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Abstract

In this paper, we present S2D-LFE, an innovative ap-
proach for sparse-to-dense light field event generation. For
the first time to our knowledge, S2D-LFE enables control-
lable novel view synthesis only from sparse-view light field
event (LFE) data, and addresses three critical challenges
for the LFE generation task: simplicity, controllability, and
consistency. The simplicity aspect eliminates the depen-
dency on frame-based modality, which often suffers from
motion blur and low frame-rate limitations. The control-
lability aspect enables precise view synthesis under sparse
LFE conditions with view-related constraints. The consis-
tency aspect ensures both cross-view and temporal coher-
ence in the generated results. To realize S2D-LFE, we de-
velop a novel diffusion-based generation network with two
key components. First, we design an LFE-customized vari-
ational auto-encoder that effectively compresses and recon-
structs LFE by integrating cross-view information. Second,
we design an LFE-aware injection adaptor to extract com-
prehensive geometric and texture priors. Furthermore, we
construct a large-scale synthetic LFE dataset containing
162 one-minute sequences using simulator, and capture a
real-world testset using our custom-built sparse LFE acqui-
sition system, covering diverse indoor and outdoor scenes.
Extensive experiments demonstrate that S2D-LFE success-
fully generates up to 9 × 9 dense LFE from 2 × 2 sparse
inputs and outperforms existing methods on both synthetic
and real-world data. The datasets and code are available
at https://github.com/Yutong2022/S2D-LFE.

1. Introduction
Event cameras capture per-pixel brightness changes asyn-
chronously with microsecond temporal resolution [1], while
Light Field (LF) cameras record both the accumulated in-
tensity and direction of light rays, thereby revealing scene
geometric structure [48]. The integration of these technolo-
gies leads to Light Field Event (LFE) cameras, which cap-
ture multi-view event streams arranged in a fixed baseline
array. This combination enables simultaneous recording
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of high-quality spatial depth information and dynamic mo-
tion data with exceptional temporal resolution. Such capa-
bilities demonstrate significant potential for various appli-
cations, including 6-degree-of-freedom virtual reality [23]
and real-time dynamic depth estimation [40]. The rich
spatio-temporal information provided by LFE data enables
effective capture of structural information in high-speed dy-
namic scenes.

In this paper, we aim to address a largely unexplored
task of LFE generation. To date, the only relevant work
is Ev-LFV [29], which combines an RGB LF camera with
an event camera aligned to the LF center-view for LFE syn-
thesis. However, this approach faces several critical chal-
lenges: (1) Simplicity. Ev-LFV’s reliance on multi-view LF
frame data as auxiliary information introduces complica-
tions. The RGB data is vulnerable to motion blur and expo-
sure issues, potentially compromising LFE generation qual-
ity. Moreover, achieving precise spatial-temporal alignment
between the LF and event cameras presents substantial tech-
nical challenges. (2) Controllability. The fixed view syn-
thesis constraint of Ev-LFV prevents the generation of free
viewpoints under sparse LFE conditions with view-related
constraints. (3) Consistency. Due to the limitations of low
frame-rate RGB data and insufficient structural modeling,
Ev-LFV struggles to maintain both angular and temporal
continuity in the generated LFE sequences.

To address these challenges, we propose S2D-LFE for
Sparse-to-Dense Light Field Event generation, which is
a novel approach for LFE generation. S2D-LFE demon-
strates the capability to generate temporally consistent LFE
from free viewpoints using only sparse LFE input, making it
particularly suitable for real-world applications without the
need for frame cameras. Our approach comprises two key
components: an LFE-customized variational auto-encoder
for efficient LFE compression and reconstruction, and a
LFE-aware injection adapter integrated into a diffusion-
based generation network that learns to generate the latent
representation of LFE.

The first key component, LFE-VAE, is designed to effec-
tively compress high-resolution LFE while preserving spa-
tial and structural information. Specifically, we introduce
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two significant improvements over conventional pretrained
VAE architectures used in diffusion models [25, 26, 35, 36,
53]. First, we incorporate angular interaction blocks into the
VAE decoder to fully exploit cross-view information within
LFE. Second, we implement a view-enhancement mecha-
nism that utilizes input sparse LFE views to improve the
quality of reconstructed novel views. These enhancements
effectively leverage the inherent cross-view information in
LFE and mitigate compression artifacts, resulting in high-
fidelity reconstruction. The second key component, LFE-
adapter, is designed to utilize geometric and texture priors
from the input sparse LFE to guide the diffusion process.
Specifically, LFE-adapter generates pyramid condition sig-
nals that provide targeted conditioning at multiple resolu-
tion scales for the U-Net during diffusion. This multi-scale
conditioning enables more precise injection of geometric
and texture priors, thereby achieving superior cross-view
consistency.

Moreover, we develop the first sparse LFE capture sys-
tem to facilitate the acquisition of continuous light field
event data. The system consists of four Davis346 cameras
arranged in a 2×2 array configuration. Using this setup, we
collect a diverse dataset comprising 25 sequences, includ-
ing 15 indoor scenes and 10 autonomous driving scenarios.
To support comprehensive model training, we additionally
construct a large-scale synthetic dataset using Carla simula-
tor [14], generating 162 one-minute dense LFE sequences.

The main contributions of this paper can be summarized
as follows:
• We propose S2D-LFE, a novel approach for generat-

ing free-viewpoint and temporally consistent light field
events from sparse-view LFE input.

• Our S2D-LFE incorporates two key components: an
LFE-VAE for efficient LFE compression, and an LFE-
adapter integrated into a diffusion-based generation net-
work that reconstructs the latent representation of LFE.

• We develop the first sparse LFE capture system and col-
lect a dataset of 25 real-world sparse LFE sequences. Ad-
ditionally, we synthesize 162 dense LFE sequences using
the Carla simulator to facilitate comprehensive training.

• Our approach outperforms existing methods on both syn-
thetic and real-world datasets, while presenting enhanced
robustness in generalizing to free-viewpoint synthesis.

2. Related Work
Multi-view Event Processing. While event cameras of-
fer exceptional temporal resolution and low latency [1],
monocular event data alone is insufficient for capturing
comprehensive structural information of dynamic scenes.
Various approaches have been proposed to address this lim-
itation: 1) NeRF-based scene representation learning [4], 2)
hybrid systems combining events with conventional cam-
eras [9, 29], and 3) stereo event systems [10, 19, 40, 55].

NeRF-based methods, while promising, require per-scene
training and multiple viewpoints for effective scene repre-
sentation. For example, EvDNeRF [4] introduces an event-
based dynamic NeRF pipeline for reconstructing event
streams in rapidly deforming scenes, but its performance
degrades significantly with limited viewpoints (< 8). Hy-
brid systems face challenges in reconciling the temporal
resolution disparity between different modalities. For in-
stance, Lu et al. [29] encounter practical limitations in real-
world applications due to the substantial difference in tem-
poral resolution between LF and event cameras. While
stereo event systems can capture geometric information, the
resulting geometry tends to be sparse. In contrast, the Light
Field event modality offers distinct advantages by capturing
dense structural information of dynamic scenes without re-
quiring per-scene training, while enabling multiple angular
resolution generation.

Light Field View Synthesis. The reconstruction of dense
Light Fields from sparse views, commonly known as
LF angular super-resolution, remains an active research
area. Existing approaches can be broadly categorized into
two groups: depth-dependent [5, 24, 43, 52] and depth-
independent methods [12, 21, 23, 44]. Depth-dependent
methods rely on precise disparity estimation but are vul-
nerable to occlusions, while depth-independent methods of-
ten struggle with generalization across varying disparity
ranges. Recent advances in Neural Light Field representa-
tions [2, 3, 15, 28, 38, 42] have brought significant improve-
ments to LF view synthesis by addressing limitations of
conventional angular super-resolution methods. Compared
with the widely adopted learnable 3D representation meth-
ods [7, 11, 34, 41], these approaches can more effectively
exploit the spatial priors inherent in LF. However, these
NeRF-based approaches are constrained by their require-
ment for numerous input views and scene-specific training.
In contrast, our proposed S2D-LFE conquers these limita-
tions by enabling free-viewpoint synthesis from sparse in-
puts without the need for per-scene training, while main-
taining high recovery quality and temporal consistency.

Diffusion-based Image Generation. Diffusion models
have shown remarkable progress in novel view synthe-
sis [6, 8, 20, 39, 46, 50, 51]. For example, NeRDi [20] lever-
ages language priors for multi-view synthesis, effectively
connecting image semantics to appearance reconstruction.
These advances demonstrate the robust capability of diffu-
sion models in modeling multi-view distributions. Further-
more, diffusion models have achieved impressive results
across diverse data modalities, including depth [26], point
clouds [30], optical flow [26, 37], and human pose [25].
Motivated by this versatility and strong fitting capability
across different modalities, we adopt diffusion models for
dense LFE generation.
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3. Real-world and Synthetic LFE Datasets

3.1. LFE Capture System and Real-world Dataset

System Setup. To facilitate the collection of real-world
LFE data and validate our approach, we develop a custom
LFE capture system. Given the lack of commercially avail-
able LFE cameras, our system design prioritizes precise
spatial alignment and temporal synchronization while main-
taining cost-effectiveness. The system, shown in Fig. 1,
consists of a 2 × 2 array of Davis346 cameras mounted
on a square aluminum alloy frame, with uniform horizon-
tal and vertical baseline lengths of 6 cm. To ensure con-
sistent imaging characteristics across views, all four cam-
eras are equipped with identical lenses and configured with
matching parameters, including focal length and exposure
time. For precise temporal synchronization, we implement
a master-slave configuration using external cables (depicted
as black lines in Fig.1). The upper-left DAVIS346 serves
as the master camera, transmitting trigger signal pulses to
the three slave cameras through these cables. This system
captures event data at a spatial resolution of 346 × 260 pix-
els, which can be readily upgraded to a higher resolution by
updating event cameras. Detailed parameter configurations
are provided in the supplementary materials.
Camera Calibration. Precise camera calibration is crucial
for accurate Light Field Event capture, as it ensures geomet-
ric consistency across multiple views and enables reliable
reconstruction of scene structure. This is particularly impor-
tant for our system where accurate spatial relationships be-
tween cameras directly impact the quality of captured LFE
data. We utilize the Kalibr toolbox [16] to estimate camera
intrinsics and extrinsics by capturing fixed-rate frames of
a checkerboard pattern. Since the DAVIS346 cameras out-
put both frames and event streams through the same optical
system, the calibration parameters obtained from frames are
directly applicable to event streams. Following calibration,
we perform systematic rectification of the captured sparse
LFE. Using the upper left camera as reference, we first ap-
ply perspective transformation to project the upper right
camera onto a virtual plane parallel to the reference cam-
era’s horizontal plane, establishing the baseline length be-
tween them. We then align the two lower cameras through
perspective transformations to their corresponding positions
in the sparse LF, ensuring uniform baseline lengths across
the array. This comprehensive calibration and rectification
process ensures accurate structural information capture of
dynamic scenes.
Real-world LFE Dataset. Following system calibration
and rectification, we collect a real LFE dataset comprising
25 dynamic scenes using our LFE capture system, which is
termed “LFE-real”. The dataset consists of two main cate-
gories: 15 indoor sequences captured by moving our camera
array through various indoor environments (featuring sub-

Figure 1. The proposed LFE capturing system.

jects such as people, plants, and interior layouts), and 10
autonomous driving sequences recorded from displayed au-
tonomous driving footage. Each sequence spans between 3
to 5 minutes, ensuring sufficient temporal coverage of the
dynamic events. The details about scenes are in the supple-
mentary material.

3.2. Synthetic Dataset
Given that physical capture devices can only provide sparse
view inputs without dense multi-view supervision, we lever-
age the Carla simulator [14] to generate a large synthetic
LFE dataset for training and evaluation, which is termed
“LFE-syn”. We utilize 18 different maps provided by the
Carla environment for data simulation. Each map is divided
into 9 regions, with a designated starting point in each re-
gion. At these starting points, we deploy virtual vehicles
equipped with 5 × 5 event camera arrays. The baseline
lengths between adjacent cameras are randomly set between
3 cm and 9 cm. The event trigger thresholds are configured
asymmetrically: 0.1 to 0.15 for positive events and -0.15 to -
0.1 for negative events. Using autonomous navigation, each
vehicle generates one-minute LFE sequences, resulting in a
total of 162 synthetic sequences. Additionally, to facilitate
the evaluation, our synthetic dataset share the same resolu-
tion with the real-world dataset. Detailed parameter config-
urations are provided in the supplementary materials.

4. S2D-LFE Generation Network
Our custom-built system captures sparse LFE with coarse

geometric information of dynamic scenes. To enhance the
structural representation capabilities, we propose S2D-LFE,
a novel approach for synthesizing accurate dense LFEs from
sparse inputs. We detail our approach in the following sec-
tions.

4.1. Overview
In our setting, each event stream view in the LFE is ac-

cumulated as an Event Count Map (ECM) [17] with shapes
of RB×TB×2×H×W , where B represents the batch size,
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Figure 2. The second training stage of the LFE-VAE architecture. The input to the LFE-VAE supports multiple angular resolutions of LFE.
Here, we take the case of an input with 25 views as an example. The LFE-VAE is composed of the encoder Venc, the decoder V̂dec inserted
by angular interaction blocks, and the following angular resblocks. The training at this stage is aimed at updating the decoder V̂dec and the
angular resblocks.

TB represents the temporal bins, 2 denotes the polari-
ties, and H × W denotes the spatial resolution. To fa-
cilitate the subsequent processing of the VAE, we trans-
form the two-polarity channels of the event stream into
three channels based on [49]. A LFE can be represented
as L ∈ RB×3×M×N×H×W , where M ×N denotes the an-
gular resolution. The LFE synthesis task aims to generate
a dense LFE LD ∈ RB×3×M×N×H×W from a sparse LFE
LS ∈ RB×3×m×n×H×W , where m× n represents a lower
angular resolution. To effectively model the complex dis-
tribution of LFE data, we adopt a diffusion-based pipeline.
Given the high-dimensional nature of LFE data, we first in-
troduce LFE-VAE to encode LFE into a compact latent rep-
resentation. The encoded sparse LFE, together with the en-
coded angular coordinates, serve as conditioning signals for
the diffusion model to synthesize views at specified angular
positions. To effectively incorporate these conditioning sig-
nals into the diffusion backbone, we design an LFE-adapter
for optimal signal processing. Through iterative genera-
tion of all unknown views, we achieve the transformation
from sparse to dense LFE. Notably, our diffusion network
demonstrates the capability to synthesize novel views at ar-
bitrary angles beyond the training set by accepting different
angular coordinates as input.

4.2. LFE-VAE
To handle the high spatial resolution of LFE data effi-

ciently, we employ Variational Autoencoder (VAE) archi-
tectures commonly used in diffusion models [25, 26, 35, 36,
53] for data compression. However, directly applying con-
ventional VAEs to LFE data presents two significant chal-
lenges: 1) Traditional VAEs used in stable diffusion are de-
signed for single-view processing, failing to leverage the
inherent cross-view structural information in LFE data, and
2) The lossy nature of VAE compression inevitably results
in information loss in the event streams.

To address these limitations, we propose LFE-VAE,
building upon the pretrained VAE model from SDXL [35].

Our architecture introduces two key innovations: (1) an-
gular interaction blocks in the decoder to incorporate
cross-view complementary information, and (2) a view-
enhancement mechanism utilizing four known views to
minimize compression artifacts.

In specific, for each dense LFE input Lin, the encoder
first generates a latent code Zs. This latent representa-
tion is processed by our enhanced decoder, which embeds
cross-view geometric information through angular interac-
tion blocks. Each block consists of two cascaded lay-
ers of spatial and angular convolutions. The correspond-
ing positions of the decoded target views are replaced with
four known sparse LFE views, and then the LFE is refined
through several cascaded resblocks defined on the LFE an-
gualar slices.

Our training process follows a two-stage approach. First,
we fine-tune the stable diffusion VAE using single-view
events to obtain updated weights for the encoder Venc and
decoder Vdec. Subsequently, while keeping Venc frozen, we
fine-tune the proposed decoder V̂dec and angular resblocks.
The second stage of the LFE-VAE architecture is illustrated
in detail in Fig. 2. Specifically, we first select the sparse
LFE views LS , which represent the condition signal for the
subsequent diffusion pipeline. The input LFE Lin is then
encoded by Venc and decoded by the updated V̂dec, resulting
in an intermediate reconstructed LFE. Next, we replace the
four corner views of the recovered LFE, with the four cor-
responding views in LS selected in Lin. Finally, the com-
pression degradation is restored through the utilization of
angular resblocks. After training, the encoder Venc is inte-
grated into the diffusion training pipeline to compress input
sparse LFE, enabling the subsequent diffusion network to
handle higher-resolution LFE generation.

4.3. Diffusion Pipeline
Following mainstream diffusion architectures [13, 22,

25, 26, 35, 36, 53], our diffusion backbone adopts a UNet
structure. While existing diffusion models primarily han-
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Figure 3. The diffusion pipeline of S2D-LFE at the t-th time step. The pipeline primarily consists of two parts: (1) The left part, highlighted
with a blue background, represents the main pipeline diagram. The diffusion pipeline of S2D-LFE adopts a UNet backbone, where the
latent features Zs from four viewpoints are injected into the network as conditional signals via the LFE-adapter. In addition to the time
embedding, our prompt incorporates positional encodings of both horizontal and vertical coordinates. (2) The right section, highlighted
with an orange background, depicts the LFE-adapter block within the LFE-adapter. After cascading the condition information through the
ContBlock and GeoBlock, the output features are embedded into the corresponding layers of the UNet. The LFE-adapter consists of four
LFE-adapter blocks, each producing a different conditional signal Ẑ↓↓

s1 , Ẑ↓↓
s2 , Ẑ↓↓

s3 , Ẑ↓↓
s4 corresponding to the respective layers of the UNet.

dle unstructured conditioning data such as images, videos,
and text, the potential of structured conditioning data, which
contains rich structural and texture priors, remains largely
unexplored. To address this gap, we propose a specialized
diffusion pipeline tailored for LFE data. At its core is the
novel LFE-adapter, which serves two key functions: 1) ex-
tracting features that encode both structural and texture in-
formation from input sparse LFE and 2) injecting these ex-
tracted features into the diffusion backbone. With the struc-
tural and texture information effectively embedded, the dif-
fusion pipeline generates specific LFE views based on input
view prompts. Our approach employs continuous, linear
angular coordinate encoding for view prompts, enabling the
pipeline to generalize to sampling LFE views across vary-
ing densities and provide flexibility in LFE generation. The
complete architecture of our diffusion pipeline at the t-th
time step is illustrated in Fig. 3. Then, we will detail each
of these innovations.
LFE Angular Prompt. Accurate positional priors of tar-
get views are essential for novel LF view generation, which
we achieve through angular coordinate prompting. As illus-
trated in Fig. 3, we process 2D coordinates through a two-
stage encoding scheme. First, we independently encode row
and column coordinates. These encoded coordinates are
then transformed through cascaded fully connected layers to
obtain the raw and column embeddings, which are then con-
catenated and fed into a linear layer to get the angular em-
bedding Fang . It serves dual purposes in our pipeline. It is
combined with time embedding as input to each UNet layer,

while simultaneously providing angular positional priors to
the LFE-adapter for extracting view-specific conditioning
information for the target view generation.
LFE-adapter. Our pipeline leverages priors from a sparse
LFE containing four known views. The design incorporates
both texture and geometry priors from these input views to
provide specific conditioning signals for novel view gener-
ation. Drawing inspiration from [33], we propose an LFE-
adapter to effectively inject structural and textural informa-
tion from the known views. The architecture of our LFE-
adapter is depicted in the orange region of Fig. 3. The pro-
cessing pipeline begins by using the Venc of LFE-VAE to
obtain compressed latent codes Zs from the sparse LFE.
We then integrate the angle embedding Fang with the la-
tent features of the four input views to obtain the updated
latent feature Z∗

s . This feature is processed through a con-
tent extraction block (contblock) that extracts textures and
details using spatial and angular convolutions. The spatial
convolution embeds individual view information, while the
angular convolution captures complementary cross-view in-
formation. A geometric extraction block (geoblock) further
processes the features using cascaded Epipolar Plane Im-
age (EPI) convolutions [5, 24, 43, 52] to embed geomet-
ric information, and thus we obtain the updated feature Ẑs.
This feature undergoes spatial downsampling to produce Ẑ↓

s

for subsequent network updates, followed by angular down-
sampling to generate Ẑ↓↓

s as conditioning signals for corre-
sponding UNet layers. The LFE-adapter ultimately gener-
ates a set of condition signals Ẑ↓↓

s1 , Ẑ
↓↓
s2 , Ẑ

↓↓
s3 , Ẑ

↓↓
s4 . Each sig-
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Table 1. Quantitative evaluation of event-based view synthesis on the in-training-scale setting. We tested various methods under synthetic
and real settings and evaluated their performance across three metrics. The best results are highlighted in red, the second-best results are
highlighted in blue, and the third-best results are highlighted in green. ‘↑’: the higher the better performance, ‘↓’: the opposite.

Category Method Synthetic Real-world
PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ BRISQUE ↓ MUSIQ ↑

AngularSR

Jing et al. [23] 21.12 0.580 0.362 31.56 67.32 28.14
DistgASR [44] 23.32 0.676 0.278 28.88 63.95 29.90
SAV [12] 22.84 0.614 0.282 29.15 62.77 29.25
Guo et al. [21] 23.46 0.687 0.290 28.23 59.13 30.72

Hybrid ET-Net [47]+SAV [12]+Vid2E [18] 20.23 0.574 0.373 32.11 67.11 25.45
ET-Net [47]+Guo et al.+Vid2E [18] 20.88 0.589 0.375 31.95 66.58 25.59

NeRF-based R2L [42] 19.88 0.563 0.401 28.44 60.25 30.45

Generation Ours 24.06 0.701 0.239 27.65 53.45 31.14

nal is added to the corresponding same-size input features
of the UNet blocks.
LFE View Sampling. Through our LFE-adapter, the dif-
fusion pipeline is enriched with comprehensive structural
and textural information from the input LFE. The angular
prompts effectively encode target view positions, ensuring
angular continuity in the generated LFE views. The pipeline
samples individual views sequentially, reconstructing the
complete continuous LFE by iteratively processing coordi-
nates for all target views. The framework accommodates
LFEs of varying densities through relative coordinate map-
ping, where (0, 0) represents the top-left view and (1, 1)
represents the bottom-right view. For example, generating
a view at position (i, j) in an N×N LFE would use normal-
ized coordinates (i/(N − 1), j/(N − 1)). This normalized
coordinate system provides a unified approach for sampling
views across different LFE densities while maintaining con-
sistent spatial relationships.

5. Experiment

5.1. Experiment Settings

Implementation Details. Our networks are trained on
a computing cluster equipped with eight NVIDIA A100
GPUs. Following [44], we employ data augmentation tech-
niques including random horizontal flipping, vertical flip-
ping, and 90◦ rotation to enhance model robustness. The
optimization process utilizes the Adam optimizer with hy-
perparameters β1 = 0.9 and β2 = 0.999, processing
batches of size 32. We adopt a learning rate scheduling
strategy where the initial rate of 2 × 10−4 is halved every
400 epochs. Training concludes after 1500 epochs when
convergence is achieved. To ensure fairness in the experi-
ments, all metrics are calculated excluding the input views.
Datasets and Metrics. For experimental validation, we uti-
lize two distinct datasets: a synthetic dataset generated us-
ing Carla for training and testing, and a real-world dataset
captured by our system for additional testing. We use two
sets of complementary metrics. For data with ground-truth

references, we utilize PSNR measured in dB, SSIM [45],
and LPIPS [54]. For data without ground-truth references,
we employ NIQE [32], BRISQUE [31], and MUSIQ [27].
Comparison Methods. We establish comparisons with
three categories of related approaches1. The first cate-
gory comprises LF angular super-resolution methods, in-
cluding Jing et al.[23], DistgASR[44], SAV [12], and Guo
et al.[21]. The second category involves a three-stage ap-
proach: we first convert sparse LFE to sparse RGB LF using
event-based video reconstruction methods like ET-Net[47],
then perform angular super-resolution to get dense RGB LF,
and finally convert the dense RGB LF back to dense LFE us-
ing Vid2E [18]. The third category explores neural radiance
field-based reconstruction using R2L [42]. All the afore-
mentioned baseline methods are re-trained on our dataset
loading their original pre-trained parameters.

5.2. Comparison Results
In-training-scale Comparisons. We first conduct in-
distribution evaluation on 5 × 5 LFE generation, which
matches our training configuration. As shown in Table 1,
our S2D-LFE outperforms all baselines across all metrics
on both synthetic and real-world testsets. On the synthetic
testset, S2D-LFE achieves a notable PSNR improvement
of 0.60 dB over the second-best method Guo et al.[21],
demonstrating superior reconstruction accuracy. The strong
LPIPS performance further indicates enhanced perceptual
quality, leveraging the advantages of generative modeling.
This is visually evident in Fig.4, where S2D-LFE recon-
structs building details with minimal artifacts and better
ground truth alignment. In addition, although R2L [42]
achieves decent visual results in Fig. 4, it fails to reconstruct
in certain scenes, leading to lower metric performance on
the synthetic dataset. Meanwhile, S2D-LFE maintains its
superior performance across all metrics on the real-world
testset, demonstrating effective generalization to real-world
scenarios. This quantitative advantage is corroborated by

1Since EV-LFV [29] and our S2D-LFE utilize different input modali-
ties, a direct comparison between the two methods is not feasible.
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Figure 4. The figure presents a qualitative comparison on the central view of the generated LFE, using various methods for both synthetic
(top row) and real-world (bottom row) testsets. The proposed S2D-LFE method (labeled as ”Ours”) is compared against other existing
techniques, including SAV [12], Guo et al. [21], ET-Net [47] + Guo et al. + Vid2E [18], R2L [42], DistgASR [44], and the ground-truth.
The highlighted regions (yellow and green boxes) magnify specific areas to emphasize the differences in event generation quality, with
S2D-LFE exhibiting improved fidelity and preservation of fine details in both synthetic and real-world scenarios.

the qualitative results shown in Fig. 4, where S2D-LFE pro-
duces higher quality reconstructions with better preserva-
tion of details. Due to incorrect estimation of view posi-
tion, SAV [12] and DistgASR [44] exhibit misaligned re-
sults compared to other methods. Furthermore, the ET-
Net [47] + SAV + Vid2E [18] approach exhibits severe view
aliasing in this scene.
Out-of-training-scale Comparisons. We extend our eval-
uation to test the model’s generalization capability beyond
its training distribution of 5 × 5 LFE, examining its per-
formance on denser LFEs. Among the seven baselines we
selected, only R2L [42] and Guo et al. [21] are capable of
handling out-of-training-scale LFE generation. Therefore,
we only compare our method with these two approaches in
this section. As shown in Table 2, our S2D-LFE consis-
tently outperforms baseline methods across all tested LFE
densities. While all methods show performance degradation
as LFE density increases, S2D-LFE demonstrates greater
resilience with a slower degradation rate. The qualitative
results in Fig.5 further validate S2D-LFE’s superior perfor-
mance in maintaining perceptual quality and detail preser-
vation for out-of-distribution scenarios. Additional visual
comparisons are provided in the supplementary material.
Angular Consistency. In this section, we analyze and com-
pare the angular continuity of the LFE generated by our
S2D-LFE. Given that the angular continuity of LFE data is
strongly correlated with the gradient of the Epipolar Plane
Image (EPI) [44, 48], we compute metrics (PSNR, SSIM)
on the EPI gradient to evaluate the angular continuity of
Guo et al. [21], R2L [42], and S2D-LFE when generating
LFEs with different numbers of views (ranging from 5 × 5

Figure 5. The figure presents the out-of-training-scale qualita-
tive comparison using different methods including Guo et al. [21],
R2L [42], and our proposed S2D-LFE (Ours). Besides, synthetic-
scene (1) is the (1,1) view from the generated 8 × 8 LFE, and
realworld-scene (2) is the (7,7) view from the generated 8 × 8
LFE,. The yellow and green boxes highlight specific regions to
better illustrate the differences in event generation quality.

to 9× 9). It can be observed from Fig. 6 that as the number
of views increases, all three methods exhibit a decreasing
trend in both PSNR and SSIM metrics while the decline
for our S2D-LFE is more gradual. It can be interpreted
as S2D-LFE exhibits better angular consistency and robust-
ness compared to the other methods. Moreover, we exhibit a
qualitative comparison when generating 9×9 LFE in Fig. 7.
It can be observed that S2D-LFE preserves fidelity details
while producing EPI slices that more closely align with the
ground truth.
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Table 2. Quantitative evaluation of event-based view synthesis on the out-of-training-scale setting. We tested various methods under three
different settings (generating 36 views, 49 views, and 64 views) and evaluated their performance across three metrics. The best results are
highlighted in bold. ‘↑’: the higher the better performance, ‘↓’: the opposite.

Method NIQE ↓ BRISQUE ↓ MUSIQ ↑
36-view 49-views 64-views 36-views 49-views 64-views 36-views 49-views 64-views

Sy
n Guo et al. [21] 16.85 18.62 20.10 59.45 64.12 70.78 31.28 30.02 28.31

R2L [42] 16.96 19.05 21.54 61.72 65.93 71.56 30.27 29.08 27.29
Ours 15.84 17.65 19.67 54.15 58.21 63.49 32.30 31.89 30.34

R
ea

l Guo et al. [21] 28.81 29.58 30.29 62.83 66.15 70.58 30.27 29.78 29.30
R2L [42] 28.94 29.72 30.61 64.00 68.18 71.37 29.99 29.48 29.02
Ours 27.99 28.47 29.01 56.17 58.91 61.29 30.93 30.65 30.21

Figure 6. The figure presents a quantitative comparison of an-
gular consistency across different methods, including Guo et al.,
R2L, and our proposed S2D-LFE. Subfigures (a) and (b) depict
PSNR (dB) and SSIM metrics respectively, when generating dif-
ferent numbers of views ranging from 5× 5 to 9× 9. All methods
exhibit a decline in both metrics as the number of views increases,
but S2D-LFE exhibits a relatively slower decline.

Figure 7. The figure presents a qualitative comparison when gen-
erating 9 × 9 LFE using Guo et al., R2L, and our proposed S2D-
LFE. The green boxes highlight spatial slices of view (1,1), while
the yellow boxes highlight EPI slices.

6. Ablation Study

LFE-VAE. We examine the effectiveness of our LFE-VAE
by making comparisons with two variants: one using a stan-
dard VAE (S-VAE) and another using a fine-tuned VAE (FT-
VAE) with single-view event data. As shown in Table 3,
S-VAE variant shows performance degradation across all
metrics, indicating reduced reconstruction quality and per-
ceptual similarity. While FT-VAE variant shows modest im-
provements with PSNR of 37.12 dB and SSIM of 0.865, its
LPIPS score of 0.151 still indicates suboptimal perceptual
quality. In contrast, our LFE-VAE better captures the struc-
tural and perceptual characteristics of light field events.
LFE-adapter. To validate the effectiveness of our LFE-
adapter design, we make comparisons with a variant that

Table 3. Quantitative evaluation of the ablation on the LFE-VAE.
The table compares the performance under a setting of generating
25 views in the synthetic dataset. The best results are highlighted
in bold. ‘↑’: the higher the better performance, ‘↓’: the opposite.

Method PSNR ↑ SSIM ↑ LPIPS ↓
S-VAE 36.89 0.859 0.158
FT-VAE 37.12 0.865 0.151
LFE-VAE (Ours) 38.54 0.881 0.112

Table 4. Quantitative evaluation of the ablation on the LFE-
adapter. The table compares the performance under a setting of
generating 25 views in the synthetic dataset. The best results are
highlighted in bold. ‘↑’: the higher the better performance, ‘↓’:
the opposite.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Concat 22.54 0.631 0.275
LFE-adapter 24.06 0.701 0.239

replaces the LFE-adapter with simple feature concatena-
tion (concat). As shown in Table 4, the concatenation vari-
ant shows substantial performance degradation across all
metrics, indicating significant reductions in reconstruction
accuracy, structural fidelity, and perceptual quality. The
comparison clearly validates that our LFE-adapter provides
more effective feature integration compared to naive con-
catenation.

7. Conclusion
In this paper, we present S2D-LFE, a novel approach for
generating consistent, full-view LFE. Our key contribu-
tions include developing the first real-world LFE capture
system and proposing effective technical components: an
LFE-VAE for LFE compression and an LFE-Adapter for
prior injection. S2D-LFE achieves simplicity by eliminat-
ing multi-view RGB dependencies, controllability through
precise view synthesis, and consistency via cross-view and
temporal coherence. These advances establish S2D-LFE as
an effective solution for dense LFE generation.
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