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Abstract

Salient Object Ranking (SOR) aims to study human attention
shifts across different objects in the scene. It is a challenging
task, as it requires comprehension of the relations among
the salient objects in the scene. However, existing works
often overlook such relations or model them implicitly. In
this work, we observe that when Large Vision-Language
Models (LVLMs) describe a scene, they usually focus on the
most salient object first, and then discuss the relations as
they move on to the next (less salient) one. Based on this
observation, we propose a novel Language-Guided Salient
Object Ranking approach (named LG-SOR), which utilizes
the internal knowledge within the LVLM-generated language
descriptions, i.e., semantic relation cues and the implicit en-
tity order cues, to facilitate saliency ranking. Specifically,
we first propose a novel Text-Guided Visual Modulation
(TGVM) module to incorporate semantic information in the
description for saliency ranking. TGVM controls the flow of
linguistic information to the visual features, suppresses noisy
background image features, and enables the propagation of
useful textual features. We then propose a novel Text-Aware
Visual Reasoning (TAVR) module to enhance model reason-
ing in object ranking, by explicitly learning a multimodal
graph based on the entity and relation cues derived from
the description. Extensive experiments demonstrate superior
performances of our model on two SOR benchmarks.

1. Introduction
The Salient Object Ranking (SOR) task is recently proposed
to study how humans shift their attention across different
objects in a scene. By mimicking how humans sequentially
perceive the scene, SOR models can facilitate many down-
stream tasks, including autonomous driving [12, 47], impor-
tant people detection [46, 59], and scene understanding [15].

Siris et al. [48] first propose to model the relations among
salient objects and global scene context for saliency rank
prediction across the objects. Tian et al. [53] propose to
jointly model object-based and spatial attention for inferring

the saliency rank. Sun et al. [51] propose to first partition
salient objects into different groups and then model their
relations based on a dense pyramid transformer. Guan and
Lau [14] explore human pose cues to learn high-level inter-
actions between humans and surrounding objects for ranking
prediction. Despite their success, these methods often pro-
duce inconsistent saliency ranks with respect to those from
humans. For example, existing methods may predict a higher
saliency rank for the relatively larger motorcycle rather than
the rider (Fig. 1(A)), or neglect some small salient objects
but include those noisy background objects (Fig. 1(B)). The
main reason for this limitation is that unlike humans who
can easily identify/associate high-level semantic relations
among objects (e.g., “riding” and “playing table tennis” for
the two examples in Fig. 1) when they determine the viewing
order, existing methods do not consider such cues explicitly.

We observe that when Large Vision-Language Models
(LVLMs) [5, 19, 35] describe a scene, they tend to start with
the most salient object in the image and interpret rich se-
mantic information (i.e., attributes and relationships). For
example, the caption generated by an LVLM [5] for Fig. 1(A)
starts from the most salient object (i.e., “A man”), and de-
scribes not only the spatial relation (i.e., “next to”) but also
the semantic relation (i.e., “ride”) to the other object (i.e.,

“motorcycle”). In Fig. 1(B), we can also see that the LVLM [5]
describes the semantic relation (i.e., “playing table tennis”)
and mimics humans’ attention shifts to describe objects se-
quentially, i.e., from “one holding a paddle” to “the other
standing in front of him” and “other people observing the
game”. This observation inspires us to incorporate the se-
mantic relations and implicit orders from the descriptions
generated by LVLMs for salient object ranking.

Based on the above observation, we propose in this pa-
per a novel language-guided salient object ranking method
(called LG-SOR), which takes an image and a language de-
scription (generated by an LVLM) as input and learns to con-
dition the ranking process on the extracted visual stimuli and
semantic guidance. LG-SOR includes two novel modules.
First, we propose a novel Text-Guided Visual Modulation
(TGVM) module to incorporate the semantic information
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Description: “A man is standing next to a black motorcycle parked on the street. He is wearing a leather jacket and helmet, indicating that
he is either preparing to ride the motorcycle or has just finished riding it...”

(B)

Description: “A group of people are playing table tennis in backyard. Two people are actively playing game, with one holding a paddle
and the other standing in front of him, ready to return the ball. In addition to two players, there are other people observing the game ...”

Figure 1. Existing methods [14, 51, 53] may predict unrealistic saliency ranks when they fail to understand the semantic relations among
different salient objects. We observe that LVLMs (e.g., [5]) tend to focus on salient objects in an image, and their generated descriptions
contain semantic relations of these objects. (In each description, texts related to the salient objects are marked in bold while those related to
object relations are underlined.) We therefore propose a new method, LG-SOR, to explicitly exploit such cues in the language descriptions
from LVLMs to enhance saliency ranking.

in the text description with the visual features, which helps
filter noisy background information and allows useful infor-
mation to propagate further. Second, we propose a novel
Text-Aware Visual Reasoning (TAVR) module to harness the
implicit order within the entity cues and enhance ranking
order reasoning within relation cues from the language de-
scription. It explicitly parses the description into entity cues
(e.g., “a man, a black motorcycle” in Fig. 1(A)) and relation
cues (e.g., “standing next to, ride”), and learns to construct
a multimodal graph. As shown in Fig. 1, our approach can
understand the semantic relations between different objects
according to the input text descriptions, predicting correct
rank orders and their masks.

Our main contributions can be summarized as follows:
• We propose the first language-guided saliency ranking ap-

proach (LG-SOR), which leverages language descriptions
to guide salient object ranking.

• We propose a novel TGVM module to exploit the semantic
information in the description to learn global semantic
context information, and a novel TAVR module to enhance
the reasoning of saliency ranks by explicitly modeling the
extracted entity and relation cues from the description.

• We conduct extensive experiments to analyze our approach
and show that it outperforms state-of-the-art methods.

2. Related Work
Salient Object Ranking (SOR). Islam et al. [22] propose to
combine the binary saliency maps from multiple observers to
infer a saliency consensus map for each input image. These
saliency consensus maps are then considered as ground truth
for model training. Later, Siris et al. [48, 49] propose and
formulate the salient object ranking task as to determine

the order of focusing and then shifting the attention across
different objects by an observer, following the human atten-
tion process [40]. Subsequently, a number of methods are
proposed to improve the SOR performance via designing dif-
ferent learning techniques (e.g., neural graphs [6, 36, 44, 62]
and transformers [50, 51, 53]), and modeling different con-
textual cues (e.g., object positions [10], object-based and
spatial attention [53], relations between object groups [51],
and human poses [14]). More recently, Guan and Lau [13]
propose to model human foveal and peripheral visions, by
predicting salient objects one by one in a sequential manner
to form the saliency rank.

Unlike the above existing works, which either overlook or
only implicitly model low-level spatial and high-level seman-
tic relations among objects derived from image features, our
method explicitly captures these relations and the implicit
orders derived from the language description, which can be
readily obtained from LVLMs.
Salient Object Detection (SOD) aims to detect the visu-
ally distinctive object(s) in an image. Recent SOD meth-
ods are deep learning based. Some of them focus on fus-
ing or enhancing features of different levels via, e.g., dy-
namic convolution [41], recurrent blocks [43], attention
mechanisms [38, 45, 71], and transformer-based architec-
tures [34, 42]. Other methods use auxiliary tasks/modalities,
e.g., image captioning [69], depth [72], light fields [29], and
edge detection [70], to facilitate saliency detection. There is
also a group of methods [9, 26, 52, 54, 55, 68] proposed to
detect salient objects at the instance level.

Despite their success, these methods only detect salient
objects in an image, and do not consider ranking the saliency
order of the detected objects.
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Language-Guided Segmentation (LGS) aims to segment
the target object(s) in an image according to the input de-
scription. A key difference among existing LGS meth-
ods is that they use different strategies to fuse linguistic
and visual features, e.g., feature concatenation [18], graph-
based blocks [17, 20, 21], attention mechanisms [61], and
transformers-based feature fusion in the encoder [63], de-
coder [8, 33, 60, 65, 74] or both sides [64].

LGS is different from our language-guided SOR in two-
fold. First, LGS descriptions describe the target objects,
serving to differentiate them from other objects. They usu-
ally focus on the attributes, such as colors, positions, and
appearances, and may sometimes contain low-level spatial
(e.g., next to and behind) relations to other objects. In con-
trast, our descriptions describe the entire scene. They tend to
describe salient objects with their implicit order, and focus
on the spatial and semantic relations among them. Sec-
ond, while LGS methods prioritize cross-modal matching
between discriminative textual and visual features of the
target object for the segmentation, our LG-SOR approach
focuses on extracting the semantic relations and the implicit
orders from the descriptions for saliency ranking.
Large Vision-Language Models (LVLMs) [2, 75] are re-
cently proposed to provide visual comprehension and reason-
ing by borrowing the strong reasoning capability of Large
Language Models (LLMs) [4, 27, 56, 66]. LVLMs have
achieved impressive success in several vision tasks, e.g.,
image captioning [5, 35], question answering [30, 66, 67],
reasoning segmentation [25, 73], object detection [57, 58],
and few-shot learning [76].

In this work, we explore how to leverage LVLMs for
saliency ranking, by extracting useful knowledge in the lan-
guage descriptions generated by LVLMs to guide the SOR
model to understand the relations of different objects.

3. Proposed Method
We observe that the way large vision-language models
(LVLMs) [5, 19, 35] describe images coincides with hu-
man scene perception. LVLMs, like humans, prioritize and
describe the most salient objects first, and then shift the fo-
cus to the less salient objects, while also incorporating the
relationships between these objects. Inspired by this observa-
tion, we propose in this paper the Language-Guided Salient
Object Ranking (LG-SOR) method.

Fig. 2 illustrates the LG-SOR framework. Given an in-
put image I, we first employ an LVLM (e.g., [5]) to gen-
erate a detailed textual description T ∈ RNw comprising
Nw words, prompted by a predefined instruction such as
“Write a detailed description for the image”. We then extract
multi-scale visual features {Vi ∈ RHi×Wi×Ci}4i=1 using
a visual encoder and text features (including word features
Lw ∈ RNw×Cl and sentence features Ls ∈ R1×Cl) using
a text encoder, where Ci, Hi, Wi denote the number of

channels, height, and width of the visual features in the i-th
scale and Cl denotes the number of channels of the text fea-
tures. To selectively incorporate language cues into visual
features, we propose the Text-Guided Visual Modulation
(TGVM) module to enhance the visual features Vi with
both word-level Lw and sentence-level Ls textual features
through a modulation operation. This produces semantics-
enhanced visual features Fm, which are then decoded via a
transformer decoder to produce semantics-enhanced salient
object embeddings Os. We then propose the Text-Aware Vi-
sual Reasoning (TAVR) module to construct a multi-modal
graph for robust object reasoning. Taking the entity cues Le

and relation cues Lr (derived from the language description),
and the learned semantics-enhanced salient object embed-
dings Os as input, the TAVR module predicts order-aware
object embeddings Og . Finally, the first-scale visual features
V1 and the semantics-enhanced salient object embeddings
Os are exploited for saliency mask prediction through the
mask head [3]. The semantics-enhanced visual features Fm

and order-aware salient object embeddings Og are used to
predict the saliency ranks via the rank decoder. The rank de-
coder processes the input Og and Fm through Nd standard
transformer decoder layers and a linear layer to produce the
rank score for each object. Finally, we combine the rank
scores with the salient instance masks (predicted by the mask
head) to produce the output ranking result.

3.1. Text-Guided Visual Modulation (TGVM)

While language descriptions can provide rich semantic infor-
mation, they can also introduce noisy information (e.g., de-
scriptions of non-salient background objects) to the saliency
ranking process. To address this problem, we propose a
novel Text-Guided Visual Modulation (TGVM) module to
learn semantics-enhanced salient object representations con-
ditioned on both visual and text features. TGVM learns to
selectively incorporate useful textual information while sup-
pressing background noise. It first utilizes the modulation op-
eration (as shown in Fig. 2) to produce semantics-enhanced
visual features Fi, conditioned on visual features (Vi) and
text features (Lw, and Ls), and then a transformer decoder
is adapted to generate the output semantics-enhanced salient
object embeddings Os.
Modulation Operation. To selectively integrate valuable
textual information, we learn to scale and shift the attendance
of the text features by considering contextual information.
Specifically, we process visual features Vi and word features
Lw by adding position embeddings and projecting them to a
unified dimension. We then use cross-attention to obtain a
text-attended visual representation Mi. However, this repre-
sentation may inherit noise from word-level features. Hence,
we incorporate global semantics from sentence features Ls

to adjust the attendance of potential noisy features. We em-
ploy a regression layer [23] to learn the scaling and shifting
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Figure 2. Overview of our LG-SOR approach. Given an input image I and its corresponding description T generated by the LVLM, we
first apply a visual encoder and a text encoder to extract visual and text features. We then propose a novel Text-Guided Visual Modulation
(TGVM) module to selectively incorporate textual features as guidance to learn semantics-enhanced salient object embeddings Os for
predicting the saliency instance masks. We further propose a novel Text-Aware Visual Reasoning (TAVR) module to leverage the parsed
entity and relation cues from the description to learn order-aware object embeddings Og based on Os for predicting the saliency ranks.

parameters from Ls, which are then used to modulate the
text-attended features Mi to produce the enhanced visual
features M̂i, as:

M̂i = Mi ⊙ (1 + α) + β, with α, β = ϕRegre(Ls),
(1)

where α ∈ R1×C and β ∈ R1×C are scaling and shifting
parameters, respectively. ϕRegre represents a regression
layer and C denotes the number of channels.

A gating block is additionally utilized to learn to sup-
press the influence of noisy textual information. Specifi-
cally, we feed the enhanced visual features M̂i into a gat-
ing block to generate the language-aware visual features
Fi ∈ RHi×Wi×C , as:

Fi = ϕGate(M̂i)⊙ M̂i ⊕Vi, (2)

where ϕGate represents a two-layer MLP that includes a
linear layer with a ReLU activation followed by a linear
layer with a Tanh activation. With the guidance of both local
(word-level) and global (sentence-level) textual features, the
TGVM module selectively integrates linguistic information

into the visual features to enhance useful semantic contexts
while filtering out noisy background information.

After obtaining language-aware visual features Fi at dif-
ferent scales, we flatten their spatial dimensions and concate-
nate them together to form the multi-scale language-aware vi-
sual features Fm ∈ RNm×C (where Nm =

∑4
i=2 Hi×Wi).

We then use a transformer decoder [3] to process Fm and
learnable queries Oq ∈ RNq×C , where Nq is the number of
queries, to produce the semantics-enhanced salient object
embeddings Os ∈ RNq×C as the output of TGVM.

3.2. Text-Aware Visual Reasoning (TAVR)

With the semantics-enhanced salient object embeddings Os,
we now aim to determine the ranks of these salient objects
via joint modeling of visual stimuli and the implicit order
and relations within the textual description. To better ex-
ploit the implicit object orders and to prevent the extraction
of vague relation features from sentence embeddings, we
first parse the description to identify words and phrases that
indicate objects and relations. These are exploited by a
novel Text-Aware Visual Reasoning (TAVR) module to learn
order-aware salient object embeddings Og .
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Text Parsing. We employ spaCy [1] to parse the LVLM-
generated description T, allowing us to identify the words
and phrases that represent objects and relationships. These
extracted elements are then fed into the text encoder to
generate the entity cues Le ∈ RNe×Cl and relation cues
Lr ∈ RNr×Cl . Ne and Nr denote the numbers of entities
and relations.
Visual Reasoning. The TAVR module aims to construct a
multimodal visual-linguistic graph for reasoning the salient
object ranks, based on the extracted entity cues Le and rela-
tion cues Lr. As shown in Fig. 2, the TAVR module takes
the text-enhanced salient object embeddings Os and text
features, including entity cues Le, relation cues Lr, and
sentence features Ls, as inputs to produce the order-aware
salient object embeddings Og .

Specifically, we first add the sentence features Ls to both
the entity cues Le and relation cues Lr to enhance contex-
tual understanding. Next, we ensure their dimensions align
with the desired feature space C using a projection layer. To
capture the interplay between the text-enhanced salient ob-
ject embeddings Os and the entity features Le, we employ a
cross-attention mechanism. Here, Os are used as a query and
Le as both key and value. This strategy effectively encodes
the implicit orders within the input description, resulting in
entity-aligned salient object embeddings Ôs ∈ RNq×C .

We then explicitly construct a fully-connected multimodal
graph G = (V, E), where V ∈ {ϑ}Nq

i=1 denotes Nq vertexes,
and E contains Nq ×Nq edges. We use the entity-aligned
embeddings Ôs = {oi}

Nq

i=1 ∈ RNq×C to denote the vertex
features and A ∈ RNq×Nq as the edge adjacency matrix.
Unlike previous methods [6, 36, 62] that infer the implicit
relationships only from image features, we also incorporate
explicit relation cues Lr derived from the language descrip-
tion to compute the adjacency matrix A, as:

A = R1 ⊗R2 = S(R)⊗ S(R⊤), with R = Ôs ⊗ L⊤
r ,
(3)

where S is the softmax operation. R ∈ RNq×Nr is the
affinity matrix between Ôs and Lr. We apply the softmax
function along both the first and second dimensions of R
to derive R1 ∈ RNq×Nr and R2 ∈ RNr×Nq , respectively.
The adjacency matrix A is then computed through matrix
multiplication of R1 and R2. We apply graph convolu-
tion [24, 28] to the established visual-linguistic multimodal
graph G to produce the order-aware salient object embed-
dings Og ∈ RNq×C as the output of TAVR:

Og = σ
(
A(Is + Ôs)⊗W

)
, (4)

where σ is the ReLU function, Is is an identity mapping, and
W ∈ RC×C is a learnable parameter matrix that facilitates
the adaptation/refinement of node features. By aggregating
information from neighboring nodes in the graph, graph con-
volution empowers the model to reason the saliency degree

of an object. This reasoning process considers not only the
object’s intrinsic visual features and semantics captured by
Ôs, but also its relations with other objects as encoded in
the graph structure.

4. Experiments
4.1. Experimental Setups

Implementation Details. We employ ResNet-50 [16] and
Swin-L [39], pretrained on the MS-COCO training set [31]
as our image encoder, following previous SOR methods [6,
10, 36, 44, 51, 62]. We utilize BERT [7] as the text encoder
to extract text features. The input descriptions are capped at
a maximum length of 256 characters for all experiments, and
the input images are resized to 1024×1024 following [6].
We employ binary cross-entropy loss and dice loss [32] for
mask prediction and ranking loss [36] for ranking prediction.
We train our LG-SOR 40,000 iterations with a batch size of
16 on eight A100 GPUs (80GB). The learning rate is initially
set to 1e−5 and then reduced by 10 after 30,000 iterations.
We use the AdamW optimizer with a 0.05 weight decay for
model optimization. The number of LVLM output words
(Nw), entities (Ne), relations (Nr), learnable queries (Nq),
and transformer decoder layers in the rank decoder (Nd) are
set to 256, 34, 24, 200, and 3, respectively.
Datasets, Methods, and Metrics. We conduct experiments
on two standard SOR datasets, the ASSR [48] and IRSR [36].
The ASSR dataset contains 7,464 training images, 1,436
validation images, and 2,418 test images, and each image
has five salient object ranks. The IRSR dataset contains
6,059 images for training and 2,929 images for testing, and
each image has one to eight salient object ranks.

We compare our method with seventeen state-of-the-art
methods, including eleven existing SOR methods (i.e., RS-
DNet [22], ASSR [48], IRSR [36], PPA [10], PSR [51],
OCOR [53], SeqRank [13], HyperSOR [44], QAGNet [6],
DSGNN [62], PoseSOR [14]), one salient instance de-
tection method (S4Net [9]), one salient object detection
method (VST [37]), two instance segmentation methods
(QueryInst [11], Mask2Former [3]), one large-vision lan-
guage model-based method (GiT [57]), and one language-
guided segmentation method (X-Decoder [77], whose input
description is generated by [5]). For a fair comparison, we
retrain all existing SOR methods on both ASSR and IRSR
datasets based on their released codes (if available)1, fol-
lowing previous SOR methods [13, 14, 44, 51]. For the
competing methods from other related tasks, we modify and
re-train them based on their released codes. Refer to Supp. A
for more implementation details.

We use three metrics for performance evaluation, i.e.,
Salient Object Ranking (SOR) [48, 49], Segmentation-

1For HyperSOR [44], we directly copy and report the results from their
paper as their code is not available.
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Table 1. Quantitative comparison. ‘-’ denotes that the result is not available. SID: Salient Instance Detection. SOD: Salient Object Detection.
IS: Instance Segmentation. LGS: Language-Guided Segmentation. LVLM: Large Vision Language Model. SOR: Salient Object Ranking.
The best performance is marked in bold.

Method Reference Original Task Backbone
ASSR Test Set [48] IRSR Test Set [36]

SA-SOR↑ SOR↑ MAE↓ SA-SOR↑ SOR↑ MAE↓

S4Net [9] [CVPR’19] SID ResNet-50 0.469 0.662 0.149 0.307 0.648 0.129
VST [37] [ICCV’21] SOD T2T-ViT-T 0.434 0.649 0.104 0.254 0.584 0.094
QueryInst [11] [ICCV’21] IS ResNet-101 0.614 0.843 0.098 0.502 0.807 0.082
Mask2Former [3] [CVPR’22] IS ResNet-101 0.625 0.857 0.078 0.518 0.814 0.079
GiT [57] [ECCV’24] LVLM GiT-B 0.541 0.854 0.101 0.371 0.817 0.122
X-Decoder [77] [CVPR’23] LGS Focal-T 0.609 0.851 0.075 0.545 0.811 0.086
RSDNet [22] [CVPR’18] SOR ResNet-101 0.499 0.717 0.158 0.471 0.729 0.112
ASSR [48] [CVPR’20] SOR ResNet-101 0.637 0.815 0.105 0.350 0.702 0.109
IRSR [36] [TPAMI’21] SOR ResNet-50 0.643 0.841 0.108 0.545 0.808 0.083
PPA [10] [ICCV’21] SOR VoVNet-39 0.647 0.859 0.082 0.501 0.783 0.081
PSR [51] [ACMMM’23] SOR ResNet-50 0.651 0.849 0.079 0.528 0.819 0.083
HyperSOR [44] [TPAMI’24] SOR ResNet-101 0.653 0.830 0.101 - - -
Ours - SOR ResNet-50 0.733 0.882 0.065 0.578 0.817 0.060
OCOR [53] [CVPR’22] SOR Swin-L 0.594 0.875 0.101 0.482 0.813 0.079
SeqRank [13] [AAAI’24] SOR Swin-L 0.661 0.865 0.081 0.553 0.821 0.075
QAGNet [6] [CVPR’24] SOR Swin-L 0.772 0.867 0.052 0.618 0.825 0.049
DSGNN [62] [CVPR’24] SOR Swin-L 0.765 0.860 0.051 0.609 0.812 0.058
PoseSOR [14] [ECCV’24] SOR Swin-L 0.664 0.854 0.077 0.547 0.816 0.070
Ours - SOR Swin-L 0.787 0.895 0.049 0.634 0.835 0.050

Aware SOR (SA-SOR) [36], and Mean Absolute Error
(MAE). SOR computes the Spearman’s rank-order corre-
lation between the predicted and actual saliency ranking or-
ders, emphasizing the relative saliency among objects rather
than assigning specific ranks to individual objects. SA-SOR
computes the Pearson correlation between the predicted and
true saliency ranks, penalizing the misidentification of non-
salient objects and incorrect rankings. MAE quantifies the
average per-pixel difference between predicted and Ground-
Truth saliency maps.

4.2. Main Results

Quantitative Comparison. Table 1 presents quantitative
results. Our approach achieves state-of-the-art results across
all metrics on both benchmarks. Notably, our SA-SOR and
SOR scores surpass the latest methods PoseSOR [14] and
DSGNN [62] by 17.47% and 4.19%, respectively, on the
ASSR benchmark. This is because our method can effec-
tively mine rich semantic information from the language
description for the ranking process. In contrast, PoseSOR
and DSGNN either neglect or only implicitly learn from just
the vision features. In addition, compared to the multi-modal
method (X-Decoder [77]), which also utilizes the same lan-
guage description as input, our method shows impressive
gains, improving the SA-SOR scores by 28.08% on ASSR
dataset and by 16.70% on IRSR dataset. This is because the
X-Decoder is unable to effectively extract and reason about
the rich semantic information within the textual descriptions.
In contrast, our approach leverages language-guided visual
modulation and reasoning to exploit valuable information
(e.g., implicit orders and relations) in descriptions, while

effectively suppressing background noise. Compared to
GiT [57], which directly employs LVLM to predict instance
masks and ranks without considering the modality discrep-
ancy, our method exploits LVLM-generated descriptions as
ancillary guidance to enhance the extraction of useful se-
mantic information for salient object ranking, thus bringing
in a significant performance improvement (e.g., a 44.18%
boost in the SA-SOR metric on the ASSR dataset). Refer to
Supp. B for a computational analysis.
Qualitative Comparison. Fig. 3 shows the qualitative com-
parison of our method with nine best-performing methods
chosen from Table 1. We can see that the SOR maps gener-
ated by our approach consistently outperform all compared
methods across different types of scenes. Specifically, the
examples in the first three rows show that our approach can
effectively rank salient objects based on the implicit order
conveyed by the description. For example, in the first row,
our method effectively uses the perceived semantic informa-
tion, such as the attribute (“red”) and implicit order (first

“girl” and then “elephant”), to correctly identify “the young
girl” as the most salient object, before shifting the focus
to the less salient but relatively large “elephant”. In con-
trast, most other approaches either erroneously assign equal
saliency to both the woman and the elephant [57, 77] or
incorrectly highlight the elephant as the most salient ob-
ject [13, 14, 51, 53].

Further, our method demonstrates robustness in capturing
saliency, even when the order in the description does not ex-
actly match with the ground truth, as validated in the fourth
to sixth rows of Fig. 3, where objects’ visual intrinsic posi-
tional context and relations in the description are effectively
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(1) Examples of ranking salient objects based on the implicit order in the description.

Description: “A young girl interacts closely with a small elephant in a natural park setting. The girl, dressed in a vibrant red outfit with floral patterns, gently touches the
elephant’s head, showing curiosity and affection. She carries an orange backpack and wears black shoes, ...”

Description: “A man is standing on a surfboard in the middle of a large body of water. He appears to be paddle-surfing, using a paddle to propel himself through the water. The
scene also includes a dog accompanying the man on the paddle ...”

Description: “A large dog is lying on the floor next to a pink couch in a living room. The dog appears to be sleeping or resting on the floor near the couch. Behind the dog, a dark
tabby cat is lying down, also resting... There are also other items in the room, including a laptop ...”

(2) Examples of ranking salient objects based on their positional context, and interactions in the description.

Description: “A man and a woman are sitting at a dining table, holding plates with slices of cheese pizza. They seem to be enjoying their meal together, as they are smiling and
posing for the camera. The dining table is surrounded by chairs ...”

Description: “Two young girls are sitting at a table, eating doughnuts with sprinkles on them. They appear to be enjoying their food and having a good time together, possibly
during a family gathering or celebration ...”

Description: “A young girl is sleeping on a couch while holding a pink stuffed teddy bear. She is wearing a pink shirt and has a pacifier in her mouth. The teddy bear is
positioned close to the girl’s head, and a bottle is nearby, possibly for feeding ... ”

high low
Figure 3. Qualitative comparison of our method with nine best-performing methods in Table 1.

leveraged to determine saliency. For example, in the sixth
row, although “couch” is mentioned before “pink teddy bear”
in the description, our method can still rank it as the least
salient. This is attributed to the graph reasoning process,
which exploits the objects’ intrinsic positional context (e.g.,
the couch is in the background, while the pink teddy bear
is more prominently positioned in the foreground) in graph
nodes and relational cues with other objects (e.g., “sleep-
ing on”) in edges. Refer to Supp. C and Supp. E for more
discussion and visual comparisons, respectively.

4.3. Ablation Study

Component Analysis. We conduct the ablation study based
on the ASSR dataset [48] to verify the effectiveness of the
proposed modules in Table 2. We build the baseline (I)
by removing TGVM and TAVR modules, where learnable
queries are fed into the rank decoder and mask head for
ranking predictions. We then demonstrate the effectiveness
of the proposed TGVM module by gradually adding the
cross-attention block for word features Lw (II), regression
block for sentence features Ls (III), and gate block (IV).

The results show that both the word-level and sentence-level
text features are beneficial. They can facilitate the model in
learning semantic information from the language description.
In addition, a clear performance improvement can be seen
after adding the gate block, validating its effectiveness.

We further study three alternative designs for learning
complex relations in the language description: (V) we use
semantics-enhanced salient object embeddings Os obtained
from TGVM as the vertex features, and sentence features Ls

as edge features to construct the graph; (VI) we use entity-
aligned salient object embeddings Ôs as vertex features, and
global sentence features Ls to construct the edge adjacent
matrix; and (VII) we use Os as graph vertex features, and
relation cues Lr as edge features. Setting VIII uses entity-
aligned salient object embeddings Ôs as vertex features, and
relation cues Lr as edge features. The results show that
adding the parsed entity or relation cues from the multi-
modal graph helps improve the performance. This confirms
that these cues enhance the model’s ability to comprehend
complex relationships between different instances. As a
result, our model can predict the importance of each instance
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Table 2. Ablation analysis of different modules in LG-SOR. Lw

and Ls denote word and sentence features. Le and Lr are entity
and relation cues.

Settings TGVM TAVR SA-SOR ↑ SOR ↑ MAE ↓
Lw Ls Gate Graph Le Lr

I (Baseline) 0.687 0.852 0.073
II ✓ 0.704 0.863 0.071
III ✓ ✓ 0.706 0.866 0.071
IV ✓ ✓ ✓ 0.713 0.870 0.069
V ✓ ✓ ✓ ✓ 0.721 0.874 0.067
VI ✓ ✓ ✓ ✓ ✓ 0.726 0.877 0.066
VII ✓ ✓ ✓ ✓ ✓ 0.727 0.879 0.065
VIII ✓ ✓ ✓ ✓ ✓ ✓ 0.733 0.882 0.065

not only based on its inherent saliency but also through its
relations and interactions with other instances in the scene.

Order of the Parsed Entities. We ablate the impact of
entity ordering in Table 3. For the parsed entities, we first
shuffle their orders and obtain the entities in a random order.
Compared to the original entities with the normal order,
which contains the implicit orders of the salient objects, the
random order causes lower SA-SOR and SOR scores. The
results also validate that the implicit ranking order in the
description can help boost the saliency ranking performance.

Ablation Study of Different LVLMs. Considering that
different LVLMs may generate captions with different
levels of detail and accuracy, we first investigate the ef-
fects of various detailed descriptions produced by distinct
LVLMs [2, 5, 19, 35] in rows 1 to 4 of Table 4. Although the
results slightly differ across sources, the enriched semantic
information from input text generally facilitates the model
in reasoning about the importance of different objects. This
performance variability further demonstrates the robustness
of our model, highlighting its ability to extract useful infor-
mation from text inputs with diverse details. In addition,
the process of generating textual descriptions through these
well-established and accessible LVLMs is automatic and
scalable, ensuring the usability and scalability of our model.
Although GPT-4V [2] achieves higher SA-SOR and SOR
scores due to more accurate semantic details, its significance
is restricted by its limited availability and high cost, mak-
ing it less accessible to the general public. Thus, we take
InstructBLIP [5] as our final choice.

Further, we prompt InstructBLIP to generate a short de-
scription using the instruction “Write a short description for
the image”. The short descriptions are then used as input
to train the model, allowing us to compare its performance
with the model trained on long text descriptions, as shown
in Table 4. The results reveal an obvious performance drop
with short descriptions, which is primarily attributed to their
lack of richer semantic content and contextual information,
such as object attributes and interactions, in the descriptions.
Refer to Supp. D for more comparisons.

Table 3. Ablation study of the order of entities.

Orders SA-SOR ↑ SOR ↑ MAE ↓
Random 0.726 0.876 0.066
Normal 0.733 0.882 0.065

Table 4. Ablation study on caption sources. † denotes that the
generated descriptions are short.

Sources SA-SOR ↑ SOR ↑ MAE ↓
LLaVa [35] 0.723 0.881 0.065

OPERA [19] 0.725 0.882 0.066
GPT-4V [2] 0.741 0.886 0.064

InstructBLIP [5] 0.733 0.882 0.065
InstructBLIP [5]† 0.727 0.880 0.065

Image Ours GT

Description: “A group of young men are riding skateboards on 
a sidewalk. Some of them are wearing helmets, and ... ”

Figure 4. A failure case. Our method may fail to precisely rank
salient objects when objects share a similar positional context, and
the language description lacks semantic relationships.

5. Conclusion

In this paper, we have proposed the Language-Guided Salient
Object Ranking (LG-SOR) approach, which harnesses the
knowledge within the LVLM-generated descriptions to en-
hance object ranking by integrating semantic and order cues
from the descriptions. Our approach contains two novel
modules: Text-Guided Visual Modulation (TGVM) and
Text-Aware Visual Reasoning (TAVR). The TGVM mod-
ule effectively integrates semantic information from textual
descriptions with visual features, filtering out background
noise while propagating useful textual cues. Meanwhile, the
TAVR module exploits the implicit order and improves the
ranking reasoning by using parsed entity and relation cues in
the language descriptions to construct a multimodal graph.
Extensive experiments have demonstrated the superior per-
formance of LG-SOR on two SOR benchmarks, validating
its effectiveness.

Our approach does have limitations. For example, when
salient objects share very similar semantic features (e.g., po-
sitions and attributes) and the language description lacks
sufficient semantic relationships, our model struggles to pre-
cisely infer their ranks, as shown in Fig. 4. As a future
work, we would like to explore the incorporation of other
modalities to assist the model in perceiving view and dis-
tance in a scene, thereby enabling more accurate ranking
order prediction.
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