
UnCommon Objects in 3D

Xingchen Liu1 Piyush Tayal1 Jianyuan Wang1 Jesus Zarzar+1 Tom Monnier1

Konstantinos Tertikas1* Jiali Duan1 Antoine Toisoul1 Jason Y. Zhang†

Natalia Neverova1 Andrea Vedaldi1 Roman Shapovalov1 David Novotny1

*NKUA, Greece +KAUST †Carnegie Mellon University 1Meta AI

https://uco3d.github.io https://github.com/facebookresearch/uco3d

Figure 1. We introduce UnCommon Objects in 3D (uCO3D), a large and diverse dataset of high-quality 360� videos covering over 1,000

object categories. Each video frame is 3D-annotated with accurate SfM cameras, point cloud, and a 3D Gaussian Splatting reconstruction.

Abstract

We introduce Uncommon Objects in 3D (uCO3D), a new

object-centric dataset for 3D deep learning and 3D genera-

tive AI. uCO3D is the largest publicly-available collection

of high-resolution videos of objects with 3D annotations

that ensures full-360� coverage. uCO3D is significantly

more diverse than MVImgNet and CO3Dv2, covering more

than 1,000 object categories. It is also of higher quality, due

to extensive quality checks of both the collected videos and

the 3D annotations. Similar to analogous datasets, uCO3D

contains annotations for 3D camera poses, depth maps and

sparse point clouds. In addition, each object is equipped

with a caption and a 3D Gaussian Splat reconstruction. We

train several large 3D models on MVImgNet, CO3Dv2, and

uCO3D and obtain superior results using the latter, show-

ing that uCO3D is better for learning applications.
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1. Introduction

The primacy of data has been the defining characteristic of

the last decade of machine learning, alongside deep learn-

ing. The most powerful models in language, speech, and

computer vision are large deep networks trained on massive

amounts of data, and then further fine-tuned on its high-

quality subset. This paradigm is expected to extend to all

machine learning applications, including 3D vision.

However, 3D training data is much harder to come by

than data for text, audio, and image processing.

Seeking training data for large 3D neural networks [27],

many have turned to synthetic datasets like Objaverse [13].

However, synthetic data is a poor substitute for real data in

applications like digital twinning, which creates 3D mod-

els of real-life objects. This is why many photorealis-

tic reconstruction networks [6, 23, 57, 58, 63, 67] are

trained using real object-centric datasets like CO3D [47],

MVImgNet [76], GSO [15], and OmniObject3D [68]. Real

data is also crucial for generalization, as demonstrated

by DUSt3r [64] for point map prediction and DepthAny-

thing [74] for depth prediction, both of which are trained on

numerous real datasets. Even non-curated image datasets

like the billion-scale LAION [52] are applicable to 3D vi-

sion. For instance, text-to-3D generators [35, 45, 53, 54]

build on LAION-trained large text-to-image models [5, 11].

Given the importance of 3D datasets, but also their rela-

tive scarcity, in this paper we ask what is the next step for

real data in 3D vision. To answer this question, we note

that, while the size of a dataset is crucial, in most cases

its quality is just as important. For example, text-to-3D

models [35, 55] are notoriously sensitive to fine-tuning data

quality, training only with the best-looking models (e.g., In-

stant3D [35] uses only about 1% of Objaverse). We con-

clude that high-quality datasets balancing scale and fidelity

are more valuable than simply amassing low-quality data.

Based on this observation, we argue that there is a gap in

the real object-centric 3D datasets that are currently avail-

able, as none strikes the optimal balance between quality

and scale. For example, the 3D object scans in OmniOb-

ject3D [68] and GSO [15] provide very accurate geometry

and textures, but only count a few thousand objects. Con-

versely, datasets like CO3D [47] and MvImgNet [76] con-

tain orders-of-magnitude more objects, but lack reliable 3D

scans. Instead, they provide many views of the objects to-

gether with lower-quality 3D cameras and point clouds re-

constructed with structure-from-motion (SfM).

In this paper, we address this gap with a new dataset,

Uncommon Objects in 3D (uCO3D), which better balances

data quality and size (Tab. 1). Similar to CO3D, it com-

prises full-360� crowd-sourced videos capturing objects

from all sides, annotated with cameras and point clouds us-

ing SfM. Furthermore, uCO3D has much greater data di-

versity (Fig. 2) than prior alternatives as it contains objects

Real Count # Classes Data type Annotations

ShapeNet [8] 7 51k 55 3D meshes mesh

Objaverse [13] 7 800k 21k 3D meshes mesh

Objaverse-XL [12] 7 10M 2M 3D meshes mesh

ABO [10] 7 8k 63 3D meshes mesh

OmniObject3D [68] X 6k 190 Videos w/ meshes cameras, mesh

GSO [14] X 1k 17 Views w/ meshes cameras, mesh

Objectron [2] X 15k 9 Limited vp. videos cameras, 3D box

MVImgNet [76] X 220k 238 Limited vp. videos cameras, pcl

CO3D [47] X 19k 50 360� videos cameras, pcl

CO3Dv2 [47] X 40k 50 360� videos cameras, pcl

uCO3D (ours) X 170k 1k 360� videos cameras, 3DGS, caption

Table 1. Overview of 3D object datasets. We compare the num-

ber of objects / classes, the type of data and associated annotations.

from the 1,070 visual object categories of the LVIS [22]

taxonomy, which has long tails. For reference, MVImgNet

and CO3Dv2 contain only 238 and 50 categories, respec-

tively. These fine-grained categories are organized in super-

categories, also shown in Fig. 2. Furthermore, uCO3D con-

tains 170k scenes, which is more than four times larger than

CO3Dv2’s 40k. While this is less than MVImgNet’s 220k,

uCO3D’s videos cover each object from all sides, as op-

posed to MVImgNet’s partial object captures.

Besides improving size and diversity, uCO3D also raises

the quality bar. This was achieved by checking extensively

both the collected videos and their 3D annotations. Dif-

ferently from datasets like CO3Dv2 that still contain a cer-

tain portion of low-quality videos, in uCO3D we manually

verified that each video provides full 360� turn-table cov-

ering all sides of the object. Additionally, 60%+ of the

videos have 1080p+ resolution, higher than CO3Dv2. To

ensure 3D-annotation quality, we improved both the recon-

struction algorithm and the reconstruction validation. For

camera reconstruction, we used VGGSfM [62], which is

currently the best SfM system available, and is more ro-

bust and accurate than COLMAP [50], used in CO3Dv2 and

MvImgNet. We also improve on CO3Dv2’s active-learning

camera quality evaluation by combining it with novel-view

synthesis accuracy after reconstructing each scene using 3D

Gaussian Splatting (3DGS) [29]. The latter also guarantees

that scenes are reconstructible to a high quality, which is

important for training of 3D models.

We validate uCO3D’s benefits in applications. We train

two popular 3D models, LRM [27] and CAT3D [18], us-

ing uCO3D and demonstrate improved results compared to

training on MVImgNet and CO3Dv2, which makes uCO3D

the better data source for real object-centric 3D learning.

We also use uCO3D to train a text-to-3D model following

Instant3D’s [35] two-stage design. The latter requires ob-

jects to be rendered from canonical viewpoints, and thus,

so far, was limited to synthetic data. By using our 3DGS

reconstructions, we ‘re-shoot’ uCO3D’s from these view-

points, which allows to train a more realistic generator.
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Figure 2. Statistics of uCO3D. (Left) We plot the number of objects per super-category. In total, the dataset contains 50 super-categories,

each gathering around 20 sub-categories. (Right) We show a word cloud of all 1,070 visual categories represented in the dataset.

2. Related Work

Datasets of synthetic 3D objects. Historically, object-

centric 3D datasets have predominantly been synthetic,

composed of artist-generated 3D models. A prominent

example is ShapeNet [8], with 51,000 meshes across 55

object categories. The meshes have detailed geometries,

but relatively simplistic textures. Datasets such as 3D-

FUTURE [17], IKEA [36], Pix3D [56], and ABO [10] are

less diverse, concentrating on furniture and other consumer

goods. In contrast, ModelNet [69], DeepCAD [66], and

ABC [33] provide CAD models with clean geometry but

no texture. Objaverse [13] is perhaps the most impactful

dataset following ShapeNet. It is significantly larger, com-

prising 800,000 3D meshes. Objaverse-XL [12] expands

this collection to 10M objects. These datasets have been

pivotal in enabling the first 3D deep generative models, in-

cluding text-to-3D [35, 53, 54] and image-to-3D [6, 27, 73]

models.

Real 3D object datasets. Acquiring real-world 3D data

presents many challenges, resulting in only a few real 3D-

object datasets. Early datasets like Pascal3D [70] include

multiple categories but provide only isolated object views

and approximate 3D annotations. Conversely, DTU [28],

BlendedMVS [51], GSO [15], OmniObject3D [68], Aria

Digital Twin [44], and Digital Twin Catalog [1] provide 3D

scans of objects, featuring high-quality 3D geometry and

textures, but have only a few thousand objects.

The use of 3D scanners significantly restricts the scale of

data acquisition; consequently, other datasets capture multi-

view turntable-like videos of objects using consumer cam-

eras. CO3D and CO3Dv2 [47] crowd-sourced 40,000 360�

object videos, providing 3D annotations by reconstruct-

ing point clouds and cameras using COLMAP SfM [50].

MvImgNet [76] collected even more videos (220,000)

across more object categories (238), but their videos capture

objects only partially, preventing full reconstruction. Ob-

jectron [2] is similar to MvImgNet, but with fewer videos

(10,000). A common challenge is that large-scale datasets

often rely on SfM for video reconstruction, which can

lead to imprecise 3D annotations. uCO3D also employs

SfM, but using VGGSfM, which has greater accuracy than

COLMAP, and with a more reliable data validation setup.

Furthermore, uCO3D is five times larger and significantly

more diverse than CO3Dv2, encompassing 20 times more

visual categories, and provides caption and 3D Gaussian

Splat reconstructions of each object.

Applications. In order to assess the quality of uCO3D,

we measure how it benefits a number of popular down-

stream applications. First, we consider feedforward few-

view 3D reconstruction models. Among those, LRM [27] is

a transformer that maps an input image to a neural radiance

field supported by a triplane [7]. LightplaneLRM [6] adds

splatting layers and a memory-efficient renderer. Further

extensions use different representations like 3D Gaussian

Splats [59, 73, 77, 80] and meshes [65, 71].

We also consider text-to-3D generators, which create 3D

assets from text, and focus on the two-stages approach of In-

stant3D [35]. This is based on training a text-to-multi-view

diffusion model [11, 48] which generates several 2D views

of the object, followed by a 3D reconstruction network

that outputs the 3D asset, all in a matter of seconds. The

multi-view diffusion is improved in ViewDiff [26], MVD-

iffusion [60], IM-3D [42], CAT3D [18] and many others.

AssetGen [55] further extends Instant3D by modelling ma-

terial properties instead of baking in the radiance function

and adds a texture refiner that outputs relightable PBR tex-

tures. As an illustration, we use uCO3D to train a model like

CAT3D, which results in better new-view synthesis than the

one trained on alternative datasets. We also show that the

Gaussian Splat reconstructions provided with uCO3D can

supervise, for the first time, an Instant3D-like pipeline us-

ing solely real-life data.

3. Uncommon Objects in 3D

In this section, we introduce uCO3D, our new dataset of

real-life 3D objects. uCO3D comprises 360� turn-table-

like videos of objects, crowdsourced and annotated with 3D

cameras, point clouds, 3D Gaussians, and textual captions.
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Video a) Sparse SfM reconstruction b) Densified SfM point cloud c) 3D Gaussian Splats

Figure 3. Data annotation overview. Each scene in uCO3D is reconstructed in three different ways: a) per-frame cameras with sparse

point cloud calculated by VGGSfM [62], b) semi-dense point cloud comprising triangulations of additional denser tracks from VGGSfM’s

tracker, c) 3D Gaussian Splat [29] reconstruction optimized separately for each scene.

a) Input video

b) Sine-wave camera trajectory

Figure 4. Data collection example. For each video, the cameras

follow a sine-wave trajectory to ensure good viewpoint coverage.

Compared to older datasets like CO3Dv2 [47], uCO3D

comes with many improvements. First, uCO3D is much

larger and more diverse than CO3Dv2: it contains more

than 1k different categories and more than 170k objects,

compared to the 50 and 38k of CO3Dv2. While CO3Dv2’s

categories are taken from MS COCO [38], the categories

in uCO3D are taken from the LVIS [21] taxonomy. Hence,

we inherit the LVIS focus on covering the long-tail of the

visual-category distribution. To simplify data analysis, we

grouped the 1k+ LVIS categories to 50 super-categories,

each containing approximately 20 subcategories. Figure 2

shows the number of videos collected per super-category,

and the LVIS category distribution.

Second, uCO3D improves quality significantly com-

pared to CO3Dv2, ensuring that videos are of high reso-

lution, cover each object well, and that the 3D annotations

are accurate. uCO3D also contains rich textual descriptions

of each object, missing in other datasets, and useful to train

large generative models. It also comes with additional 3D

Gaussian Splat reconstructions of all objects, each rigidly

aligned to a canonical object-centric reference, which make

it possible to re-render the dataset from a fixed, canonical

set of cameras, simulating synthetic data acquisition, which

is very useful for training generative models [35, 55].

Dataset collection. Videos of objects were captured by

workers on Amazon Mechanical Turk. To ensure high video

quality, workers were required to submit videos of a suffi-

cient resolution. As a result, more than 60% of videos in

uCO3D are of 1080p resolution or higher, compared to 33%

in CO3Dv2. Furthermore, to aid the 3D reconstruction,

workers followed a sine-wave capture trajectory instead of

the plain circular trajectory of CO3Dv2, ensuring varying

camera elevations (cf. Fig. 4). Finally, each video was indi-

vidually manually assessed to make sure that it adheres to

these requirements, a process more rigorous than the rough

eyeballing used in CO3Dv2 [47].

Video object segmentation. We used text-conditioned

Segment-Anything (langSAM) [20, 32] to segment the ob-

ject of interest in each video frame given text-conditioning

in form of the object-category name, which had been pro-

vided by Turkers at collection time.

To improve frame-to-frame consistency, CO3Dv2 used a

simple Viterbi algorithm, which often led to segmentation
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Figure 5. 3D reconstruction comparison. We show results of LightplaneLRM [6] models trained on MVImgNet, CO3Dv2 and uCO3D.

OmniObject3D StanfordORB

Train dataset LPIPS# PSNR" IoU" LPIPS# PSNR" IoU"

MVImgNet [76] 0.109 23.39 0.928 0.070 24.451 0.939

CO3Dv2 [47] 0.095 23.62 0.926 0.056 25.617 0.956

uCO3D (ours) 0.093 24.61 0.946 0.057 25.715 0.957

Table 2. 3D reconstruction benchmark. We compare Light-

planeLRM [6] models trained on CO3Dv2, MVImgNet, and

uCO3D. We report novel-view synthesis performances on Om-

niObject3D [68] and StanfordORB [34].

flickering, impairing the final 3D reconstruction quality. In-

stead, in uCO3D, we refine the SAM segmentations with

state-of-the-art deep video-segmenter based on XMem [9],

leading to more temporally-stable object segmentations.

3D annotation with VGGSfM. For each video, we use the

state-of-the-art VGGSfM [62] Structure from Motion (SfM)

system to estimate the parameters of the cameras (intrin-

sic and extrinsic) for 200 frames sampled uniformly. VG-

GSfM also outputs a sparse 3D point cloud, and its denser

version obtained by triangulating additional 3D points from

VGGSfM’s tracker. Examples of sparse and densified SfM

point clouds are shown in Fig. 3.

Scene alignment. While the coordinate system of VG-

GSfM cameras is defined only up to a rigid transformation,

it is crucial for applications like generation and reconstruc-

tion to train on a dataset of rigidly aligned objects. We thus

align all objects so they have a horizontal ground plane,

similar scale, centring, and orientation. Details of the scene

alignment procedure are in the supplementary material.

Gaussian Splat reconstruction. Sparse and even dense

SfM point clouds provide an accurate but still quite sparse

3D reconstruction of the scene’s surface. To further densify

it, uCO3D provides a 3D Gaussian Splat reconstruction [29]

for each scene, fitted using gsplat [75].

Scene captioning. uCO3D also provides textual captions

for all scenes, useful for generative modelling. Motivated

by Cap3D [41], we first caption each view separately using

a vision-language model, and then summarise these into a

single scene caption using LLAMA3 [16].

4. Applications

In this section, we demonstrate uCO3D’s merit on three

popular 3D learning tasks: feedforward sparse-view 3D re-

construction (Sec. 4.1), new-view synthesis using diffusion
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Figure 6. Novel-view synthesis comparison. We compare results of CAT3D-like [19] models trained on different datasets (MVImgNet,

CO3D, uCO3D) and evaluated on standard NVS datasets (top-to-bottom: RealEstate10K [79], LLFF [43], DTU [28], Mip-NeRF 360 [4]).

Easier Dataset Difficulty Harder
 ������������������������������������������!

Re10K [79] LLFF [43] DTU [28] Mip-NeRF [4]

Train dataset LPIPS#PSNR"LPIPS#PSNR"LPIPS#PSNR"LPIPS# PSNR"

MVImgNet [76] 0.310 18.77 0.426 14.38 0.377 12.79 0.605 12.39

CO3Dv2 [47] 0.281 20.02 0.418 14.95 0.329 16.42 0.532 14.19

uCO3D (ours) 0.278 19.77 0.418 15.16 0.315 16.97 0.528 14.37

Table 3. Novel-view synthesis benchmark. We evaluate CAT3D-

like [19] models trained on MVImgNet, CO3Dv2 or uCO3D.

We report NVS performances on RealEstate10K [79], LLFF [43],

DTU [28] and Mip-NeRF 360 [4].

(Sec. 4.2), and text-to-3D (Sec. 4.3).

4.1. Few-view 3D Object Reconstruction

Traditionally, multi-view 3D-annotated datasets such as

CO3D or MVImgNet have been used to supervise few-

view 3D reconstructors. In this section, we train Light-

planeLRM [6], an evolution of the seminal LRM [27], and

show that doing so on uCO3D leads to better performance

than training on alternative datasets.

LRM is a large transformer [61] that accepts few input

images of an object and predicts a 3D representation of the

latter. The transformer, conditioned on the tokens of the ob-

served images via cross attention, converts a set of learnable

input tokens to a 3D representation. The 3D representa-

tion is a triplane [7] supporting an opacity/radiance implicit

shape. LightplaneLRM improves LRM by adding so called

“splatting layers” and a memory-efficient renderer.

During training, LightplaneLRM receives four random

source frames from a training uCO3D video sequence, and

renders the predicted triplane into held-out target views.

Learning minimizes the photometric loss between the ren-

ders and the corresponding ground-truth targets. Both

source and target views are masked using the extracted seg-

mentation masks to make sure that LightplaneLRM only re-

constructs the foreground object. Training uses the Adam

optimizer and is warm-started following the original LRM

training protocol by pre-training the model on a large

dataset of synthetic objects similar to Objaverse [13].

Baselines. Our main goal is to demonstrate that uCO3D

contains higher quality data than existing object-centric

datasets. As such, starting from the model pre-trained on

the synthetic data, we finetune either on uCO3D, or on two

other baseline datasets, namely MVImgNet and CO3Dv2.

Evaluation protocol. We evaluate each trained model in

a novel-view synthesis setting on two small-scale high-
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quality object-centric datasets: OmniObject3D [68] and

Stanford-ORB [34]. Given four views of a held-out test

scene, the model reconstructs the scene which is then

rendered to unseen target views. We report the average

LPIPS [78] loss and Peak-signal-to-noise ratio (PSNR) be-

tween each render and the corresponding ground-truth im-

age. We also report the intersection-over-union (IoU) be-

tween the rendered object alpha mask and the target view

segmentation mask.

Results. Table 2 and Fig. 5 report the quantitative and qual-

itative results, respectively. The LightplaneLRM trained on

uCO3D is better than the other baselines in most metrics on

both datasets. The latter confirms that uCO3D is currently

the most reliable source of real data for training feedforward

few-view 3D reconstructors.

4.2. Novel-view synthesis using diffusion

We now consider application of uCO3D to training new-

view image diffusion generators. These generators can,

given one or a few views of an object and a target camera

pose, output new arbitrary views as observed from the target

camera, hallucinating missing details based on a statistical

prior they learn. They can thus complement and integrate

the feed-forward reconstruction models of the previous sec-

tion, which are deterministic and thus unable to deal with

ambiguity well. To this end, we train a diffusion model

similar to the recent CAT3D [19], but reimplement it from

scratch given lack of source code (see details in the supple-

mentary). We call this model CAT3D-like.

Evaluation protocol. As in Sec. 4.1, we compare ver-

sions of CAT3D-like trained using uCO3D, MVImgNet,

and CO3Dv2 and test them on held-out datasets. A feature

of CAT3D is the ability to reconstruct both the principal

object in the images as well as the background. We thus

benchmark the method using new-view synthesis datasets

that do contain background, namely DTU [28], contain-

ing structured light scans of various objects, LLFF [43],

containing scenes captured from fronto-parallel camera tra-

jectories, RealEstate10k [79], containing real-estate walk-

throughs, and Mip-NeRF 360 [3] with complex indoor and

outdoor scenes. For evaluation, we take three known views

as input and use the model to predict a new view. We report

LPIPS and PSNR but not the IoU since CAT3D only gener-

ates new RGB views without reconstructing the 3D shape.

Results. Table 3 and Fig. 6 contain the results: train-

ing CAT3D-like on uCO3D leads to the best perfor-

mance across all four datasets. Even when compared to

MVImgNet, which is slightly larger than uCO3D, the lat-

ter improves PSNR by 3–4 points, and reduces the LPIPS

error by 5% to 20%.

Text-to-4-view diffusion fine-tuning
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Figure 7. Supervising Instant3D with 3DGS. For each training

scene, its 3DGS is rendered from 4 canonical views yielding a

captioned image dataset for finetuning an image diffuser. Samples

from the latter are then reconstructed with LRM.

4.3. Photorealistic Text-to-3D

Next, we show that uCO3D enables training photorealis-

tic text-to-3D generators. Methods like CAT3D and oth-

ers [39, 42, 53] generate several views of the object first, and

then fit a 3D model, such as a NeRF or 3DGS, via optimiza-

tion. This can work well, but it is not particularly robust

or fast. An alternative, popularized by Instant3D [35] and

follow-ups [54, 72], is to use a feedforward reconstructor in

the second step, similar to LightplaneLRM from Sec. 4.1,

which is faster and more robust. However, these mod-

els require canonical views of the objects — for example,

Instant3D considers 4 orthogonal viewpoints, covering all

‘sides’. The requirement of such training canonical views

complicates training on real data, where viewpoints are ar-

bitrary, and explains why such models are usually trained

on synthetic data, limiting realism.

Imaging 3DGS from canonical views. Our new idea is to

‘re-shoot’ the 3DGS reconstructions provided with uCO3D

from canonical viewpoints, making our data compatible

with any method requiring canonical views for training

(Fig. 7). To do so, we render the normalized reference

frames (Sec. 3) into four views for each object, and arrange

them in a grid as a target for the text-to-4-view generator.

We double check the quality of the renders by calculating

their CLIP similarity [24] to the object caption, and discard

a sample if this is below 0.3.

We use this data to fine-tune a text-to-4-view image dif-

fusion model using these 4-view image grids and the corre-
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Figure 8. Qualitative results for text-to-3D generation displaying the 4-view grids generated by our Instant3D-like model given the input

caption, and the 3D asset obtained by reconstructing the latter. The 4-view grid generator was trained using the canonical 4-view renders

of uCO3D’s 3DGS scene reconstructions.

Train dataset Real - FID# Surreal - FID#

Synthetic 82.8 42.3

uCO3D (ours) 63.9 68.9

Table 4. Text-to-3D evaluation. We compare Instant3D-like

models trained on uCO3D or a dataset of synthetic renders from

artist-created meshes. We report FID on two sets of data corre-

sponding to real and surreal objects, see text for details.

sponding scene captions. At inference time, given a caption

describing the desired object, we use the model to sample a

new 4-view grid and feed the latter, together with the corre-

sponding cameras, to the LightplaneLRM model (Sec. 4.1)

for 3D reconstruction.

Baselines. We train another 4-view generator on a dataset

of synthetic assets similar to Objaverse [13] and use it with

the original LightplaneLRM model [6] trained on the same

data and thus optimally matched to it.

Evaluation protocol. We report metrics evaluating the

alignment between the distributions of the generations and

the ground-truth objects. Specifically, we report the Frechet

Inception Distance (FID) [25] between the renders of the

generated 3D shapes and images of ground-truth objects.

The main purpose of this experiment is to show that, by

training on the uCO3D dataset, the 3D generations are more

realistic. We assess this using two sets of prompts: Sur-

real, containing 100 captions of objects from the synthetic

dataset, and Real, containing 100 random captions form the

held-out evaluation sequences of uCO3D. We report FID

between the generated 3D shapes and the images/renders

corresponding to the objects of each prompt-set.

Results. Table 4 and Fig. 8 contain the quantitative and

qualitative results respectively. The table reveals that the

uCO3D-trained generator outperforms the synthetic gener-

ator when evaluated on real prompts. The latter verifies our

hypothesis that a generator trained on uCO3D yields more

realistic samples than a model trained on synthetic data.

5. Conclusions

We have introduced uCO3D, a new object-centric 3D
dataset of real-life objects. uCO3D strikes a balance
between size and quality, ensuring the quality of the
collected turntable-like videos and of the 3D annotations,
while at the same time significantly expanding the scale
of the data compared to CO3Dv2 and the diversity com-
pared to CO3Dv2 and MVImgNet. We have shown the
benefits of using this dataset compared to alternatives
when training models for feedforward few-view 3D
reconstruction, multi-view generation, and text-to-3D
generation. Equipped with 3D cameras, point clouds,
masks, textual captions, and 3DGS reconstructions of
objects, uCO3D is a ready-to-use resource for training
large generative models and for exploring 3D deep learning.
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