach starts with generating assets for our captured
and tracked datasets (Sec.3.1), which support the universal
layered prior model (Sec.3.3), based on a novel mesh-based
UPM (Sec.3.2). Our layered design improves anchor geom-
etry for precise Gaussian renderings (Sec.3.4). Loss func-
tions and training details are outlined in Sec. 3.5.

3.1. Dataset and Assets
We use the multi-view capture system from Cao et al. [5]
to record facial performances of 76 identities captured
from 110 distinct cameras. To learn 2D hair segmentation
textures for each identity, we add predicted segmentation
masks from HRNet [51], trained on our in-house dataset.
Notably, 5 identities are bald. Starting with these bald indi-
viduals, we iteratively build a linear deformable model [3]
of bald head geometry, gradually expanding by “dehairing”
the next participant with least amount of hair until covering
all 76 identities, see Fig. 3. We learn the linear deformable
model by using Expectation Maximization (EM) for factor
analysis[13], following Torresani [50], and find that adding
Laplacian smoothness loss to the M-step can help regularize
shapes yielding better results compared to vanilla PCA [1].
Dehairing is performed by computing the expected values
of latent variables similar to the E-step by only using the
observed data (excluding hair-covered areas) which in turn
is used to infer the hidden bald geometry which we use to
inpaint the hair regions, stitched using [49].

3.2. Universal Prior Model for Pixel Codec Avatars
Pixel Codec Avatars (PiCA) [37] offers precise mesh track-
ing and real-time rendering but limited to personalized
models. Inspired by [5], we extend Personalized PiCA with
cross-identity capacity, powered by a Universal Prior Model
(UPM). We call the new model as uPiCA. Similarly, uPiCA
adopts a Variational AutoEncoder (VAE) [20] architecture
with an expression encoder, and an avatar decoder. Besides,
an identity-conditioned hypernetwork [14] is added to gen-
erate person-specific avatars.
Identity-conditioned hypernetwork Eid takes a neutral
texture map Tneu and a neural geometry image (mapping
vertex position to texture UV space), Gneu, and generates
bias maps Θid for each level of the avatar decoder D via
a set of skip connections. Eid also generates a per-identity
positional encoding f for pixel decoder and per-identity ge-
ometry displacement d for geometry decoder:

f, d,Θid = Eid(Tneu,Gneu; Φid). (1)

Φid is the trainable parameters for the identity encoder.
Expression encoder. The expression code z are generated
by the expression encoder Eexp, which takes the differences
between the current and neutral geometry and texture maps
as input: ∆Gexp = Gexp − Gneu,∆Texp = Texp − Tneu,
where Gexp and Texp are the current geometry and texture
maps, respectively. z ∈ R16×4×4 is defined as:

z = N (µ, σ); µ, σ = Eexp(∆Texp,∆Gexp; Φexp), (2)

where Φexp are the trainable parameters of Eexp. Since the
model is trained end-to-end on multi-identity data, the same

21129



z
𝜔
𝜂

z
𝜂

z
ℎ
𝜂

z
𝜔
ℎ
𝜂

𝒟!"#$%

𝒟&"#$%

𝒟!'#()

𝐠"#$%

𝐞'#()

𝐠'#()

𝐞"#$%
Neut. geometry

Geom. bias
transfer network

Down

Down

…

Down

Down

Down

…

Down

Neut. appearance

Up

Up

…

Up

Bias

Bias

Tex. bias
transfer network

…
…

…

ℇ!"
#$%&/	ℇ!"

'$!(

θ!"
),'$!(

θ!"
+,'$!(

θ!"
),#$%&

θ!"
+,#$%&

Geometry

Geometry

M
ul

ti-
m

es
h 

re
nd

er
er

𝑓'$!(

(a) Identity-conditioned hypernetwork (b) Expression encoder (c) Compositional avatar decoder

{𝑑'$!(; θ!"
",'$!(}

{𝑑#$%&; θ!"
,,#$%&}

𝒟&'#()

𝐠*%#+"#$%

𝐠*%#+'#()

𝑓#$%&

𝒟,"#$%

𝒟,'#()

𝑑#$%&/𝑑'$!(𝑓#$%&/ 𝑓'$!(

NormNorm &
Up sample

z:
𝜔:
	ℎ: 
	𝜂:

exp. code
view dir.
head pose
neck pose

𝑚"#$%

𝑚'#()

𝐆"#$%

𝐆'#()

Ident. bias 
θ!"

Geom. disp.
𝑑

Pos. encod.
𝑓

Geometry

Down

Down
…

Down

Down

Down
…

Down

Appearance

ℇ&-.

NormNorm &
Up sample

Down

Noise
𝜇 + 𝜖 ⋅ 𝜎𝜖

(𝜇, 𝜎)
z

𝒟#$%&/	𝒟'$!(

θ!"
∗,#$%&/θ!"

∗,'$!(

I.0,1
2 (s) I.0,1(s)

Figure 4. Overview of LUCAS. (a) Our identity-conditioned hypernetwork E face
id /Ehair

id generates identity-specific features {f, d} and untied
biases Θid from neutral geometry and appearance data. (b) The expression encoder Eexp learns a unified expression code space that enables
consistent expression transfer across identities. (c) Given expression code z, view direction ω, and poses {h, η}, our compositional avatar
decoder Dface/Dhair produces separate geometry and appearance maps for face and hair. These are combined with mean geometry and
geometry displacement for multi-mesh rendering, followed by separate pixel decoders for the final avatar image generation.

expression code can be reused across different identities for
driving, ensuring consistent expression transfer.
Avatar decoder. We use a set of multiview images Ic,t (i.e.,
images from camera c at frame t) with calibrated intrinsics
Kc and extrinsics Rc | tc. To condition the decoder on the
view direction, we compute ω = R⊤

c tc (approximating the
viewing direction based on a head-centered coordinate sys-
tem). This vector is transformed into a 16× 8× 8 grid via a
linear layer. Additionally, we enhance the geometry to en-
compass the shoulder region and use linear blend skinning
to model neck pose η ∈ R6. We use a similar decoder archi-
tecture D as PiCA, which consists of an appearance decoder
De, a geometry decoder Dg , and a pixel decoder Dp. Noted
that the outputs of geometry and appearance decoder are
both expression-dependent. The geometry decoder takes
the latent code z and neck pose η as input and decodes a
head-centered 3D dense position map. The appearance de-
coder uses the latent code z, viewing direction ω, and neck
pose η to decode a low-resolution, view-dependent map of
local appearance codes:

g = Dg (z, η; Θ
g
id,Φg) ; e = De (z, ω, η; Θ

e
id,Φe) , (3)

where g ∈ R256×256×3 is a map of geometry displacement,
and e ∈ R256×256×4 is a map of appearance codes. Θ∗

id
are identity-specific biases from Eq. 1 and are related to the
corresponding decoders D∗. Φ∗ are their corresponding net-
work training parameters. We define the final geometry as
G = gmean + d+ g, where we apply a Laplacian precondi-
tioning [39] to the gradients of mean geometry gmean to bias
gradient steps towards smooth solutions. d and g are the
per-identity and expression-dependent geometry displace-
ment, respectively. The final geometry G is sampled at each

vertex’s UV coordinates to produce a mesh for rasterization
with e. Rasterization assigns to a pixel at screen position s
its corresponding UV coordinates u and head-centered xyz
coordinates x, and produces the feature image Îfc,t(s). The
pixel decoder further decodes the color at each pixel to pro-
duce the rendered image through:

Îc,t(s) = Dp

(
Îfc,t(s), f, x,u; Φp

)
, (4)

where Φp are the training parameters of Dp. f is the po-
sitional encoding from Eq 1. Note that Dp uses shared
weights across subjects, avoiding identity-specific biases
from the hypernetwork. Appearance variations are effec-
tively captured by the feature inputs, enhancing network ef-
ficiency for runtime deployment and eliminating the need to
manage multiple shaders for different users.

3.3. Universal Layered Prior Model
To enable a universal prior model for compositional face
and hair avatars across identities, we extend uPiCA to a lay-
ered approach, as shown in Fig. 4. In this model, we employ
two parallel hypernetworks for face and hair, i.e., E face

id and
Ehair

id . This separation allows the model to capture intricate
details, such as hair deformation due to head movements
or facial expressions. We employ a unified expression en-
coder that extracts shared features from the tracked data,
enabling synchronized control of both face and hair defor-
mations through a common expression space. The encoded
information is then passed in parallel to two independent
decoders, Dface and Dhair, allowing each part to adapt to its
unique geometry and appearance.
Compositional avatar decoder. We use the same decoder
architecture as uPiCA from Sec. 3.2 for the face decoders,
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and denote them as Dface
g , Dface

e , and Dface
p . For the hair ge-

ometry decoder Dhair
g , we use both the head pose h and neck

pose η as inputs since these factors influence hair move-
ment. Additionally, we include the latent code z as the
input of Dhair

g , as our experiments reveal that hair deforms
with certain facial expressions, such as frowning. This be-
havior arises because the skin beneath the hair shifts with
facial movements, causing the hair to adjust accordingly.
For the hair appearance decoder Dhair

e , we take all inputs of
Dhair

g along with the view direction ω to account for view-
dependent appearance variations, ensuring that both the ge-
ometry and texture adapt seamlessly across viewing angles.
The layered hair decoders are formulated as:

ghair = Dhair
g (z, η, h; Θg,hair

id ,Φhair
g );

ehair = Dhair
e (z, ω, η, h; Θe,hair

id ,Φhair
e ),

(5)

where ghair ∈ R256×256×3 and ehair ∈ R256×256×4 are the
position and texture map of the hair mesh, respectively.
Multi-mesh joint rendering. After decoding the face and
hair components, we obtain two geometry maps: Gface and
Ghair. These maps are concatenated and jointly processed
with the texture maps eface and ehair using a differentiable
renderer [41] to produce a unified feature vector for the en-
tire screen image. We further apply the face and hair mask
mface and mhair to the rendered feature map and feed the
masked feature images Îf,face

c,t (s) and Îf,hair
c,t (s), along with

their corresponding x and u into separate pixel decoders
Dface

p and Dhair
p . The final rendered image is given by:

Îl
c,t(s) = Dface

p (Îf,face
c,t (s),x,u; Φface

p )⊙mface

+Dhair
p (Îf,hair

c,t (s),x,u; Φhair
p )⊙mhair.

(6)

3.4. Layered Meshes for Gaussian Rendering
We show that our layered mesh design improves the anchor
geometry for precise and visually appealing Gaussian ren-
derings. Building on prior works [5, 23], we parameterize
and anchor Gaussians on the vertices of our layered PiCA
guide mesh. We employ parallel face and hair branches for
the Gaussian hypernetwork and decoder, which share the
same architecture. For simplicity, we denote the hypernet-
work and decoder for each branch as Egs

id and Dgs. The hy-
pernetwork is formulated as:

dcmean,Θ
gs
id = Egs

id (Tneu,Gneu; Φ
gs
id ), (7)

where dcmean represents the mean color attribute from neutral
appearance data, and Θgs

id is the identity-specific bias map.
We denote the vertex positions of the layered PiCA guide
mesh as {t̂k}Mk=1, which serve as anchors for the Gaussians.
The Gaussian decoder Dgs takes the expression code z and
neck pose η as input, and is conditioned on the identity un-
tied bias map Θgs

id . It outputs the following attributes:

{δtk, qk, sk, dck, ok}
M
k=1 = Dgs (z, η; Θgs

id ,Φ
gs) , (9)

where δtk is the position delta, qk is the rotation quaternion,
sk is the scale, dck is the color attribute, and ok is the opacity.
The final Gaussian positions are computed as tk = t̂k+δtk,
and colors as dcmean + dck for rendering.

3.5. Training and Losses

We jointly optimize all the trainable network parameters Φ
using a total loss Ltotal consisting of:

Ltotal = λpicaLpica + λgsLgs + λdehairLdehair, (8)

where Lpica and Lgs are the PiCA reconstruction and Gaus-
sian losses, respectively, and Ldehair is the dehairing loss. λ∗
are their corresponding loss weights. For the dehairing loss
Ldehair, a large initial weight is applied with a decay dur-
ing training to accelerate the convergence of bald geometry,
ensuring accurate dehaired geometry without interference
from the hair mesh. The dehaired avatar serves as the foun-
dation for adding a hair layer, allowing joint optimization
of both face and hair with precise alignment.
PiCA reconstruction loss. We extend the original PiCA
losses in [37] to a layered reconstruction loss, defined as:

Lpica = λILI + λDLD + λNLN + λMLM

+ λSLS + λKLLKL + λsegLseg.
(9)

Here, LI , LD, LN , and LKL correspond to photometric,
depth, normal, and KL divergence losses, respectively, as
defined in the original PiCA paper [37]. The photometric
loss LI measures the L1 difference between predicted and
ground truth images. The mesh tracking loss LM handles
hair and face meshes separately by leveraging the tracked
hair mesh and the dehaired geometry from avatar dehair-
ing. Smoothness terms LS , including Laplacian and gen-
eral smoothness regularization, are applied independently
to both hair and face meshes to prevent artifacts caused
by noisy depth inputs, incomplete depth supervision, or
stochastic gradient descent noise. The segmentation loss
Lseg ensures accurate reconstruction of hair regions, partic-
ularly thin strands along the sides of the head, preventing
them from blending into the face mesh. Notably, we refine
the hair segmentation mask through erosion and dilation,
creating a mask that extends beyond exact boundaries to ac-
count for inaccuracies, and weights Lseg.
Gaussian loss. The parameters of the Gaussian branch are
optimized using the following loss:

Lgs = λrenderLrender + λscaleLscale + λ∆L∆. (10)

The Gaussian render loss Lrender applies the L1 loss on the
rendered image, following the original 3DGS paper [18]. To
regularize the scale of the Gaussian primitives, we define a
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Figure 5. Qualitative comparison (mesh). Our layered representation enables better reconstruction of long hair compared to uPiCA’s
single-mesh approach. While uPiCA struggles with hair-shoulder intersections and loses hair tail details during head movement, our
method maintains clean geometry with accurate hair shape and positioning across different head poses.

pre-clamped scale regularization loss as:

Lscale =
1

M

M∑
k=1

(
1

max(rmin, sk)
· I(sk < rmin)

+ (max(0, sk − rmax))
2
)
,

(11)

where sk is the scale value of the k-th Gaussian primitive
along any axis, and M is the total number of primitives.
The variables rmin and rmax represent the lower and upper
bounds of the primitive scale, set to 0.1 and 5.0 in our ex-
periments. Note that the regularization loss is computed on
the original, unclamped scales sk to penalize deviations ef-
fectively. We clamp the primitive scale values to the range
[rmin, rmax] before passing them to the Gaussian renderer,
ensuring the rendered Gaussians remain within a controlled
range. I(·) denotes the indicator function, which equals 1
if the condition is true and 0 otherwise. This formulation
ensures stable optimization by keeping the Gaussian scales
within appropriate bounds. Moreover, we apply a delta po-
sition loss L∆ to both the hair and face Gaussians to prevent
them from drifting too far from their guide mesh. This loss
ensures that hair Gaussians stay within the hair area, and
Gaussians on the bald regions of the face mesh do not mi-
grate into the hair region. Specifically, the loss penalizes
position deviations as follows:

L∆ = E
[(
δthair)2]+ E

[(
δtface ⊙ (1−mface)

)2]
, (12)

where δthair and δtface represent the position deltas of the
hair and face Gaussians, respectively, and mface is the face

mask used to ensure that the delta loss is only applied to the
bald head region. More training details are given in suppl.

4. Experiments
Evaluation protocols. We adopt three widely-used metrics
for evaluation: Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index Measure (SSIM) [52], and Learned
Perceptual Image Patch Similarity (LPIPS) [59]. We re-
strict the evaluation to the foreground regions, as defined
by masks derived from the reconstructed geometry.
Baselines. For mesh-based methods, we primarily com-
pare with Universal PiCA (uPiCA), which extends Pixel
Codec Avatars (PiCA)[37] by incorporating our proposed
Universal Prior Model (UPM), as detailed in Sec. 3.2. Ad-
ditionally, we perform per-identity comparisons with PiCA
to evaluate personalized reconstruction performance. For
Gaussian-based methods, our main comparison is with
URAvatar [23], benchmarking our model’s ability to cap-
ture fine-grained visual details with Gaussian splatting.

4.1. Evaluation of the layered representation
Disentangled representation enhances mesh quality. A
key contribution of our work is the compositional represen-
tation of the face and hair as two separate meshes. This
design addresses a fundamental limitation of single-mesh
avatars: their constrained UV space allocation, where hair
is restricted to a small portion of the UV map while the
face dominates. By allowing separate UV maps for face and
hair, our approach enables more accurate representation of
complex hairstyles, particularly for long hair. As shown in
Fig. 5, the comparison across various head poses demon-
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Ground truth uPiCA (mesh)             LUCAS (mesh) URAvatar (gs) LUCAS (gs)Ground truth PiCA (mesh)             LUCAS (mesh) LUCAS (gs)

Figure 6. Qualitative comparison. Left: Comparison with personalized models shows our method achieves more precise hair recon-
struction than PiCA’s mesh results. Right: In comparison with universal models, while uPiCA exhibits artifacts such as hair growing
from shoulders, our LUCAS (mesh) achieves cohesive reconstruction. When rendered with Gaussian splatting, LUCAS (gs) demonstrates
superior detail preservation compared to URAvatar, particularly in complex hairstyles.

Ground Truth LUCAS (mesh) uPiCA (mesh)

Figure 7. Comparison on dynamic hair animation. Our LUCAS
mesh tracks hair strand deformation and aligns with head and neck
movements, outperforming uPiCA in dynamic scenarios.

strates our method’s superior capability in reconstructing
long hair details. While uPiCA struggles with hair recon-
struction, especially during head movement, our approach
maintains precise geometry and reduces common artifacts
such as hair color bleeding onto shoulders. This improve-
ment becomes particularly evident when the avatar tilts or
lowers its head, where our layered representation ensures
the hair remains correctly positioned, resulting in visually
coherent and realistic renderings.
Improved hair deformation during animation. In Fig. 7,
we demonstrate the advantage of our method in more dy-
namic scenarios. The examples show how our LUCAS
mesh deforms to match hair strand movement in response
to head and neck poses, accurately tracking the motion of
long hair. In contrast, uPiCA struggles to adapt the hair
strands to the changing head positions, resulting in less nat-
ural deformations. This comparison highlights the benefit
of our layered approach, which provides better control over
hair dynamics and improves realism during animation.

Table 1. Quantitative comparisons on per-subject (†) and cross-
subject (∗) optimization against the state-of-the-art. The top three
techniques are highlighted in red, orange, and yellow, respectively.

Method PSNR ↑ SSIM ↑ LPIPS ↓
†PiCA (mesh) [37] 32.0512 0.8895 0.2678
†LUCAS (mesh) 33.5211 0.9044 0.2479
†LUCAS (gs) 35.2027 0.9286 0.2407
∗uPiCA (mesh) 32.5623 0.8971 0.2594
∗LUCAS (mesh) 33.0254 0.9073 0.2537
∗URAvatar (gs) [23] 33.1227 0.9034 0.2464
∗LUCAS (gs) 34.5579 0.9201 0.2394

Enhanced Gaussian avatars through better meshes. The
improved mesh structure strengthens the foundation for
Gaussian avatars, as the Gaussian splatting process relies
heavily on the underlying mesh geometry. While Gaus-
sian splatting can mitigate some errors inherent in single-
mesh models, our layered approach further enhances visual
fidelity, particularly for intricate hairstyles. As shown in
Fig. 6, we demonstrate improvements over both personal-
ized and universal models. Compared to PiCA, our ap-
proach achieves more detailed hair reconstruction even at
the mesh level, with Gaussian splatting further enhancing
the visual fidelity. In the universal model comparison, while
uPiCA suffers from artifacts like disconnected hair grow-
ing from shoulders, LUCAS’s mesh representation achieves
more cohesive reconstruction. When comparing Gaussian-
based methods, LUCAS (gs) demonstrates clear advantages
over URAvatar in preserving fine details. These visual im-
provements are quantitatively validated in Table 1.

4.2. Ablation study

Impact of expression code. In Fig. 8(a), we compare re-
sults with and without the expression code for hair. With-

21133



(b)

Ground truth LUCAS (mesh) w/o exp. code LUCAS (mesh) w/ exp. code

(a)

Ground truth LUCAS (mesh) w/o hair seg LUCAS (mesh) w/ hair seg

Figure 8. Ablation study. (a) Expression code improves face-
hair synchronization during expressions. (b) Hair segmentation
regularization preserves fine hair details.

Table 2. Ablation study on expression code and hair segmentation
regularization, evaluated on both training and unseen subjects. The
top two techniques are highlighted in red and yellow, respectively.

Training subjects Unseen subjects

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o exp. code 34.1014 0.9129 0.2498 31.9128 0.8874 0.2601
w/o hair seg 34.0285 0.9140 0.2485 31.7964 0.9098 0.2554
Full model 34.4981 0.9189 0.2402 32.5847 0.9087 0.2496

out the expression code, the hair mesh fails to move natu-
rally with facial movements, particularly during expressions
like frowning. This observation aligns with the findings in
Fig. 2, where a subject looks upward and frowns, the hair
should lower slightly toward the eyebrows. Our layered rep-
resentation enables this natural movement by sharing the
same expression code z but decoding it separately for face
and hair, allowing each component to deform independently
and precisely. This advantage is further validated by the
quantitative improvements shown in Table 2.

Impact of segmentation regularization. In Fig. 8(b), we
assess the effect of hair segmentation regularization. This
component is particularly crucial for reconstructing thin
hair, as seen in the example, where the hair on both sides is
quite fine. Without segmentation regularization, the mesh
struggles to capture these thin strands, resulting in blurred
renderings. Adding the segmentation term significantly im-
proves the mesh reconstruction, allowing the fine hair to ap-
pear correctly in the final render. Quantitative results are
also shown in Table 2.
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Figure 9. Visualization of avatar driving. (a) Expression retar-
geting from a source identity (top left) to multiple avatars demon-
strates precise transfer of facial annd hair details. (b) Zero-shot
driving on unseen subjects shows accurate preservation of fine de-
tails around eyes and mouth regions.

4.3. Evaluation of avatar driving
Driving avatars with diverse inputs. Our universal model
demonstrates versatile driving capabilities across different
types of inputs as shown in Fig.1. More specifically, in
Fig. 9(a), expressions from a source identity (top left) are
accurately transferred to multiple personalized avatars, pre-
serving fine details in both wrinkles and hair. This precision
stems from our universal layered prior model, where sepa-
rate decoding of face and hair enables better reconstruction
of intricate details.
Testing on zero-shot driving. To further evaluate gener-
alization, we test our model on unseen subjects through
zero-shot driving. Fig. 9(b) demonstrates that our model
successfully transfers novel expressions to untrained iden-
tities while maintaining precise facial features, particularly
around the eyes and mouth regions.

5. Conclusion
We present LUCAS, the first universal compositional rep-
resentation for 3D head avatars that disentangles face and
hair components. This separation allows independent defor-
mation, resolving issues like misplaced hair and misaligned
dynamics. It also improves the anchor geometry for pre-
cise and visually appealing Gaussian ren- derings. Our Uni-
versal Layered Prior Model enables effective cross-identity
generalization and avatar driving, even for unseen subjects.
Limitation and future work. Our layered approach im-
proves face and hair reconstruction but struggles with ex-
treme hair deformations. Unseen poses during driving can
degrade long hair deformation, especially in zero-shot sce-
narios. Future work will focus on relighting, training with a
broader range of hairstyles for a more robust universal prior,
and fine-tuning on real-world data to enhance applicability.
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rand. Hair photobooth: geometric and photometric acquisi-
tion of real hairstyles. ACM Trans. Graph., 27(3):30, 2008.
2

[41] Stanislav Pidhorskyi, Tomas Simon, Gabriel Schwartz, He
Wen, Yaser Sheikh, and Jason Saragih. Rasterized edge gra-
dients: Handling discontinuities differentiably. In Computer
Vision – ECCV 2024, pages 335–352, Cham, 2025. Springer
Nature Switzerland. 5

[42] Amit Raj, Michael Zollhofer, Tomas Simon, Jason Saragih,
Shunsuke Saito, James Hays, and Stephen Lombardi. Pixel-
aligned volumetric avatars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11733–11742, 2021. 2

[43] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3d faces using convolutional
mesh autoencoders. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 704–720, 2018. 2

[44] Alexander Richard, Colin Lea, Shugao Ma, Jurgen Gall, Fer-
nando De la Torre, and Yaser Sheikh. Audio-and gaze-driven
facial animation of codec avatars. In Proceedings of the
IEEE/CVF winter conference on applications of computer
vision, pages 41–50, 2021. 1

[45] Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan
Li, and Giljoo Nam. Relightable gaussian codec avatars. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 130–141, 2024. 3

[46] Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen Lom-
bardi, Tomas Simon, Jason Saragih, and Yaser Sheikh. The
eyes have it: An integrated eye and face model for photo-
realistic facial animation. ACM Transactions on Graphics
(TOG), 39(4):91–1, 2020. 1

[47] Artem Sevastopolsky, Philip-William Grassal, Simon
Giebenhain, ShahRukh Athar, Luisa Verdoliva, and Matthias
Neissner. Headcraft: Modeling high-detail shape variations
for animated 3dmms. 2025. 2

[48] Gil Shamai, Ron Slossberg, and Ron Kimmel. Synthesiz-
ing facial photometries and corresponding geometries us-
ing generative adversarial networks. ACM Transactions on
Multimedia Computing, Communications, and Applications
(TOMM), 15(3s):1–24, 2019. 2

[49] Olga Sorkine-Hornung and Marc Alexa. As-rigid-as-
possible surface modeling. In Eurographics Symposium on
Geometry Processing, 2007. 3

[50] Lorenzo Torresani, Aaron Hertzmann, and Christoph Bre-
gler. Learning non-rigid 3d shape from 2d motion. In
Advances in Neural Information Processing Systems. MIT
Press, 2003. 3

[51] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recogni-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43:3349–3364, 2019. 3

21136



[52] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 6

[53] Ziyan Wang, Giljoo Nam, Tuur Stuyck, Stephen Lombardi,
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