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Abstract

Self-supervised image denoising methods have garnered
significant research attention in recent years, for this kind of
method reduces the requirement of large training datasets.
Compared to supervised methods, self-supervised methods
rely more on the prior embedded in deep networks them-
selves. As a result, most of the self-supervised methods
are designed with Convolution Neural Networks (CNNs) ar-
chitectures, which well capture one of the most important
image prior, translation equivariant prior. Inspired by the
great success achieved by the introduction of translational
equivariance, in this paper, we explore the way to further
incorporate another important image prior. Specifically, we
first apply high-accuracy rotation equivariant convolution
to self-supervised image denoising. Through rigorous the-
oretical analysis, we have proved that simply replacing all
the convolution layers with rotation equivariant convolution
layers would modify the network into its rotation equivari-
ant version. To the best of our knowledge, this is the first
time that rotation equivariant image prior is introduced to
self-supervised image denoising at the network architecture
level with a comprehensive theoretical analysis of equiv-
ariance errors, which offers a new perspective to the field
of self-supervised image denoising. Moreover, to further
improve the performance, we design a new mask mecha-
nism to fusion the output of rotation equivariant network
and vanilla CNN-based network, and construct an adaptive
rotation equivariant framework. Through extensive experi-
ments on three typical methods, we have demonstrated the
effectiveness of the proposed method. The code is available
at: https://github.com/liuhanze623/AdaReNet.

1. Introduction

During the process of capturing and transmitting images,
unexpected noises are frequently introduced [16, 28]. Such
noise can severely degrade image quality and disrupt subse-
quent image processing tasks. Image denoising is a tech-
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Figure 1. Illustration of the output feature map of a typical image
obtained by standard CNN and our used rotation equivariant con-
volution neural network. Both networks are initialized randomly.

nique designed to address the standard inverse problem
in image processing and is widely utilized across various
fields. With the rapid advancement of deep learning (DL),
denoisers based on different deep networks have achieved
outstanding results.

Early, it was believed that the success of deep learning is
primarily due to the exhaustive utilization of training data.
Thus most early DL-based image denoising are in super-
vised manner [2, 7, 14, 20, 34, 42, 56, 57], where models
are trained on extensive datasets that include pairs of clean
and noisy images, thereby learning the transformation from
noisy to clean images. However, in reality, compiling such
comprehensive datasets is both costly and time-intensive,
posing substantial challenges [1, 35, 50].

Self-supervised approaches thus achieved significant re-
search attention in recent years. These approaches rely less
on extensive supervised datasets, but pay more attention to
the full utilization of the prior information inherent in deep
networks [3, 6, 18, 21, 26, 32, 33, 44, 51, 55]. Notably,
Lehtinen et al. introduced the innovative self-supervised
learning approach called Noise2Noise [26], which enables
training on pairs of noisy images depicting the identi-
cal scene. [26] was the first self-supervised algorithm
that achieved performance comparable to supervised im-
age denoising. Other methods involve training denoising
models on single noisy images by designing blind-spot
networks [3, 21, 22, 48], while some approaches devise
strategies to generate training image pairs from noisy im-
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ages [6, 18, 32, 33, 51] and have achieved excellent results.
Nowadays, it has become common sense that the prior

information inherent in deep networks plays an important
role in improving the performance of DL-based methods in
image processing tasks [11, 39, 46, 49]. The most clas-
sic example should be the CNN, which well captures the
translation-equivariant prior of natural images. In CNNs,
shifting an input image of CNN is equivalent to shifting
all of its intermediate feature maps and the output im-
age. Compared with fully-connected neural networks, this
translational equivariance property brings in rational weight
sharing, makes the network parameters being used more
efficiently, and thus leads to substantially better perfor-
mance. Inspired by the significant success brought about
by the introduction of translational equivariance, another
essential image prior (As illustrated in Fig. 1), rotation-
equivariant prior has to be taken into consideration very re-
cently. Rotation-equivariant CNNs have been applied and
achieved notable performance improvement in multiple su-
pervised image processing tasks [11, 49].

Compared with supervised learning, self-supervised
learning approaches indeed depend more on the prior
knowledge embedded within the network, for the informa-
tion that can be learned from the dataset is less. As a result,
most current self-supervised image denoising methods are
all based on the CNN architectures, which is largely due
to the reliance on the prior of translational equivariance.
Therefore, it holds even greater significance to incorporate
rotational equivariant design into the deep networks for self-
supervised methods.

However, there are two critical issues that need to be
addressed when introducing equivariant priors into self-
supervised image denoising. On the one hand, although,
Xie et al. have recently constructed a rotation equivariant
CNN suitable for image processing [49] and Fu et al. further
analyzed the global rotation equivariance error of the entire
network [11], current rotation equivariant designs for im-
age processing are usually in ResNet[15] structure without
upsampling or downsampling. For example, for the super-
resolution network in [49] where upsampling module is in-
evitable, only the portion of the network before upsampling
is rotation equivariant and the equivariance for the entire
network can not be guaranteed. Since self-supervised net-
works often utilize U-Net structures, which include multiple
upsampling and downsampling modules, it is imperative to
first explore the impact of these modules on rotation equiv-
ariance of the network.

On the other hand, rotation equivariant design for deep
networks inevitably introduces parameter sharing and con-
volution kernel parameterization, which usually degrades
the representation accuracy of the network. However, im-
age denoising tasks often have high requirements for the
network’s representation accuracy, since important high-

frequency components need to be reconstructed. Besides,
not all areas of natural images strictly comply with rigid
rotation equivariance, indiscriminately adopting a rotation
equivariant network for the entire image can often be detri-
mental to the reconstruction performance of images.

This study primarily focuses on integrating rotation
equivariant prior to existing self-supervised denoising tech-
niques while solving the aforementioned issues. The key
contributions can be summarized as follows:
• We explore the way for introducing rotation equivariant

prior into self-supervised image denoising frameworks at
the network architecture level. Particularly, for the first
time, we rigorously analyze the impact of upsampling and
downsampling on equivariant networks theoretically. The
equivariant errors of upsampling and downsampling layer
indeed approach zero when the resolution of the input im-
age increases, though the approach rate (O(h), h denoted
the mesh size of image) is slower than equivariant convo-
lutional layer (whose equivariant error approaches zero at
a rate of O(h2)). Then, by taking U-Net as an example,
we further analyze the rotation equivariant error of the
entire network, showing that by simply replacing all the
convolution layers with rotation equivariant convolutions
[49], we can indeed achieve a reliable rotation equivariant
network for self-supervised image denoising.

• We have further developed an adaptive rotation equiv-
ariant network to enhance the representation accuracy.
Specifically, we design a fusion module for integrat-
ing the advantages of both rotation-equivariant and non-
equivariant networks. The module can automatically de-
termine which regions of the image would benefit more
from a rotation-equivariant network compared to a nor-
mal CNN-based network. This design provides greater
flexibility and yields improved denoising results.

• We conducted comprehensive experiments across various
self-supervised denoising methods, demonstrating the ef-
fectiveness of integrating rotation-equivariant image pri-
ors into neural networks for self-supervised techniques.
Our approach provides a novel perspective in the field of
self-supervised image denoising.

2. Related Work and Prior Knowledge

2.1. Image Denoising

Non-learning Denoising Methods: Conventional denois-
ing methods predominantly depend on the statistical char-
acteristics of images and mathematical modeling, often em-
ploying image priors instead of learned denoisers. Notably,
NLM [4, 5] and BM3D [9, 29] have been proposed that can
effectively remove noise based on the exploitation of image
self-similarity. WNNM [12, 13] treated image denoising
as a low-rank matrix approximation problem and achieved
great performance.
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Supervised Denoising Methods: The majority of DL-
based denoising algorithms are supervised [2, 7, 14, 52, 56,
57]. DnCNN [56] employed an end-to-end training strategy
to learn the mapping between noisy images and the residual
components, markedly improving denoising efficacy. FFD-
Net [57] proposed a versatile denoising architecture by in-
corporating the noise level as a network parameter. Never-
theless, to train a proficient model, an extensive collection
of paired noisy and clean images is necessary to compre-
hensively capture the range of image contents and noise
variations [2, 14, 19, 25, 37, 53]. The acquisition of such
training datasets can be prohibitively costly and challeng-
ing, and in the case of certain medical images, it may be
virtually unattainable.
Self-supervised Denoising Methods: Self-supervised
deep learning methods have garnered significant interest
due to their independence from clean reference images [3, 6,
18, 21, 26, 32, 33, 44, 51, 55]. Noise2Noise [26], proposed
by Lehtinen et al., was the first self-supervised method
that achieved performance comparable to supervised meth-
ods only using paired noisy images. Noise2Void [21] and
Noise2Self [3] used a single noisy image and employed a
blind-spot network to predict the clean pixel values based on
neighboring pixels, thereby avoiding collapse to an identity
mapping. [6, 18, 32, 33, 51] devise strategies to generate
training image pairs from noisy images to train a network.
R2R [33] has demonstrated that the cost function defined on
the noisy/noisy image pairs generated by this method is sta-
tistically equivalent to the supervised method. Single-image
denoising methods [36, 41] capitalize on the statistical prop-
erties of the image itself, showing powerful denoising capa-
bilities without extensive training datasets. These methods
lack clean images for supervision and rely more on the prior
knowledge embedded within the network, which is the rea-
son for the success of these CNN-based self-supervised im-
age denoising methods. Inspired by this, we explore the
way to further incorporate rotation equivariant image prior
to these methods with rigorous theoretical analysis.

2.2. Rotation Equivariance

Equivariant Convolution Neural Networks (ECNNs) have
drawn substantial interest within the field of computer vi-
sion these years [8, 17, 30, 39, 40, 45–47, 58]. Their key
strength stems from their ability to effectively handle image
rotations through architectural design, which significantly
enhances the model’s generalization and robustness.

Cohen et al. introduced Group Equivariant Convolu-
tional Networks (G-CNNs) [8] and first integrated π

2 de-
gree rotation equivariance into the neural network. Re-
cently, the filter parametrization technique has been widely
employed and Weiler et al. used harmonics as steerable fil-
ters to achieve exact equivariance [45, 46]. However, a no-
table limitation of these filter parameterization techniques

is the inaccuracy in their representation, which significantly
affects low-level vision tasks. Fortunately, Xie et al. ad-
dressed this issue by proposing Fourier series expansion-
based filter parametrization, which has relatively high ex-
pression accuracy [49]. The proposed Fconv exhibits pre-
cise equivariance in the continuous domain, degrading to
approximation only after discretization.

Equivariant convolutions, distinct from data augmenta-
tion techniques, inherently integrate rotational symmetry
image priors into the network architecture, thereby guaran-
teeing the network’s inherent equivariance and offering su-
perior interpretability and generalizability. However, in the
U-Net structure, there is no theoretical guarantee for the de-
sign of rotation equivariance. To the best of our knowledge,
this study represents the first application of rotation equiv-
ariant convolution in the field of self-supervised image de-
noising and offers theoretical assurance of equivariance for
networks based on the U-Net architecture.

2.3. Prior Knowledge about Equivariance
Equivariance to a transformation indicates that the applica-
tion of a transformation to the input results in a correspond-
ing, predictable transformation of the output [39, 45, 49].
Concretely, consider a mapping Ψ that transforms the input
feature space to the output feature space, and let G denote
a set of transformations. For any g ∈ G, the following rela-
tionship holds:

Ψ [πg[f ]] = π′
g [Ψ[f ]] , (1)

where f represents any feature map within the input feature
space, and πg and π′

g describe the action of the transforma-
tion g on the input and output features, respectively.

3. Proposed Method
3.1. ECNNs for Self-supervised Image Denoising
Self-supervised image denoising methods lack clean images
for supervision and rely more on the prior knowledge em-
bedded within the network. Therefore, introducing rotation
equivariant image prior to this field is reasonable, which can
be achieved by ECNNs [49]. The U-Net can effectively
restore high-frequency details in images with an encoder-
decoder architecture, making it widely used in this task.
Consequently, to construct an equivariant self-supervised
denoising network, we need to discuss the impact of the
essential upsampling and downsampling operators in the U-
Net network on equivariance.

In the subsequent section, we first present some nota-
tions and concepts, and then theoretically analyze the im-
pact of upsampling and downsampling operators on equiv-
ariant networks. Furthermore, we deduce the equivariant
error for the complete U-Net network and provide theoret-
ical guarantees for the implementation of equivariance in
U-Net architectures.
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Figure 2. The network architecture of the equivariant N2N
method. The network can be divided into multiple upsampling and
downsampling blocks. Each downsampling block (DB) consists
of one E-Conv layer and a downsampling operator, while each up-
sampling block (UB) is composed of an upsampling operator and
two E-Conv layers.

3.1.1. Notations and Concepts
We first introduce some necessary notations and preliminar-
ies as follows.

We consider the equivariance on the orthogonal group
O(2). Formally, O(2) = {A ∈ R2×2|ATA = I2×2},
which contains all rotation and reflection matrices. Without
ambiguity, we use A to parameterize O(2). The Euclidean
group E(2) = R2 ⋊ O(2) (⋊ is a semidirect-product),
whose element is represented as (x,A). Restricting the do-
main of A and x, we can also use this representation to pa-
rameterize any subgroup of E(2). In practice, the subgroup
is usually assumed to contain t rotations with 2π

t degree for
an integer t ∈ N+.

An image I ∈ Rn×n is viewed as a two-dimensional
discretization of a smooth function r : R2 → R, at the
cell-center of a regular grid with n× n cells, i.e., for i, j =
1, 2, · · · , n,

Iij = r(xij), (2)

where xij=
((
i− n+1

2

)
h,

(
j− n+1

2

)
h
)T

, h is the mesh size.
An intermediate feature map F ∈ Rn×n×t in equivariant

networks is a multi-channel tensor, which can be viewed as
the discretization of a continuous function defined on Ẽ =
R2 ⋊ S, where S is a subgroup of O(2) and t is the number
of elements in S. Formally, F can be represented as a three-
dimensional grid tensor sampled from a smooth function
e : R2 × S → R, i.e., for i, j = 1, 2, · · · , n,

FA
ij = e(xij , A), (3)

where xij is defined in (2) and A ∈ S.
With above notations, the transformations on the in-

put and feature maps can be mathematically formulated.
Specifically, in the continuous domain, for an input r ∈
C∞(R2) and feature map e ∈ C∞(E(2)), the transforma-
tion Ã ∈ O(2) acts on r and e respectively by:

πR
Ã
[r](x) = r(Ã−1x),∀x ∈ R2,

πE
Ã
[e](x,A) = e(Ã−1x, Ã−1A),∀(x,A) ∈ E(2).

(4)

In particular, if Aθ ∈ O(2) is the rotation matrix[
cos θ, sin θ
− sin θ, cos θ

]
, then the corresponding rotation operators

can be expressed by πR
θ and πE

θ .
Besides, in the discrete domain, we can also define the

transformation Ã ∈ S on the input image and feature map
as followings: (

π̃R
Ã
(I)

)
ij
= πR

Ã
[r](xij),(

π̃E
Ã
(F )

)A
ij
= πE

Ã
[e](xij , A),

∀i, j = 1,2, · · · , n,A ∈ S.

(5)

Similarly, rotation operators can be denoted as π̃R
θ and π̃E

θ .

3.1.2. Equivariance of Downsampling and Upsampling
As shown in Fig. 2, the U-Net architecture commonly used
in self-supervised image denoising typically integrates up-
sampling and downsampling operators. In specific appli-
cations, these layers will inevitably affect the equivariance
of the network. Recent studies [11, 49] have analyzed
the equivariance properties of the group convolution layer.
However, the effects of upsampling and downsampling on
network equivariance remain unexplored.

First of all, We provide the definitions of commonly used
downsampling methods in the continuous domain.
Maxpooling Downsampling. Maxpooling is a commonly
used downsampling method in CNNs, which reduces the
spatial dimensions of feature maps by sliding a fixed-size
window over the feature map and selecting the maximum
value within each region as the output [23]. In the contin-
uous domain, we can define maxpooling operator M(·) as
follows,

[M(F )](x,A) = maxΩx
FA
ij , (6)

where x = [x1, x2]
T ∈ R2 denotes the spatial coordinates,

and x1 ∈ [i, i + 1], x2 ∈ [j, j + 1], Ωx = {(i, j), (i +
1, j), (i, j + 1), (i+ 1, j + 1)}.
Stride Downsampling. Stride Downsampling is also a
widely used downsampling operator which reduce the size
of the feature map by adjusting the stride of the convolution
operation [24]. In the continuous domain, we can define
stride downsampling operator S(·) as follows,

[S(F )](x,A) = FA
i,j+1, (7)

where x = [x1, x2]
T ∈ R2 denotes the spatial coordinates,

and x1 ∈ [i, i + 1], x2 ∈ [j, j + 1]. Ωx = {(i, j), (i +
1, j), (i, j + 1), (i+ 1, j + 1)}.

For the above two common downsampling operators, it
is of great significance to analyze their impact on the equiv-
ariant network. Therefore, we constructed their equivariant
errors under the rotational equivariant structure.
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Theorem 1 Assume that a feature map F ∈ Rn×n×t is dis-
cretized from the smooth function e : R2 ×S → R, |S| = t,
the mesh size is h, D(·) is the downsampling operator. If
for any A,B ∈ S, x ∈ R2, the following conditions are
satisfied:

∥ ∇e(x,A) ∥≤ G, (8)

then the following results are satisfied:

|D
[
π̃E
B

]
(F ) (x,A)− πE

B [D (F )] (x,A) | ≤ 2
√
2Gh. (9)

The downsampling operator D(·) can be either M(·) or
S(·). Theorem 1 reveals that the equivariant error of the
downsample operator is primarily influenced by the mesh
size h, and it indeed approach zero when the resolution of
the input image increases with the approach rate O(h).

Then, we provide the definitions of commonly used up-
sampling methods in the continuous domain.
Nearest Neighbor Upsampling. Nearest neighbor inter-
polation is an image scaling method that fills the pixels of
the interpolated image by selecting the original pixel value
closest to the target pixel position. In the continuous do-
main, we can define the nearest neighbor operator N(·) as
follows,

[N(F )](x,A) = FA
i⋆j⋆ , (10)

where (i∗, j∗) = argminij ||xij − x||22.
Bilinear Upsampling. Bilinear interpolation calculates the
new pixel value by taking the weighted average of the four
surrounding known pixel values. In the continuous domain,
we can define the bilinear interpolation operator B(·) as fol-
lows,

[B(F )](x,A) =

2∑
i=1

2∑
j=1

λijf(Qij), (11)

where λij are the coefficients of bilinear interpolation and
f(Qij) represent the grid points, x = [x1, x2]

T ∈ R2 de-
notes the 2D spatial coordinates, x1 ∈ [i, i + 1], x2 ∈
[j, j + 1].

Both of the aforementioned upsampling operators are
widely utilized across various network architectures, mak-
ing it essential to analyze their mathematical properties
within rotational equivariant networks. Accordingly, we
evaluated their equivariant errors under a rotational equiv-
ariant framework.

Theorem 2 Assume that a feature map F ∈ Rn×n×t is dis-
cretized from the smooth function e : R2 ×S → R, |S| = t,
the mesh size is h, U(·) is the upsampling operator. If for
any A,B ∈ S, x ∈ R2, the following conditions are satis-
fied:

∥ ∇e(x,A) ∥≤ G, (12)

then the following results are satisfied:

|U
[
π̃E
B

]
(F ) (x,A)− πE

B [U (F )] (x,A) | ≤ 2(
√
2 + 1)Gh.

(13)

The upsampling operator U(·) can be either N(·) or
B(·). It is worth noting that the above conclusions indi-
cate that the error introduced by the upsampling operator in
the rotational equivariant network is related to h, aligning
with established understanding.

3.1.3. Analysis of Complete U-Net Network
We take the network design of the N2N method [26] as
an example to give the derivation of the rotation equivari-
ant error for the entire U-Net architecture. As shown in
Fig. 2, we decompose the network into multiple upsam-
pling and downsampling blocks. Each downsampling block
(DB) consists of one E-Conv layer (Equivariant Convolu-
tion) and a downsampling operator, while each upsampling
block (UB) is composed of an upsampling operator and two
E-Conv layers, we provide the equivariant error for each
block and subsequently derive the equivariant error bounds
for the complete network.

Theorem 3 demonstrates the equivariance error of the
complete U-Net network under discrete angles, and the
corollary further provides the equivariance error of the com-
plete U-Net network under any rotation angle. Note that the
mesh size of upsampling and downsampling are different,
we define the mesh size of the original picture to be h, the
mesh size after a ×2 downsampling is 2h, and so on.

Theorem 3 For an image X with size H × W × n0, and
a N-layer rotation equivariant U-Net network UNeteq(·),
whose channel number of the lth layer is nl, rotation equiv-
ariant subgroup is S ⩽ O(2), |S| = t , and activation func-
tion is set as ReLU. If the latent continuous function of the
cth channel of X denoted as rc : R2 → R, and the la-
tent continuous function of any convolution filters in the lth

layer denoted as ϕl : R2 → R, DBi and UBi represent
the downsampling block and the upsampling block, respec-
tively. Ψ̂, Φ̂, and Υ̂ represent the convolutional layers in the
input, middle, and output stages, respectively. We define:

UNeteq(·) = Υ̂
[
ÛBm · · · ÛB1

[
Φ̂
[
D̂Bm · · · D̂B1

[
Ψ̂
]]

· · ·
]]

(·),
(14)

the following conditions are satisfied:

|rc(x)| ≤ F0, ∥∇xrc(x)∥ ≤ G0, ∥∇2
xrc(x)∥ ≤ H0,

|ϕl(x)| ≤ Fl, ∥∇xϕ
l(x)∥ ≤ Gl, ∥∇2

xϕ
l(x)∥ ≤ Hl,

∀∥x∥ ≥ (p+ 1)h/2, ϕl(x) = 0,

(15)

where p is the filter size, h is the mesh size, θk = 2kπ
t , k =

1, 2, · · · , t. ∇x and ∇2
x denote the operators of gradient

and Hessian matrix, respectively. We have∣∣UNeteq
[
π̃R
θk

]
(X)− π̃R

θk
[UNeteq] (X)

∣∣ ≤ R1h+R2h
2.

(16)
where R1, R2 are two constants with respect to N,nl and
the upper bound in (15), their specific values can be found
in the supplementary materials.
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Figure 3. Illustrations of our proposed adaptive network AdaReNet. Specifically, I ∈ RH×W×C represents a noisy image, where H and W
represent the spatial dimensions, and C denotes the channel dimension. The Vanilla Module and EQ Module each produce their respective
preliminary denoising results, denoted as fc and fe. The Fusion Module Mask(·) automatically decides which areas of the image to use
more EQ Module would gain more benefit. After adaptive fusion by Mask(·) and correction by the Self-correcting Module Sc(·), the final
denoised image Ī is output.

Corollary 1 Under the same condition as Theorem 3, for
an arbitrary θ ∈ [0, 2π], let πθ denote the rotation transfor-
mation, then ∀θ we have∣∣UNeteq [π̃R

θ

]
(X)− π̃R

θ [UNeteq] (X)
∣∣ ≤ R1h+R2h

2 +R3t
−1h,

(17)
where R1, R2, R3 are constants that can be found in the
supplementary materials.

(a) (b) (c) (d)

Figure 4. (a) An image from the Kodak dataset, (b) the heatmap
of the low-frequency component, (c) the heatmap of the high-
frequency component, (d) the output of our proposed MaskNet-
work (the brighter area indicates the use of more Vanilla Module).

3.2. Proposed Adaptive Network AdaReNet
Rotation equivariant design usually degrades the represen-
tation accuracy of the network because of parameter sharing
and filter parameterization and not all areas of natural im-
ages strictly comply with rigid rotation equivariance. In or-
der to solve the above problems, the proposed network pre-
dominantly comprises four primary modules, as depicted in
Fig. 3, which are the Vanilla Module, EQ Module, Fusion
Module, and Self-correcting Module.

Vanilla Module. This module utilizes a conventional CNN
architecture, maintaining the original design where only
translation equivariance is incorporated into the network.
We define the result of the input image I after passing
through the Vanilla Module as fc.

fc = VM(I). (18)

EQ Module. This module employs the same architecture
as the previous one, with the conventional convolution re-
placed by the rotation equivariant network to incorporate
rotation equivariance prior into the architecture. We define
the result of input image I after passing through the EQ
Module as fe,

fe = EQ(I). (19)

Fusion Module. This module introduces a MaskNetwork
Mask(·), a specialized network designed to merge the out-
puts from the Vanilla Module and the EQ Module. It em-
ploys several layers of standard convolutions to automat-
ically determine which regions of the image would bene-
fit more from a rotation-equivariant network compared to
a normal CNN-based network. The output of Mask(·) is
shown in Fig. 4(d). We define the result of input image I
after passing through MaskNetwork as Mf ,

Mf = Mask(I). (20)

Self-correcting Module. Following the Fusion Module, a
self-correcting module is applied to refine the fused result.
This is achieved through the use of simple ResNet Blocks.
We define the Self-correcting Module as Sc(·).
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Based on the network presented in Fig. 3, we can de-
rive the following mathematical representation to encapsu-
late the training and inference processes of the entire net-
work:

Î = Mf ⊙ fc + (1−Mf )⊙ fe, Ī = Sc(Î), (21)

where Î denotes the results of adaptive fusion, and Ī rep-
resents the final restoration result after going through the
Self-correcting Module, ⊙ denote element-wise multiplica-
tion.
Loss Function. We incorporate the loss of the two subnet-
works as regularization terms into the main loss. The loss
function is defined as follows:

L = ∥I − target∥2 + α1∥fc − target∥2 + α2∥fe − target∥2,
(22)

where α1, α2 are hyperparameters and we empirically set
α1 = α2 = 0.1.
Remark. Embedding rotational equivariance into the net-
work is highly effective for self-supervised image denoising
task. Since natural images do not adhere to strict rotational
equivariance, our proposed adaptive rotational equivariant
network, named AdaReNet, can automatically decide which
regions of the image to apply the rotation-equivariant net-
work, thereby further enhancing performance. By observ-
ing the output of the Fusion Module in Fig. 4(d), it is noted
that the mask values are larger at the edge details of the pat-
tern, indicating that the adaptive equivariant network tends
to use the outputs from the Vanilla Module more frequently
in these areas. Conversely, for the restoration of the major-
ity of low-frequency components in the image, the network
predominantly uses the outputs from the EQ Module. This
aligns with the common sense that convolutions are more
adept at fitting high-frequency information[43].

4. Experiments

In this section, we conducted experiments based on the ex-
isting setup and validated our method in three classic ap-
proaches. For the Noise2Noise [26] and Noise2Void [21]
methods, we showed experiments on U-Net [38], which
can significantly speed up the training process while main-
taining acceptable performance, and demonstrated the ef-
fectiveness of our method. Besides, we also conducted the
R2R experiments based on DnCNN [33], further validat-
ing the superiority of the proposed method. Due to space
limitations, we only present partial results. Implementation
details and further experiments concerning different mod-
els, various datasets, model parameter counts, as well as
experiments in the field of self-supervised fluorescence mi-
croscopy denoising[27] can be found in supplementary ma-
terials.

4.1. Experiments on Compared Methods
Rotation Equivariant N2N: We selected the most classi-
cal Gaussian noise for our experiments, and randomized the
standard deviation σ ∈ [0, 50] of noise for each training ex-
ample individually. N2N-EQ denotes the rotation equivari-
ant network, while N2N-EQ+ serves as the adaptive rota-
tion equivariant network. The notation in other experiments
is similar. The results are shown in Tab. 1. The superiority
of our method can also be observed from Fig. 5.

Dataset Gaussian25 Gaussian50

N2N [26] N2N-EQ N2N-EQ+ N2N [26] N2N-EQ N2N-EQ+

Kodak [10] 31.47/0.874 31.60/0.878 31.72/0.880 28.29/0.778 28.58/0.790 28.69/0.791
BSD300 [31] 30.18/0.869 30.28/0.872 30.36/0.873 27.02/0.762 27.24/0.771 27.31/0.772
Set14 [54] 30.02/0.851 30.06/0.854 30.19/0.855 27.16/0.768 27.32/0.775 27.44/0.777

Table 1. N2N: three networks with U-Net architecture were tested
under conditions of Gaussian noise at levels 25 and 50.

Rotation Equivariant N2V: We conducted experiments
with U-Net architectures. The results are presented in Tab. 2
and Fig. 6. The equivariant error1 of networks N2V, N2V-
EQ, and N2V-EQ+ are 0.233, 0.068, and 0.076, respec-
tively. This verifies that the improvements are achieved by
reducing equivariant errors. Besides, Tab. 3 further per-
formed diverse scenarios trained on the BSD500 dataset.
Our method consistently achieved superior results.

Dataset
Gaussian25 Gaussian50

N2V [21] N2V-EQ N2V-EQ+ N2V [21] N2V-EQ N2V-EQ+

BSD500 [31] 28.17/0.820 29.05/0.834 29.12/0.845 26.07/0.725 26.38/0.735 26.82/0.755
Kodak24 [10] 28.86/0.811 29.78/0.825 29.93/0.836 26.75/0.716 27.15/0.732 27.72/0.754
Set14 [54] 27.22/0.800 28.04/0.806 28.09/0.816 25.40/0.715 25.65/0.726 26.23/0.749
Average 28.08/0.811 28.96/0.822 29.05/0.832 26.07/0.719 26.39/0.731 26.92/0.753

Table 2. N2V: three networks were tested under conditions of
Gaussian noise at levels 25 and 50.

Method Poisson Poisson30 Poisson&Gaussian Peppersalt Speckle
N2V 30.82/0.912 32.38/0.961 27.91/0.821 23.93/0.782 26.03/0.775
N2V-EQ(ours) 31.22/0.904 33.59/0.966 28.84/0.835 24.53/0.792 26.42/0.736
N2V-EQ+(ours) 32.19/0.924 35.96/0.976 29.34/0.850 24.83/0.811 24.85/0.676

Table 3. Quantitative comparison on diverse scenarios.

Rotation Equivariant R2R: The experimental results are
shown in Tab. 5. The parameter counts for methods R2R,
R2R-EQ, and R2R-EQ+ are 0.67M, 0.17M and 0.84M, re-
spectively. Due to the larger number of adaptive network
parameters, it is expected that the performance is inferior to
our EQ version when the training dataset is small.

4.2. Ablation Study
Selection of rotation-equivariant networks: We con-
ducted ablation experiments with mainstream rotation-
equivariant networks, including Cohen et al. [8], Weiler et
al. [45] and Shen et al. [39]. Tab. 4 confirms that the cho-
sen Fconv [49] approach is the most effective method in the
field of low-level vision.

1∥[LRΦ(f) − ΦLR(f)∥22/∥LRΦ(f)∥22, where Φ(·) represents the
network and LR(·) denotes the rotation transformation.
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(b)  N2N / 28.82dB (c)  N2N-EQ / 29.26dB (d)  N2N-EQ  / 29.41dB(a)  GT +

Figure 5. N2N: image denoising results of one image from kodak with σ = 50.

(a)  GT (b)  N2V / 29.97dB (c)  N2V-EQ / 32.65dB (d)  N2V-EQ  / 33.47dB+

Figure 6. N2V: image denoising results of one image from BSD500 with σ = 25.

Gaussian25 Gaussian50

Method Kodak24 [10] BSDS300 [31] Set14 [54] Average Kodak24 [10] BSDS300 [31] Set14 [54] Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CNN 31.47 0.874 30.18 0.869 30.02 0.851 30.56 0.865 28.29 0.778 27.02 0.762 27.16 0.768 27.49 0.769
G-CNN 31.39 0.872 30.23 0.869 30.02 0.852 30.55 0.864 28.04 0.774 26.85 0.757 26.88 0.762 27.26 0.764
E2-CNN 31.23 0.869 30.02 0.864 29.70 0.845 30.32 0.859 28.04 0.768 26.86 0.754 26.83 0.758 27.24 0.760
PDO-eConv 31.42 0.874 30.15 0.869 29.83 0.849 30.47 0.864 28.34 0.783 27.06 0.765 27.05 0.768 27.48 0.772
Fconv 31.60 0.878 30.28 0.872 30.06 0.854 30.65 0.868 28.58 0.790 27.24 0.771 27.32 0.775 27.71 0.779

Table 4. Ablation on rotation-equivariant networks: PSNR and SSIM results for Gaussian25 and Gaussian50.

Dataset σ R2R [33] R2R-EQ R2R-EQ+

BSD68 25 29.03/0.822 29.14/0.825 29.10/0.826
BSD68 50 26.01/0.700 26.14/0.711 26.00/0.700

Table 5. R2R: three networks were tested under conditions of
Gaussian noise at levels 25 and 50.

Dataset
Gaussian25 Gaussian50

N2V [21] N2V-EQ N2V-EQ+ N2V [21] N2V-EQ N2V-EQ+

BSD500 [31] 23.09/0.758 28.19/0.811 29.05/0.847 22.20/0.663 26.06/0.718 26.47/0.745
Kodak24 [10] 22.77/0.758 28.98/0.809 29.82/0.840 22.72/0.657 26.96/0.721 27.32/0.743
Set14 [54] 22.03/0.736 27.07/0.787 28.04/0.820 19.65/0.609 25.27/0.707 25.67/0.731
Average 22.63/0.751 28.08/0.802 28.97/0.836 21.52/0.643 26.10/0.715 26.49/0.740

Table 6. N2V w/o rotation augmentation: three networks were
tested under conditions of Gaussian noise at levels 25 and 50.

Data rotation augmentation: Rotational data augmenta-
tion on training data is a commonly used method to en-
hance model performance and robustness. We conducted
ablation experiments with rotation augmentation in the N2V
method. Tab. 2 shows the experiments on the U-Net net-
work with rotation augmentation, while Tab. 6 presents our
ablation experiments without augmentation.

5. Conclusion
In this work, we first explore and introduce rotation equiv-
ariant image prior into the self-supervised image denois-
ing task at the network architecture level. Through rigor-
ous theoretical analysis, we prove that simply replacing the
convolution layers with ECNNs leads to a rotational equiv-
ariant version of the network. Building on this, we pro-
pose AdaReNet, an adaptive rotation equivariant network,
which further enhances performance. Extensive experi-
ments demonstrate the effectiveness of our approach, con-
firming that incorporating rotation equivariant prior signif-
icantly improves denoising results. Overall, our work un-
derscores the importance of leveraging rotation invariance
for self-supervised learning and sets a foundation for future
research in this field.
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