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Figure 1. Our method enables high-quality video generation (a) and editing (b) based on sketch and text inputs. (a) Top: With the same
text prompt, different keyframe sketches lead to results with similar semantics but diverse sketch-faithful geometry. (a) Bottom: With the
same sketches, varied text prompts yield diverse appearances. (b) Users can also edit real videos by drawing on keyframe sketches, with
edits automatically propagated even when edited objects in original videos have translation and rotation.

Abstract

Video generation and editing conditioned on text prompts
or images have undergone significant advancements. How-
ever, challenges remain in accurately controlling global
layout and geometry details solely by texts, and supporting
motion control and local modification through images. In
this paper, we aim to achieve sketch-based spatial and mo-
tion control for video generation and support fine-grained
editing of real or synthetic videos. Based on the DiT video
generation model, we propose a memory-efficient control
structure with sketch control blocks that predict residual
features of skipped DiT blocks. Sketches are drawn on one
or two keyframes (at arbitrary time points) for easy inter-
action. To propagate such temporally sparse sketch con-
ditions across all frames, we propose an inter-frame at-
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tention mechanism to analyze the relationship between the
keyframes and each video frame. For sketch-based video
editing, we design an additional video insertion module
that maintains consistency between the newly edited con-
tent and the original video’s spatial feature and dynamic
motion. During inference, we use latent fusion for the ac-
curate preservation of unedited regions. Extensive experi-
ments demonstrate that our SketchVideo achieves superior
performance in controllable video generation and editing.

1. Introduction
Diffusion-based text-to-image [12, 51, 53] and text-to-video
[27, 35, 43, 73, 84] models advance significantly due to im-
provements in datasets [4, 42, 55, 61] and denoising net-
work architectures [12, 51]. While text prompts effectively
describe high-level semantics, they lack control of scene
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layouts and geometric details. To address this, existing
video generation methods [2, 25, 73] utilize images as addi-
tional conditions but raise the questions of how to generate
input images and achieve detailed editing. Sketching serves
as a user-friendly interaction tool to capture spatial content
and shape details accurately. One or two sketches are al-
ready sufficient to convey desired scene structures and mo-
tion information for short video clips (around 6 seconds),
which are the target of our and most existing video gen-
eration methods. However, using such sparse keyframe
sketches presents several challenges, including reasonably
completing the missing frames, improving memory effi-
ciency, and addressing the limited size of video datasets.

A naı̈ve solution is to translate the input keyframe
sketches into images and then utilize interpolation meth-
ods [16, 37, 70] for video generation. However, it is
nontrivial to ensure consistency during keyframe sketch-
to-image generation, which significantly affects the video
quality. This approach also struggles to generate extrap-
olation frames when applying conditions in intermediate
frames rather than beginning and ending time points. An-
other possible approach is to utilize white placeholders to
fill missing condition frames and directly apply Control-
Net [77] into video models, similar to SparseCtrl [22].
However, this requires the same network to process both
sketches and white placeholders simultaneously, while the
pretrained blocks handle tasks far from this sparse propa-
gation. Additionally, for DiT-based video frameworks [27,
84], the traditional strategy [11] that copies half of the pre-
trained model as a condition network easily causes the out-
of-memory issue.

To address these issues, we propose a novel sketch
condition network specifically designed for the DiT-based
video generation architecture (CogVideoX [73] in our
work). Following ControlNet [11, 77], we employ a train-
able copy of CogVideoX’s DiT block to process only the
sketch inputs and generate control features. No white place-
holder is processed to align with the pretrained weights and
reduce learning complexity. To propagate these keyframe
features, we design an inter-frame attention mechanism that
captures the relationship between the control keyframes and
all video frames. Our approach computes query and key
features from noisy latent while extracting value features
from sketch conditions. This design leverages frame-to-
frame similarity for control propagation. The above com-
ponents consist of a single sketch control block. Instead
of copying a half number of the pretrained blocks to con-
struct the control network [11], we use only 5 sketch control
blocks out of the 30 DiT blocks available in CogVideoX-
2b. We design a novel uniformly distributed skip structure
to add the control signals to different levels of features in
discrete blocks (0, 6, 12, 18, and 24), achieving effective
spatial control while improving memory efficiency. During

training, an external image dataset is incorporated to solve
the challenge of limited video data.

Beyond generation, interactive editing of real or syn-
thetic videos further enhances creative flexibility. Exist-
ing methods [34, 40, 45, 71] achieve interesting text-based
editing or effectively propagate single image editing into
videos. Despite their effectiveness in appearance modifica-
tion, they struggle with shape manipulation and object in-
sertion, as they preserve the original temporal motion. Such
information is missing for newly introduced content. More-
over, precisely identifying and preserving unedited regions
for localized editing remains a challenge.

We propose a sketch-based editing method for detailed
local modification. Rather than editing a single image and
propagating changes, we directly construct an editing net-
work based on our sketch control network. To analyze
the relationship between edited regions and the original
video, we incorporate a video insertion module that takes
the original video with masked edited regions as inputs. The
modified sketch control blocks generate residual features
that capture temporally and spatially coherent contents in
the edited areas. To accurately preserve unedited regions
and achieve seamless fusion, the newly edited regions are
blended with the original video in the latent space.

Extensive experiments demonstrate that our method out-
performs existing approaches in video generation and edit-
ing. Our contributions are summarized as follows: 1) We
propose SketchVideo, a novel sketch-based video genera-
tion and editing framework that enables detailed geome-
try control and manipulation using keyframe sketches, as
shown in Fig. 1. 2) We design a sketch condition network
that predicts skipped control features for the DiT frame-
work, with an inter-frame attention mechanism to propagate
one or two sketch conditions across the video. 3) We pro-
pose a video insertion module that analyzes the relationship
between drawn sketches and original videos, utilizing a la-
tent fusion strategy to preserve unedited regions accurately.

2. Related Work
Sketch-based Image Generation. GAN-based meth-
ods [21] have achieved great success in category-restricted
sketch-to-image translation [13, 14, 50, 65, 75, 85]. Re-
cently, diffusion-based text-to-image models [51, 53] han-
dle general categories with conditional models like Control-
Net [77], T2I-Adapter [41] and further advances [30, 46,
48, 76, 83]. Beyond U-Net, the DiT backbone [12] enables
image generation, with PIXART-δ [11] utilizing the first
half of the pretrained model’s blocks as a trainable network
to predict corresponding control residual features. Video
generation, however, introduces additional challenges. For
ease of interaction, we expect sketches specified only for
a sparse set of keyframes, making it difficult to generate
frames without sketch inputs. Additionally, video genera-
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tion costs significantly higher memory resources, making
methods [11, 77] that replicate half of the base model as a
sketch encoder easily out of memory.

Diffusion-based Video Generation. VDM [26] pi-
oneered diffusion-based video generation with a 3D U-
Net denoising network. To improve quality, subsequent
works [2, 3, 9, 10, 23, 25, 33, 64] integrated temporal
modules into text-to-image models [51] to enable text- and
image-conditioned video synthesis. Considering the effi-
ciency, the DiT architecture is further used in Sora [43]
and open-source projects [35, 60, 84]. Despite these ad-
vancements, subtle flickering artifacts remain in the results.
CogVideoX [27, 73] further proposes a 3D full attention
that merges the spatial and temporal attention, facilitating
the generation of long-duration and high-resolution videos.

Building on existing video generation models, various
conditions have been introduced to control the genera-
tion, such as camera movement [24, 66, 72], subject iden-
tity [31, 68], key-point trajectory [36, 56, 81] and exam-
ple motions [67, 79]. However, they often lack control
over spatial layouts and geometric details. Some meth-
ods [15, 18, 80] address this by extending image-based Con-
trolNet [77] to videos but require all-frame conditions that
are tedious for sketch interaction. SparseCtrl [22] tackles
this by using white images for completions. However, due
to the restriction of its base model [23] and a simple network
design, its results suffer from temporal flickering. Similar
ideas have been applied to cartoon interpolation [70] and
colorization [28] with line art as input, but their outputs are
limited to cartoon style. Our method utilizes sparse inputs,
including hand-drawn sketches on one or two keyframes, to
generate temporally stable and realistic videos. Addition-
ally, our method further supports the sketch-based detailed
editing of existing videos.

Deep Learning-based Video Editing. Pioneer works
achieve video editing by style transfer [29, 52], GAN inver-
sion [39, 62], and layered representations [32]. The advent
of diffusion models further provides new editing paradigms.
One category of such methods leverages image generation
models to achieve compelling editing results, using tem-
poral consistency techniques such as layered representa-
tions [6, 44], cross-frame attention [5, 17, 19, 57] and pixel
warping [71]. A second category of methods employ video
generation models. These works propagate the edits applied
on the first frame into the other frames [34, 45], or utilize
an inpainting strategy to achieve text-based editing [82] and
motion modification [40]. To achieve text-based large-scale
shape modification while maintaining motion features, a
space-time feature loss [74] is designed to guide the infer-
ence process. Our method moves beyond traditional text- or
image-based editing approaches, allowing users to draw one
or two keyframe sketches at arbitrary time points for inter-
active video editing. Additionally, our method effectively

handles sketch-based shape manipulation and dynamic ob-
ject insertion, which are challenging for previous works.

Controllable Attention Mechanism. Attention across
frames is initially used to ensure temporal consistency in
AnimateDiff [23] and subsequent video generation mod-
els. Subsequent works, such as VideoBooth [31] and Still-
Moving [8], utilize it to learn identity-aware features for
customized video generation. For video editing, existing
works [17, 20, 57] utilize cross-frame attention to cap-
ture the temporal motion of input videos, enabling effec-
tive propagation of editing operations. Our method applies
this idea to pixel-aligned sketch-based video generation and
propagates the spatial geometric conditions instead of iden-
tity customization. We use a new feature derivation strategy
for enhanced spatial control, differentiating our approach
from traditional cross-attention mechanisms.

3. Methodology
This section introduces our sketch-based video generation
and editing framework. In Sec.3.1, we provide an overview
of CogVideoX-2b [73], a pretrained text-to-video genera-
tion method, which we will use for sketch-based video gen-
eration in our work. In Sec.3.2, we describe our sketch
condition network specifically designed for the DiT ar-
chitecture, which contains sketch control blocks to pre-
dict residual features. Within each control block, an inter-
frame attention mechanism is designed to propagate the in-
put sketches. In Sec.3.3, we detail the editing framework,
which incorporates a video insertion module and latent fu-
sion to preserve the features of the original video.

3.1. Preliminary
CogVideoX [73] is a text-to-video generation model that
employs a 3D causal VAE and builds diffusion within the
latent space. In CogVideoX-2b, the VAE model performs
8×8 spatial and 4× temporal downsampling, followed by
a DiT architecture with 30 blocks for video generation.
Within each block, a 3D full attention processes the con-
catenated text embeddings and patchified video latents, fol-
lowed by a feed-forward layer to output the features. The
3D full attention merges the commonly used separate spa-
tial and temporal attention [2, 23, 84] to improve the tem-
poral coherence. The training objective of diffusion is:

L(θ) := Et,x1:N
0 ,y,ϵ

∥∥∥ϵ− ϵθ(
√
ᾱtx

1:N
0 +

√
1− ᾱtϵ, t, y)

∥∥∥2 , (1)

where t is sampled between 1 and T (denosing steps), ϵ
is the random noise, y is text prompts, and x1:N

0 is the
video data with N frames. The v-prediction [54] and zero
SNR [38] are utilized for the diffusion setting.

3.2. Sketch-based Video Generation
Given text prompts and one or two keyframe sketches
with corresponding time points t1, t2, our method generates
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Figure 2. Our framework for sketch-based video generation and editing. (a) Our sketch condition network for the DiT-based video
generation architecture has a skip structure and five sketch control blocks that predict residual features. (b) For generation, features are
extracted from temporally sparse input sketches and propagated through inter-frame attention. The input sketches are provided for one or
two keyframes (the second sketch is shown as a dotted line). In the top left corner of (b), the prompt and timestep inputs are shown. (c)
For editing, the same sketch control block (b) is utilized, with an additional video insertion module and video masks M1:N to analyze the
relationship between edited and unedited regions. The 3D causal VAE is omitted to save space.

video clips that respect the input text prompts and sketches.
As shown in Fig. 2, we design a sketch condition net-
work for effective control. The input sketches are encoded
into the latent space by the pretrained VAE, followed by
patchifying and time-aware positional embedding to gener-
ate sketch latents st1,t20 .

Skip Residual Structure. In sketch-based image gen-
eration, methods like ControlNet [77] and PIXART-δ [11]
copy the half of the base model as their sketch encoder
to fully utilize the pretrained text-to-image models. How-
ever, applying this to video generation, as done in SparseC-
trl [22], is memory inefficient because it requires adding
half of the base model’s parameters. Unlike the U-Net ar-
chitecture, the DiT network does not have an explicit en-
coder and decoder. Therefore, the assumption in PIXART-
δ [11] that the first half of blocks serve as the encoder can
be improved.

Instead of borrowing local consecutive blocks of the base
model as the encoder and predicting their residual features,
we recognize that blocks at different depths process distinct
feature levels, which should be considered for sketch con-
trol. As illustrated in Fig. 2 (a), we propose a novel skip
residual structure that reduces the number of blocks while
enabling effective sketch control and high-quality genera-
tion. Our sketch condition network contains 5 sketch con-
trol blocks, uniformly distributed across the pretrained gen-
eration network to predict residual features for blocks 0,
6, 12, 18, and 24 of the original video generation model.
This structure efficiently integrates sketch control informa-

tion into multiple feature levels, enhancing the analysis of
input conditions and original semantic features.

Sketch Control Block. In the i-th sketch control block,
the input consists of hidden video features h1:N

i and sketch
features st1,t2i−1 , and the output is the residual features h

1:N

i

and updated sketch features st1,t2i . As shown in Fig. 2 (b),
the sketch feature st1,t2i−1 is processed:

st1,t2i = FeedForward(st1,t2i−1 ), (2)

where the output sketch feature st1,t2i is used for sketch con-
trol propagation and as the input to the next sketch control
block.

To propagate the sketch inputs, a direct approach [22]
replaces missing sketches with white images and employs a
trainable copy of the pretrained DiT block to predict resid-
ual features. However, as shown in Fig. 5, this leads to fuzzy
details in challenging cases, as the network randomly pro-
cesses both sketches and white images. This mixed input is
far from the pretrained model’s task. To address the above
issue, we employ a trainable copy of pretrained DiT block
to process only the sketch inputs (no white placeholder),
aligning with the pretrained weights and reducing learning
difficulty. The resulting keyframe sketch features, denoted
as ct1,t2i , are propagated to all frames through an inter-frame
attention approach.

Inter-frame Attention. We utilize the input hidden fea-
tures of all frames to calculate Q and the hidden features
corresponding to the control frames to calculate K. During
attention computation, this approach captures the internal
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Figure 3. The sketch-based video generation results. Left: The input text prompts and sketches. Right: The video generation results. It
can be seen that the generated results show high quality and good faithfulness with the input sketches. Our method can handle one/two
keyframe sketch(es) at arbitrary user-specified time points (the frames corresponding to the input time points are highlighted by orange).

relationship between all frames and control keyframes, al-
lowing propagation of V (derived from the keyframe sketch
features). Our inter-frame attention is distinct from typical
cross-frame attention, which uses both K and V from con-
trol conditions; instead, we leverage the inter-frame similar-
ity within the input noisy hidden video features and progres-
sively insert the sketches’ spatial and temporal information.
The output c̃1:Ni is computed as: Attention(Q,K, V ) =

Softmax(QKT

√
d
) · V , with

Q = Wq · h1:N
i ,K = Wk · ht1,t2

i , V = Wv · ct1,t2i , (3)

where Wq,Wk,Wv are trainable linear projection weights.
The output of the inter-frame attention is fed into a feed-
forward layer to generate final residual features h

1:N

i .
Training Strategy. To train the sketch condition net-

work, we employ a hybrid training strategy in two stages.
In the first stage, to accelerate convergence and address the
issue of limited video data, the network is trained both for
image generation at arbitrary time points and video genera-
tion with one or two keyframe sketches (randomly selected
from corresponding sketch videos). In the second stage,
video data alone is used to improve the temporal coherence.

3.3. Sketch-based Video Editing
For editing, given real or synthetic videos, users select one
or two keyframes at arbitrary time points and modify the
extracted sketches, with additional inputs of text prompts
and masks M1:N that label regions to be edited for all the
frames. Our method then generates realistic, local editing
results. The input video is multiplied by the inverted masks
to remove information from the edited regions and is sub-
sequently encoded to generate a masked video latent repre-
sentation v1:N0 .

Video Insertion Module. For sketch-based editing,
newly generated contents within the mask regions should
be coherent with the original spatial and temporal features
in the unedited regions. Thus, we design a video inser-
tion module that analyzes the relationship between the input
sketches and the original video. The video insertion mod-
ule takes v1:Ni−1 (input video latent or generated by a previous
control block) as input and predicts the updated video fea-
tures v1:Ni , similar to the sketch generation process. Since
video features are not temporally sparse, we use a train-
able copy of CogVideoX-2b’s DiT block to directly gener-
ate video insertion features ṽ1:Ni . The sketch branch output
c̃1:Ni and video branch output ṽ1:Ni are multiplied by their
respective masks and concatenated:

Concat(c̃1:Ni ∗M1:N , ṽ1:Ni ∗M1:N
), (4)

which serves as inputs to the feed-forward layers, producing
final residual features incorporating the original video and
sketch control information. This design ensures seamless
integration of new contents with the original videos, effec-
tively propagating edits across frames for dynamic motion.

Training Strategy. Directly training the video editing
network would lead to low fidelity with the input sketches,
possibly because of the challenging interaction between the
input sketches and videos. So we finetune it from the pre-
trained sketch condition network for generation and add the
new video insertion module. The pretrained model already
has good sketch fidelity and only requires learning video
information. The network is trained in a self-supervised in-
painting manner, with randomly generated masks to imitate
real-world editing.

Inference Latent Fusion. Although the original videos
are encoded in the condition network, as shown in Fig. 8,
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Figure 4. The sketch-based video editing results. For each example, the text prompts and sketches are shown on the left. On the right, the
input real videos are shown at the top, while the edited results with the control keyframe highlighted in orange are shown at the bottom.
The editing region masks are manually provided by users, highlighted as orange boxes. Our method generates realistic local editing results.

fine details might be lost during editing. To address this,
we propose a latent fusion approach at inference. Specifi-
cally, we apply DDIM inversion [58] to generate noisy la-
tent codes of input videos across the inference steps. At
Steps 25 and 49 (out of 50 total steps), the latent codes in
the unedited regions are replaced with these inversion latent
codes, ensuring better preservation of the original video’s
details and improving the coherence of the edited regions.

4. Evaluation
4.1. Implementation Details
We implement SketchVideo based on CogVideoX-2b [73],
trained on a subset of OpenVid [42] and LAION [55]
datasets, with paired sketches from [7]. Training uses 8
NVIDIA H800 GPUs with a batch size of 8 and gradient
accumulation of 4. For generation, one or two keyframe
sketches are randomly sampled from the video, with 10,000
steps for each training stage. For editing, randomly drawn
masks are applied and trained for 20,000 steps. For ease
of reading, the input text prompts are simplified in figures.
Additional implementation details and full input texts are
available in the supplementary material.

4.2. Results
Our method generates high-quality videos from one or two
keyframe sketches and text prompts. As shown in Fig. 3,
our method can accurately control the object shape and
scene layout, such as the rabbit’s pose (1st row) and the
position of lakes and buildings (2nd row). Text-only inputs
cannot achieve such detailed geometry control. Our method
also achieves interesting dynamic motion interpolation and
extrapolation, generating smooth and realistic transitions, as
seen in the cat’s head shaking (3rd row) and the building’s
movement (last row). This allows control over both spatial
layout and dynamic motion.

Our method also supports sketch-based video editing.

Figure 5. The comparison results of sketch-based video genera-
tion. Text prompts are shown on the top. On the left, we show
the input sketches and sketch-based image generation results by
ControlNet [77]. On the right, we show the results of the com-
pared approaches, including AMT [37], SparseCtrl [22], Ctrl-
CogVideo [77], and ours. Our method produces better results, es-
pecially for the intermediate frames.

Users specify bounding boxes and draw sketches in those
regions, and our method generates photorealistic, seam-
lessly integrated content. As shown in Fig. 4, the new
contents blend well with unedited regions and have dy-
namic motions like hat/hair rotation with original objects
(1st row) or interesting fish swimming (2nd row). Our
method can handle diverse editing cases, including object
insertion, component replacement, and object removal. The
unedited regions are well-preserved thanks to our latent fu-
sion approach.

4.3. Comparison
For sketch-based generation, we compare our methods
with three methods given the same keyframe sketches text
prompts as inputs. For SparseCtrl [22], we use the official
pretrained model and extract sketches by HED [69]. It is
trained on videos in the WebVid-10M dataset [1] instead
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Figure 6. The comparison results of sketch-based video editing.
On the left, we show the drawn editing sketches (for the frames
highlighted in orange), text prompts, and sketch-based image gen-
eration results by ControlNet [77]. On the right, we show the orig-
inal videos and editing results by the compared methods, including
InsV2V [17], AnyV2V [34], and ours. Our method generates the
most realistic results and preserves unedited regions well.

of the OpenVid-1M dataset [42] used in our method. We
extend SparseCtrl to CogVideoX-2b [73], using PIXART-
δ [11] as the sketch condition encoder (with 5 DiT blocks
same as our method) and white images to complete the
missing condition frames. We also compare with an inter-
polation baseline, which uses ControlNet to translate two-
frame sketches into images and then interpolates them with
AMT [37]. For the sketch-base editing task, we compare
ours with a text-based video editing method InsV2V [17]
and a first-frame editing method AnyV2V [34]. We com-
pare with additional methods [16, 20, 45, 70], as shown in
supplemental material.

As shown in Fig. 5, ControlNet [77] translates sketches
into realistic images, which, however, lack temporal con-
sistency and vary with shading and content. The interpo-
lation results of AMT [37] exhibit fuzzy details and ar-
tifacts. SparseCtrl [22], based on AnimateDiff [23], ex-
hibits temporal flickering, such as the suddenly appearing
tree and distorted tower top (see the orange boxes in the
2nd row). Extending SparseCtrl to CogVideoX-2b [73]
(Ctrl-CogVideo) still generates fuzzy details in intermediate
frames, possibly due to the CogVideoX-2b’s pretrained self-
attention being designed for dense inputs instead of sparse
sketches. Our method generates realistic videos with clear
details and good temporal coherence, with even small de-
tails like the electric wires in the top-right corner accurately
propagated.

For sketch-based editing (Fig. 6), InsV2V [17] gener-
ates interesting results with birds but lacks control over
shape and geometry through text prompts alone. For image-
based video editing method, we utilize ControlNet to edit
the first frame and then propagate editing into the video by
AnyV2V [34]. However, since the motion is borrowed from
the original video, AnyV2V struggles with new content,
leading to fuzzy details and distortion in the bird, as well

Methods LPIPS ↓ CLIP ↑ Fidelity Consistency Realism

AMT 29.17 96.12 3.13 3.51 3.57
SparseCtrl 44.85 96.48 2.79 2.94 2.83

Ctrl-CogVideo 32.23 98.04 2.86 2.47 2.50
Ours 27.56 98.31 1.21 1.08 1.11

Table 1. The quantitative results of sketch-based video generation
comparison. The LPIPS and CLIP numbers are scaled up 100×,
with each cell colored to indicate the best .

Methods LPIPS ↓ CLIP ↑ PSNR↑ Fidelity Preservation Realism

InsV2V 13.61 95.39 16.84 2.58 2.26 2.61
AnyV2V 11.92 93.47 13.68 2.35 2.69 2.34

Ours 9.74 98.34 36.48 1.07 1.05 1.04

Table 2. The quantitative results of sketch-based video editing
comparison. The LPIPS and CLIP numbers are scaled up 100×,
with each cell colored to indicate the best .

as changes in unedited regions due to ControlNet’s inability
to retain the original features. In contrast, our method pro-
duces more realistic results with faithful representations of
the sketch. More generation and editing results are available
in the supplemental material and video.

We follow SparseCtrl [22] and use the LPIPS [78] metric
to measure sketch faithfulness between the input sketches
and those extracted from the corresponding frames of the
generated videos. We use the CLIP [49] similarity to assess
temporal coherence. For sketch-based generation, we test
200 random examples from OpenVid [42], using the first
and last frame sketches and the corresponding text prompts
in the dataset. As shown in Table 1, our method achieves
the lowest LPIPS and highest CLIP scores, indicating its
superior performance. For sketch-based editing, we use ad-
ditional an MSE metric to measure unedited region preser-
vation. We utilize 10 examples with hand-drawn sketches as
input. In Table 2, our method outperforms existing methods
across all metrics, demonstrating its superiority.

Figure 7. The ablation study results of sketch-based video gen-
eration. Our method generates more realistic and sketch-faithful
results than the baselines.

4.4. Ablation Study
We conduct an ablation study to evaluate the effectiveness
of each key component. Due to the restriction of comput-
ing resources, all the models are trained with a batch size
of 2. For sketch-based generation, removing inter-frame at-
tention and concatenating sketches with frame features at
the temporal dimension results in strange control with low
sketch faithfulness (Fig. 7 (a)). Similarly, if we replace the
inter-frame attention with a typical cross-attention that uses
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Figure 8. The ablation study results of sketch-based video editing.
Our method generates realistic results faithful to sketches. We uti-
lize heat maps (top right) to visualize the difference between the
edited and original frames.

Metric w/o Inter-Frame Sketch K,V w/o Skip w/o Image Ours

LPIPS ↓ 36.33 32.59 31.91 34.58 30.79
CLIP ↑ 98.10 98.19 97.60 98.24 98.48

Metric w/o Video module w/o Pretrain w/o Latent Fusion Ours

LPIPS ↓ 9.31 12.60 9.77 9.74
CLIP ↑ 97.97 98.12 98.44 98.34
PSNR ↑ 33.61 36.05 31.69 36.48

Table 3. The qualitative results of ablation study for sketch-based
generation and editing, with each cell colored to indicate the best
and second best .

sketch features for both Key and Value (b), the sketch fi-
delity is also degraded due to the lack of effective control
propagation. If we remove the skip structure and predict
residual features for the first 5 blocks (c), the realism of the
generated results is negatively influenced due to less control
ability. Removing image data during training (d) causes sig-
nificant geometry mismatch with input sketches. Compared
to these alternatives, our method produces the most realistic
and faithful results. As shown in Table 3, our method has
the lowest LPIPS values (supporting the best sketch fidelity)
while the CLIP metric has similar results (human eyes can-
not recognize temporal coherence difference).

In sketch-based video editing (Fig. 8), removing the
video insertion module (a) and solely utilizing the sketch
condition encoder results in good sketch fidelity but ob-
vious inconsistency with unedited regions. Training the
sketch condition encoder from scratch without generation
pretraining (b) reduces the faithfulness to the input sketches
in the edited regions, which is also validated by the high
LPIPS in Table 3. We use heat maps to reveal differences
between edited and original frames. Removing the latent
fusion strategy changes unedited region details (c), such as
mountains and waves, as shown in the heat maps. The low
PSNR value in unedited regions also supports this, as shown
in Table 3. Our method maintains strong sketch fidelity,
consistency, and unedited region preservation.

4.5. User Study
We conducted a user study to validate that our method out-
performs existing approaches. For video generation, we

randomly selected 10 examples from the test set in Sec. 4.3.
In the questionnaire, participants were shown the results of
different methods in random order. 20 participants ranked
the methods results by three criteria: Sketch Fidelity, Tem-
poral Consistency, and Video Realism. The rankings pro-
vided by the participants were used as scores. As shown in
Table 1, our method outperforms existing methods in all cri-
teria, demonstrating its superior performance. For sketch-
based editing, we used the same 10 examples from the test
set in Sec. 4.3. The same participants ranked the methods
based on three criteria: Sketch Fidelity, Unedited Region
Preservation, and Video Realism. As shown in Table 2, our
method also outperforms existing approaches in editing.

5. Conclusion and Discussion
We presented SketchVideo, a unified method for sketch-
based video generation and editing. For generation, we
proposed a sketch condition network that predicts residual
features for skipped DiT blocks of the base models to save
the memory and achieve effective control. An inter-frame
attention is further proposed to propagate the keyframe
sketches, achieving interesting motion interpolation or ex-
trapolation. We also introduce a hybrid image and video
training strategy. For editing, we incorporate a video inser-
tion module to ensure the newly generated content is spa-
tially and temporally coherent with the original video. Dur-
ing inference, a latent fusion approach preserves unedited
regions accurately.

Limitation and Future Work. While our method gen-
erates high-quality videos, its capabilities are still limited by
the pretrained text-to-video model. Enhancing performance
with more powerful pretrained models and generating long
videos instead of video clips is a potential avenue. Addi-
tionally, similar to image generation, our method struggles
with too complex scenarios, such as human hands and in-
teraction between multiple objects. Incorporating 3D pri-
ors [59, 63, 86] like SMPL-X [47] helps address these issues
in human scenarios. Moreover, while our method focuses
on geometry control, exploring appearance customization
through tools like color strokes presents an intriguing area
for future research.
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Lukác, Jakub Fiser, Jingwan Lu, Eli Shechtman, and Daniel
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