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Figure 1. NVILA – Efficient Frontier VLMs. (a) NVILA trains image and video models 5.1→ and 1.9→ faster, respectively, than
LLaVA-OneVision (OV), which is the only baseline model with publicly disclosed training costs. (b) Against Qwen2-VL, NVILA achieves
a 1.6–2.2→ measured speedup in the pre-filling stage and a 1.2–2.8→ speedup during the decoding stage. (c) NVILA’s efficiency is achieved
without compromising accuracy; in fact, it delivers comparable or even superior accuracy across image and video benchmarks. All models in
this table have 8B parameters. Training time in (a) is measured using NVIDIA H100 GPUs, while inference speed in (b) is measured using a
single NVIDIA GeForce RTX 4090 GPU. Accuracy numbers in (c) are normalized relative to the highest score for each benchmark.

Abstract

Visual language models (VLMs) have made significant ad-
vances in accuracy in recent years. However, their efficiency
has received much less attention. This paper introduces
NVILA, a family of open VLMs designed to optimize both ef-
ficiency and accuracy. Building on top of VILA, we improve
its model architecture by first scaling up the spatial and tem-
poral resolutions, and then compressing visual tokens. This

“scale-then-compress” approach enables NVILA to efficiently
process high-resolution images and long videos. We also
conduct a systematic investigation to enhance the efficiency
of NVILA throughout its entire lifecycle, from training to

deployment. NVILA matches or surpasses the accuracy of
many leading open and proprietary VLMs across a wide
range of image and video benchmarks. At the same time,
it reduces training costs by 1.9-5.1→, prefilling latency by
1.6-2.2→, and decoding latency by 1.2-2.8→.

1. Introduction
Visual language models (VLMs) have shown remarkable

abilities in processing and integrating both visual and textual
information, enabling advanced vision-language interactions
and dialogues. In recent years, the research community has
made tremendous progress in enhancing their accuracy [1–5]
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Figure 2. Model architecture.

and broadening their applications across diverse domains,
including robotics [6–8], autonomous driving [9], and medi-
cal applications [10, 11]. However, there has been much less
focus on improving their efficiency.

VLMs are expensive across multiple dimensions. First,
training a VLM is time-consuming. For example, training a
state-of-the-art 7B VLM [4] can take up to 400 GPU days,
let alone even larger models. This creates a significant entry
barrier for researchers. Second, VLMs often require adap-
tation when applied to specialized domains (e.g., medical
imaging), but fine-tuning a VLM is memory-intensive. For
example, fully fine-tuning a 7B VLM can require over 64GB
of GPU memory, far beyond the available memory of most
consumer-level GPUs. Finally, VLMs are often deployed in
edge applications with limited computational budget (e.g.,
laptops, robots), so deploying a VLM is resource-constrained.
Addressing these challenges requires a systematic solution
to improve VLM efficiency across all these dimensions.

In this paper, we introduce NVILA, a family of open
VLMs designed to optimize both efficiency and accuracy.
Building on VILA [2], we improve its model architecture
by first scaling up the spatial and temporal resolution, fol-

lowed by compressing visual tokens. “Scaling” preserves
more details from visual inputs, raising the accuracy upper
bound, while “compression” squeezes visual information
to fewer tokens, improving computational efficiency. This
“scale-then-compress” strategy allows NVILA to process
high-resolution images and long videos both effectively and
efficiently. In addition, we conduct a systematic study to opti-
mize the efficiency of NVILA throughout its entire lifecycle,
including training, fine-tuning, and deployment.

Thanks to these innovations, NVILA is efficient and ac-
curate. It reduces training costs by 1.9-5.1→, prefilling
latency by 1.6–2.2→, and decoding latency by 1.2–2.8→.
It also matches or surpasses the accuracy of leading open
VLMs [2, 3, 5] and proprietary VLMs [12, 13] across a wide
range of image and video benchmarks.

2. Approach
In this section, we begin by designing an efficient model

architecture for NVILA, first by scaling up spatial and tem-
poral resolutions, and then by compressing the visual tokens.
Next, we present strategies to improve NVILA’s efficiency
across its entire lifecycle—from training and fine-tuning to
deployment. Unless otherwise specified, all analysis in this
section will be based on the 8B model.

2.1. Efficient Model Architecture
We build NVILA on top of VILA [2]. As in Figure 2, it

is an auto-regressive VLM composed of three components:
a visual encoder that extracts features from visual inputs
(e.g., images, videos); a projector that aligns embeddings
across visual and language modalities; and a token processor,
typically instantiated with a LLM, which takes both visual
and language tokens as input and outputs language tokens.
Specifically, NVILA uses SigLIP [14] as its vision encoder, a
two-layer MLP as its projector, and Qwen2 [15] of different
sizes as its token processor.

The original VILA has very limited spatial and temporal
resolutions: i.e., it resizes all images to 448→448, regardless
of their original size or aspect ratio, and samples up to 14
frames from videos*. Both spatial resizing and temporal sam-
pling will introduce significant loss of information, limiting
the model’s capability to effectively process larger images
and longer videos. This can also be observed in Table 7 and
Table 8, where VILA lags behind leading VLMs, especially
on text-heavy and long-video benchmarks.

In this paper, we advocate for the “scale-then-compress”
paradigm, where we first scale up the spatial/temporal res-
olutions to improve accuracy, and we then compress the
visual tokens to improve efficiency. Scaling resolutions up
improves the performance ceiling, but doing so alone will

*This is the configuration for VILA-1.5 40B. Their other variants, such
as VILA-1.5 3B, only use 384→384 resolution and 8 frames.
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significantly increase the computational cost. For example,
doubling the resolution will double the number of visual
tokens, which will increase both training and inference costs
by more than 2→, as self-attention scales quadratically with
the number of tokens. We can then cut this cost down by
compressing spatial/temporal tokens. Compressed visual
tokens have a higher information density, allowing us to
preserve or even improve spatial and temporal details with
fewer total tokens.

2.1.1 Spatial “Scale-Then-Compress”

For spatial scaling, it is very natural to directly increase
the image resolution of the vision encoder, for example, to
896→896. While this may improve performance, applying a
uniformly high resolution to all images would be inefficient,
especially for smaller images that do not require extensive
detail. To address this, we apply S2 [16] to efficiently extract
multi-scale high-resolution features with image tiling. For
example, given a vision encoder pre-trained at 4482 resolu-
tion and an input image with any size, S2 first resizes the
image into multiple scales (e.g., 4482, 8962, 13442), and for
each scale, it splits the image into tiles of 4482. Each tile is
then individually processed by the encoder. The feature maps
of each tile from the same scale are stitched back together
into the feature map of the whole image at that scale. Finally,
feature maps from different scales are interpolated into the
same size and concatenated on the channel dimension.

S2 always resizes images into square, regardless of the
original aspect ratio. This can cause distortion, particularly
for images that are either tall and narrow or short and wide.
To address this, we propose Dynamic-S2, which adaptively
processes images with varying aspect ratios. Dynamic-S2

follows the approach of S2 but, at the largest image scale, in-
stead of resizing to a square, it adjusts the image dimensions
to the closest size that maintains the original aspect ratio and
is divisible by 4482 tiles. This is inspired by the dynamic
resolution strategy in InternVL [17]. After processing the
tiles, the feature maps from all scales are interpolated to
match the size of the largest scale and concatenated.

Equipped with Dynamic-S2, the model benefits from high-
resolution information from the image, resulting in a up to
30% accuracy improvements on text-heavy benchmarks
(Table 1). Our goal, then, shifts to compressing the spatial
tokens. VILA [2] finds that applying a simple 2→2 spatial-
to-channel (STC) reshape can reduce the token count by a
factor of 4 without sacrificing accuracy. However, pushing
this further results in a notable drop in performance: i.e., a
nearly 10% decrease in accuracy on DocQA, when reducing
the number of minimal tiles and increasing the STC to 3→3.
We hypothesize that more aggressive reductions make the
projector significantly harder to train. To address this, we
introduce an additional visual encoder pre-training stage to

jointly tune the vision encoder and projectors. This helps re-
cover most of the accuracy loss from spatial token reduction,
achieving a 2.4→ speedup in both training and inference.

There are many alternative designs for spatial token com-
pression, such as TokenLearner from RT-1 [6] and Perceiver
Resampler from MiniCPM-V [18]. However, with the same
token reduction ratio, these learnable compression methods
surprisingly do not perform better than the simple spatial-to-
channel design, even with an additional stage 1.5. We believe
this is more of an optimization problem and is beyond the
scope of this paper.

2.1.2 Temporal “Scale-Then-Compress”

For temporal scaling, we simply increase the number of
uniformly sampled frames from the input video. Following
previous methods [19], we train the model with additional
video-supervised fine-tuning (SFT) to extend its capability
to process more frames. From Table 8, extending the number
of frames from 8 to 32 can increase the model’s accuracy
on Video-MME by more than 5%. However, this will also
increase the number of visual tokens by 4→.

Similar to spatial token compression, we will then reduce
these visual tokens. Since there is intrinsic temporal continu-
ity in the video, we adopt temporal averaging [20] for com-
pression, which first partitions the frames into groups and
then temporally pools visual tokens within each group. This
will reduce temporal redundancy (since consecutive frames
often contain similar information) while still retaining impor-
tant spatiotemporal information. Empirically, compressing
the visual tokens by 4→ leads to an acceptable accuracy drop.
When compared to the original baseline with the same num-
ber of tokens, the first scaled and then expanded result costs
almost the same†, but has much higher accuracy. We have
also used this approach to further scale the number of frames
and the compression ratio, leading to a state-of-the-art 7B
model on this benchmark (see Table 8).

2.2. Efficient Training
While state-of-the-art VLMs boast impressive capabil-

ities, training such a VLM is often costly and compute-
intensive. This section explores system-algorithm co-design
to enable efficient VLM training. On the algorithm front,
we examine a novel unsupervised dataset pruning method to
streamline training data. At the system level, we investigate
FP8 mixed precision for acceleration.

2.2.1 Dataset Pruning

In order to improve model accuracy, previous work [4,21,
22] kept grabbing high quality SFT datasets from various

†We will need to run visual encoder for more frames, but this is usually
not the runtime bottleneck.
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Table 1. Spatial “scale-then-compress”. Increasing the spatial resolution with Dynamic-S2 can greatly improve the model’s accuracy,
particularly on text-heavy benchmarks. Compressing the visual tokens with spatial pooling can effectively reduce both the number of tiles
and tokens per tile, with moderate accuracy loss. This loss can be further reduced by adding an additional visual encoder pre-training (VEP)
stage. In this and following tables, “IM-10” refers to the average validation scores from the 10 benchmarks listed in Table 7.

Spatial
Pooling #Tokens/Tile #Tiles/Image AI2D DocVQA TextVQA IM-10

Baseline (VILA-1.5) 2→2 256 (=16→16) 1 87.0 61.3 67.5 61.2

Scale (Dynamic-S2) 2→2 256 (=16→16) 9-12 90.1 91.1 77.0 71.5
Scale + Compress 3→3 121 (=11→11) 1-12 87.4 82.3 74.1 67.1
Scale + Compress + VEP 3→3 121 (=11→11) 1-12 89.8 88.8 76.1 70.8

Alternative Designs
TokenLearner – 121 1-12 90.0 86.5 75.6 69.8
Perceiver Resampler – 121 1-12 76.8 71.8 65.3 59.4

Table 2. Temporal “scale-then-compress”. Scaling up the temporal resolution can improve the model’s video understanding performance.
Compressing the visual tokens with temporal averaging can effectively reduce the number of tokens with only a marginal accuracy drop.

#Frames Temporal
Pooling #Tokens/Video

Video-MME (w/o sub.)

Short Medium Long Overall

Baseline (VILA-1.5) 8 1→ 2048 (=162→8) 65.4 53.8 47.7 55.7

Scale 32 1→ 8192 (=162→32) 73.2 58.9 50.9 61.0
Scale + Compress 32 4→ 2048 (=162→32/4) 73.7 56.7 50.0 60.1

Scale + Compress 256 8→ 8192 (=162→256/8) 75.0 62.2 54.8 64.0

sources and can show improvement on Benchmark scores.
However, not all data contributes equally to the model and
continuous growth of datasets lead to much redundancy. In
NVILA, we follow the “Scale-Then-Compress” concept to
first increase our SFT dataset mixture and then trying to
compress the dataset. However, selecting high-quality exam-
ples from various sources is challenging. While there have
been explorations of vision inputs [23–25] and text-only in-
puts [26–28], few studies have addressed this problem in
VLM training, where images and texts are mixed during
training. NVILA’s training involves more than 100M data,
making it necessary to prune the training set while maintain-
ing accuracy.

Inspired by recent works in knowledge distillation [29],
we leverage DeltaLoss to score the training set:

D→ =
K⋃

i=1

top-K
{
log

plarge(x)

psmall(x)

∣∣∣∣x ↑ Di

}
, (1)

where Di is the i-th subset of the full fine-tuning datasets
and D→ is the pruned training set. plarge(x) and psmall(x) are
the output probabilities on the answer tokens. The main
motivation is to filter out examples that are either too easy
or too hard. To elaborate,

• If both answer correctly or wrongly, log plarge(x)
psmall(x)

is close

to 0.
• When the small model answers correctly but the large

model fails, log plarge(x)
psmall(x)

becomes negative, suggesting
these examples tend to distract learning and will even-
tually be forgotten by a more powerful model.

• When the small model answers incorrectly but the large
model solves it, log plarge(x)

psmall(x)
is positive, suggesting these

examples provide strong supervision, as challenging for
small models but learnable by larger ones.

Thereby we can apply DeltaLoss to each sub-dataset and
prune the training set with different ratios.

To evaluate the data pruning criterion, we compare
DeltaLoss and the random pruning baseline in Table 3. For
random pruning, data is randomly selected and we run the
results three times and report the average. For cluster prun-
ing, we apply k-means clustering with siglip features and
prune the data evenly across each centroid. Our experiments
report the average performance across 10 benchmarks, with
a focus on key tasks to demonstrate the method’s effective-
ness. We examine three pruning threshold 10%, 30% and
50% and notice that DeltaLoss consistently outperforms the
random baseline, especially on the GQA and DocVQA tasks
the random pruning shows a significant performance degra-
dation while DeltaLoss stays accurate. We notice 50% is a
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Table 3. Dataset pruning on NVILA Recipe. DeltaLoss con-
sistently rivals other data selection methods and shows negligible
performance drop when pruning 50% of data.

Method IM-10 MMMU DocVQA TextVQA

100% (baseline) 75.6 48.0 90.1 78.8

50%
DeltaLoss [29] 75.5 48.1 89.7 78.4
Cluster Pruning 74.5 47.8 88.3 77.0
Random Pruning 74.0 47.6 87.1 76.6

30%
DeltaLoss [29] 74.0 47.8 87.9 76.4
Cluster Pruning 73.5 47.7 84.1 76.0
Random Pruning 73.1 47.7 82.9 75.6

10%
DeltaLoss [29] 72.4 47.1 84.4 74.5
Cluster Pruning 72.2 47.4 79.6 73.2
Random Pruning 72.0 47.0 77.3 72.6

Table 4. FP8 training. FP8 accelerates the training of NVILA
while maintaining the accuracy, especially when gradient check-
pointing (GC) is not enabled. In this table, the throughput results
are obtained with the maximum achievable batch size (BS) on 64
H100 GPUs. Video-MME results come from an 8-frame setting
and with subtitle information.

GC BS Throughput MMMU Video-MME

BF16 ✁ 4 199.2 (1.0→) 47.9 52.9
FP8 ✁ 16 390.1 (2.0→) 47.0 53.0

BF16 ✂ 30 491.7 (2.5→) 47.8 53.1
FP8 ✂ 36 579.9 (2.9→) 47.7 53.0

relatively safe threshold where the average score maintains
competitive while the training can be speedup by 2→. Thus
we set the threshold to 50% for later experiments.

2.2.2 FP8 Training

FP16 [30] and BF16 [31] are standard precisions for
model training, since they offer acceleration without accu-
racy loss, supported natively by NVIDIA GPUs. With the
advent of the NVIDIA Hopper and Blackwell architectures,
new GPUs now provide native support for FP8, which has
emerged as a promising precision due to its potential for
larger computational and memory efficiency.

Many researchers have already applied FP8 to LLM train-
ing. NVIDIA’s Transformer Engine performs matrix multi-
plications (GEMM) in FP8 precision, resulting in faster train-
ing speeds. FP8-LM [32] builds upon this by also quantizing
the gradients, weight master copy, and first-order momen-
tum into FP8, thereby reducing communication overhead

Table 5. Fine-tuning recipe. Our recommendation is to tune
the LLM with either LoRA or QLoRA and to tune ViT’s layer
normalization (LN) layers with a much smaller learning rate. This
setup achieves competitive accuracy and is also the most memory-
and compute-efficient. All experiments use a batch size of 1 with
gradient checkpointing disabled, and throughput is measured on a
single NVIDIA A100 80GB GPU. For settings with {1,5,10,50},
we select the learning rate ratio from this set that gives the best
results for each benchmark. “FT-5” refers to the average accuracy
across AITZ [35], ALFRED [36], nuScenes [37], PathVQA [38],
and Widget Caption [39].

ViT LLM Memory
(GB)

Throughput
(iter/s) LRLLM/LRViT

Accuracy
(FT-5)

LoRA LoRA 20.1 3.4
1 69.2

{1,5,10,50} 71.8

LN LoRA 19.2 4.5
1 63.5

{1,5,10,50} 71.4

FT LoRA 21.9 4.2
1 64.0

{1,5,10,50} 70.1

LoRA QLoRA 11.1 2.6
1 63.0

{1,5,10,50} 70.8

LN QLoRA 10.2 3.1
1 62.7

{1,5,10,50} 70.9

FT FT 63.5 6.1 1 77.7

and memory footprint. COAT [33] further compresses ac-
tivations and the optimizer’s second-order momentum to
enhance memory efficiency while maintaining accuracy.

In this paper, we borrow the FP8 implementation from
COAT [33] to accelerate the training of NVILA. One key
difference between LLM and VLM training workloads lies
in the variability of sequence lengths across batches. In
LLM training, samples generally have uniform lengths, and
increasing the batch size beyond a certain point has minimal
effect on training throughput. However, in VLM training,
samples can vary significantly in length: video samples may
require tens of thousands of tokens, image samples may need
hundreds, and text-only samples require far fewer. As a re-
sult, workloads with fewer tokens are generally underutilized
and can benefit greatly from increasing the batch size. As
shown in Table 4, applying FP8 to both weights and activa-
tions allows NVILA to increase the batch size from 4 to 16,
resulting in a 2→ speedup. When gradient checkpointing is
enabled, quantizing activations becomes less essential. In-
stead, we integrate the cross-entropy kernel from Liger [34]
to reduce peak memory usage due to Qwen’s large vocabu-
lary size. In this case, FP8 training can still provide a 1.2→
speedup compared to BF16 training.
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Table 6. Quantization recipe. While W4A16 quantization on LLM
backbone may introduce small accuracy drop, W8A8 quantization
on ViT is nearly lossless.

ViT LLM AI2D MMMU VideoMME TTFT (s)

FP16 FP16 91.0 50.7 63.9 0.90

FP16 W4A16 90.9 49.2 62.0 0.77
W8A8 W4A16 90.9 49.3 62.1 0.65

2.3. Efficient Fine-Tuning
Once a foundation VLM is trained, domain-specific fine-

tuning is needed to adapt the model for specialized tasks or
domains. While fine-tuning effectively improves domain-
specific vocabulary and concepts, conventional Parameter
Efficient Fine-Tuning has been focusing on LLM and text-
related tasks. How to best fine-tune a VLM remains less ex-
plored. In NVILA, we find that (i) the learning rate should be
set differently for ViT and LLMs (ii) the tuning parts should
be chosen dependently for different downstream tasks.

When fine-tuning the vision encoder (ViT) and language
model (LLM) together using PEFT methods, we observe that
the learning rate should be set differently for VE and LLM:
the learning rate for the ViT part will be 5-50→ smaller
than that for the LLM part. On the other hand, we also
observe that fine-tuning the vision encoder with Layernorm
can achieve comparable performance as LoRA (Table. 5)
while being more computationally efficient: it can reduce
the training time by 25% compared to applying LoRA for
the vision encoder. With the curated configuration setup,
NVILA can be quickly fine-tuned to various downstream
tasks under 24 GB memory with on-par performance.

2.4. Efficient Deployment
VLMs are often integrated in edge applications as robotic

where computational budget is tight. We develop a spe-
cialized inference engine with quantization techniques to
efficiently deploy NVILA. The inference process is divided
into two phases: prefilling and decoding. In the compute-
bounded prefilling stage, we first apply token compression
techniques (Section 2.1) to reduce the inference workload for
LLM backbone, after which the vision tower becomes the
primary bottleneck, accounting for over 90% of the prefilling
latency. To tackle this, we implement W8A8 quantization
for the vision tower to reduce NVILA’s Time-To-First-Token
(TTFT) in this compute-bounded stage. For the memory-
bounded decoding stage, we follow AWQ [40] for W4A16
quantization of the LLM backbone to accelerate. We further
optimize the original AWQ implementation by introducing
FP16 accumulation to the W4A16 GEMM kernels, result-
ing to a total 1.7→ kernel speedup without compromising
accuracy. A detailed comparison is in Figure. 3.

3. Experiments

3.1. Training Details

We follow a five-stage pipeline to train NVILA: (1) pro-
jector initialization, (2) visual encoder pre-training, (3) to-
ken processor pre-training, (4) image instruction-tuning, and
(5) video instruction-tuning. Among them, Stages 1, 3, and
4 are also included in VILA training. The additional Stage
2 is used to recover the accuracy loss due to spatial token
compression (as in Table 1), and the additional Stage 5 is
helpful for extending the model’s long video understanding
capability.

Our implementation is built upon PyTorch 2.3.0 [41, 42]
and Transformers 4.46.0 [43]. We use DeepSpeed 0.9.5 [44]
to shard large models across devices and use gradient check-
pointing to reduce memory usage. We adopt FlashAttention-
2 [45] to accelerate training in both the LLM and visual
encoder. We also implement functional-preserving, on-the-
fly sequence packing to fuse samples with different lengths,
which leads to an around 30% speedup. We train all models
using 128 NVIDIA H100 GPUs with a global batch size
of 2048 across all stages. All optimizations are carried out
using AdamW with no weight decay. We adopt a cosine
learning rate decay schedule with a linear warm-up for the
first 3% of the schedule. The initial learning rate varies
across stages, as detailed in Table A1.

3.2. Accuracy Results

3.2.1 Image Benchmarks

As presented in Table 7, we conduct comprehensive
evaluations across a diverse range of image benchmarks:
AI2D [46], ChartQA [47], DocVQA [48], Infograph-
icVQA [49], MathVista [50], MMMU [51] (with zero-shot
CoT), RealworldQA [52], SEED-Bench [53], TextVQA [54],
and VQAv2 [55]. Our NVILA performs comparably to top
open-source models in each size category, including Qwen2-
VL [5], InternVL [3], and Pixtral. For general visual question
answering tasks (ChartQA, DocVQA, InfoVQA, TextVQA,
VQAv2, Seed), NVILA-8B and NVILA-15B achieve com-
petitive or even better results compared to proprietary models
(GPT-4o, Gemini). In science-related benchmarks (AI2D),
NVILA-8B achieves state-of-the-art performance among
open-source models. When scaling to 15B, NVILA demon-
strates competitive performance with proprietary models.
Furthermore, on reasoning and knowledge benchmarks such
as MMMU, RealworldQA, and MathVista, scores improve
more when the model size increases. For benchmarks that
require OCR capability such as TextVQA, AI2D, ChartQA,
DocVQA, InfoVQA, 8B model can also do a great job.
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Table 7. Image benchmarks. We mark the best performance bold and the second-best underlined.

AI2D ChartQA DocVQA InfoVQA MathVista MMMU Real-
WorldQA

SEED TextVQA VQAv2

test test test test testmini val test pro image val testdev

GPT-4o – 94.2 85.7 92.8 79.2 63.8 69.1 64.7 51.9 75.4 76.2 77.4 78.7
Claude 3.5 Sonnet – 94.7 90.8 85.2 74.3 67.7 68.3 63.7 51.5 60.1 – 74.1 70.7
Gemini 1.5 Pro – 94.4 87.2 93.1 81.0 63.9 62.2 57.6 43.5 70.4 – 78.7 80.2

LLaVA-1.5 7B 55.5 17.8 28.1 25.8 25.6 35.7 – – 54.8 66.1 58.2 78.5
VILA-1.5 8B 76.6 52.7 40.6 25.9 36.7 38.6 32.7 – 52.7 73.8 68.5 83.0
Cambrian-1 8B 73.0 73.3 77.8 41.6 49.0 42.7 – – 64.2 74.7 71.7 81.2
Florence-VL 8B 74.2 74.7 84.9 51.7 55.5 43.7 – – 64.2 74.9 74.2 84.7
LLaVA-OneVision 8B 81.4 80.0 87.5 68.8 63.2 48.8 42.8 24.1 66.3 75.4 78.3 84.0
Llama 3.2 11B 91.9 83.4 88.4 – 51.5 50.7 – – – – – 75.2
InternVL2 8B 83.8 83.3 91.6 74.8 58.3 51.2 42.6 29.0 64.2 76.2 77.4 76.7
Qwen2-VL 8B 83.0 83.0 94.5 76.5 58.2 54.1 46.6 30.5 70.1 76.0 84.3 82.9
NVILA 8B 92.3 86.1 93.7 70.7 65.4 49.9 44.4 27.8 68.6 76.5 80.1 85.4

LLaVA-1.5 13B 61.1 18.2 30.3 29.4 27.7 37.0 – – 55.3 68.2 61.3 80.0
VILA-1.5 13B 79.9 59.5 58.6 30.4 42.7 37.9 33.6 – 57.5 72.6 65.0 82.8
Cambrian-1 13B 73.6 73.8 76.8 – 48.0 40.0 – – 63.0 74.4 72.8 –
Pixtral 12B 79.0 81.8 90.7 50.8 58.0 52.5 – – 65.4 – 75.7 80.2
NVILA 15B 94.1 86.9 94.0 73.5 66.1 56.7 51.8 33.8 69.5 76.6 80.0 84.8

LLaVA-NeXT 34B – – – – 46.5 48.1 44.5 22.9 – 75.9 69.5 83.7
Cambrian-1 34B 79.7 75.6 75.5 46.0 53.2 49.7 – – 67.8 75.3 76.7 83.8
VILA-1.5 40B 88.9 67.8 58.6 38.4 49.3 51.9 46.9 25.0 60.8 69.1 73.6 84.3
InternVL2 40B 87.1 86.2 93.9 78.7 63.7 55.2 47.4 34.2 71.8 78.2 83.0 –
LLaVA-OneVision 72B 85.6 83.7 91.3 74.9 67.5 56.8 52.3 31.0 71.9 75.4 80.5 85.2
NVLM-D-1.0 78B 94.2 86.0 92.6 – 65.2 59.7 54.6 – 69.7 – 82.1 85.4
Llama 3.2 90B 92.3 85.5 90.1 – 57.3 60.3 – 39.5 – – – –

3.2.2 Video Benchmarks

We evaluate our models on a range of video understanding
benchmarks [56–59], spanning short videos of a few seconds
to longer videos up to an hour in duration. Table 8 presents
the performance of NVILA compared to baseline models [4,
5, 19, 60–62]. NVILA features long-context capability and
can process up to 256 frames. With the scale-then-compress
design, NVILA-8B achieves impressive results, setting new
state-of-the-art performance across all benchmarks. NVILA
reaches performance levels comparable to GPT-4o mini with
only 8B parameters and outperforms many larger models.

3.3. Efficiency Results

NVILA achieves competitive performance on image and
video benchmarks while maintaining efficiency through
“scale-then-compress”. Architecturally, We initially scale
up to native resolution (1–12! more tiles), then compress
tokens by 2.4!, achieving higher accuracy with slightly more
tokens than previous solutions. Dataset-wise, we curate a di-
verse 10M sample dataset, compress it using DeltaLoss, and

prune to a high-quality 5M subset, consistently outperforms
LLaVA-OneVision, which trained on 8M+ data. Besides, we
integrate FP8 for acceleration, optimize learning rates for
fine-tuning, and use W8A8 format to improve latency and
throughput. These full-stack optimizations enable NVILA
to train with fewer resources while achieving better perfor-
mance, less memory usage, and faster inference.

We compare NVILA’s inference performance against
Qwen2-VL [5] as shown in Figure 3. For a fair comparison,
both models process video inputs by sampling 64 frames,
with all experiments conducted on a single NVIDIA RTX
4090 GPU. Qwen2-VL is quantized to W4A16 and deployed
with vLLM [63], a LLM/VLM serving engine with state-of-
the-art inference speed. For NVILA, we quantize the LLM
backbone to W4A16 and vision tower to W8A8. With our
specialized inference engine, NVILA achieves up to 2.2→
speedup in pre-filling stage and up to 2.8→ higher decoding
throughput over Qwen2-VL.

4128



Table 8. Video benchmarks.

ActivityNet-QA LongVideoBench MLVU MVBench NExT-QA Video-MME

#F acc. score val test m-avg test mc w/o sub. w/ sub.

GPT-4o mini – – – – 56.5 58.8 – – – 64.8 68.9
GPT-4o – – 61.9 – 66.7 66.7 64.6 – – 71.9 77.2

VILA-1.5 8B – –
LLaVA-NeXT-Video 7B 32 53.5 3.2 43.5 43.5 – 33.7 – 46.5 –
Video-XL 7B 2048 – – 49.5 51.3 64.9 55.3 77.2 55.5 61.0
InternVL2 8B 64 – – 54.6 – 64.0 65.8 – 56.3 59.3
LLaVA-OneVision 8B 32 56.6 – 56.5 – 64.7 56.7 79.4 58.2 61.5
Oryx-1.5 8B 128 – – 56.3 – 67.5 67.6 81.8 58.8 64.2
LongVILA 7B 256 59.5 – 57.1 – – 67.1 80.7 60.1 65.1
LongVU 7B 1fps – – – – 65.4 66.9 – 60.6 –
Qwen2-VL 8B 2fps – – 55.6 56.8 65.5 67.0 – 63.3 69.0
NVILA 8B 256 60.9 3.7 57.7 58.7 70.1 68.1 82.2 64.2 70.0

NVILA- FP16
+Token Compression

+W4A16 LLM
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Figure 3. NVILA demonstrates superior inference efficiency over the Qwen2-VL model [5] for both image and video understanding tasks.
We benchmark NVILA-7B against Qwen2-VL-7B. Qwen2-VL-7B is served by vLLM [63] for W4A16 LLM quantization, while NVILA is
quantized and deployed with our specialized inference engine. We ablate the efficiency gains achieved with different optimization techniques
introduced in NVILA. NVILA demonstrates 1.6-2.2→ faster prefilling and up to 2.8→ higher decoding throughput compared to Qwen2-VL.

4. Conclusion

This paper introduces NVILA, a family of open VLMs
designed to strike an optimal balance between efficiency and
accuracy. By adopting the “scale-then-compress” paradigm,
NVILA can efficiently process high-resolution images and
long videos while maintaining high accuracy. We also sys-
tematically optimize its efficiency across the entire lifecycle,
from training to fine-tuning to inference. NVILA delivers
performance that matches or exceeds current leading VLMs,

while being significantly more resource-efficient. We hope
NVILA can empower researchers and developers to fully
unlock its potential across a wide range of applications and
research domains.
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