
Continuous Adverse Weather Removal via Degradation-Aware Distillation

Xin Lu Jie Xiao Yurui Zhu Xueyang Fu†

MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition,
School of Information Science and Technology, University of Science and Technology of China

luxion@mail.ustc.edu.cn, xyfu@ustc.edu.cn

Abstract

All-in-one models for adverse weather removal aim to
process various degraded images using a single set of
parameters, making them ideal for real-world scenarios.
However, they encounter two main challenges: catastrophic
forgetting and limited degradation awareness. The former
causes the model to lose knowledge of previously learned
scenarios, reducing its overall effectiveness. While the later
hampers the model’s ability to accurately identify and re-
spond to specific types of degradation, limiting its perfor-
mance across diverse adverse weather conditions. To ad-
dress these issues, we introduce the Incremental Learn-
ing Adverse Weather Removal (ILAWR) framework, which
uses a novel degradation-aware distillation strategy for
continuous weather removal. Specifically, we first design
a degradation-aware module that utilizes Fourier priors
to capture a broad range of degradation features, effec-
tively mitigating catastrophic forgetting in low-level visual
tasks. Then, we implement multilateral distillation, which
combines knowledge from multiple teacher models using
an importance-guided aggregation approach. This enables
the model to balance adaptation to new degradation types
with the preservation of background details. Extensive ex-
periments confirm that ILAWR outperforms existing mod-
els across multiple benchmarks, proving its effectiveness in
continuous adverse weather removal.

1. Introduction
Adverse weather, including rain, snow, and haze, signifi-
cantly reduces image quality, hindering critical vision tasks
such as object tracking [39], detection [25], semantic seg-
mentation [60], and face recognition [56]. This has driven
research into single-image restoration techniques like de-
raining [12, 46], de-snowing [5, 17], and de-hazing [7, 36],
largely using deep neural networks [9, 26, 28, 37, 38, 41,
48, 53, 55] that address specific types of degradation [47].
However, for applications like autonomous driving and
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Figure 1. Comparison of our Degradation-Aware Multilateral Dis-
tillation (DAMD) approach proposed for low-level vision with
previous incremental learning schemes. When compared to
knowledge-caching sample replay [8], parameter isolation and ex-
pansion [13], and regularization [21, 59] methods, our approach
showcases the enhanced restoration performance with decreased
memory footprint and improved computational efficiency.

surveillance, training dedicated networks for each degrada-
tion type is inefficient and impractical.

To address this, all-in-one solutions [35, 49, 61] use uni-
fied network parameters to handle various degradations si-
multaneously. These models, however, assume ideal train-
ing conditions where all possible degradation-clean map-
pings are included in the dataset and available at every train-
ing iteration. This assumption is unrealistic for real-world
applications, where weather variations frequently change
the distribution of degraded images, scattering the mapping
rules across multiple datasets. This fragmentation com-
plicates dataset assembly for diverse training, and contin-
uous model retraining is computationally costly. On the
other hand, training incrementally with new data risks catas-
trophic forgetting [27], where previously learned informa-
tion is lost. Incremental learning, or continual learning [54],
mitigates catastrophic forgetting and has mostly been used
in classification tasks. Approaches to prevent forgetting in-
clude regularization [22, 52], replay mechanisms [3, 16],
and parameter isolation [1]. The PIGWM model [59] first
applied incremental learning to image de-raining, using pa-
rameter importance-guided regularization to maintain per-
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formance across updates, allowing effective de-raining de-
spite changing image degradation levels. Other advances,
such as parameter expansion and hypergraph convolutional
networks [13], have improved generalization for incremen-
tal de-raining. The CLAIO model [8] extended incre-
mental weather removal using knowledge replay and dis-
tillation techniques on synthetic datasets. Despite these
advancements, challenges persist: as illustrated in Fig-
ure 1, regularization-based method struggles with growing
datasets, parameter expansion significantly increases mem-
ory and computation needs, and replay-based CLAIO re-
quires large cache resources. These limitations emphasize
the need for more efficient incremental learning methods for
image restoration in dynamic conditions.

In this paper, we reassess adverse weather removal algo-
rithms suited to current real-world applications and intro-
duce the Incremental Learning Adverse Weather Removal
(ILAWR) framework, which is based on Degradation-
Aware Multilateral Distillation (DAMD). ILAWR learns in-
crementally from streams with varied degradation types,
progressively integrating learned mappings without need-
ing specific degradation category information. A compari-
son between DAMD and prior methods is presented in Fig-
ure 1, and implementation details of ILAWR are outlined in
Figure 2. Inspired by lifelong learning with diverse teacher
models [45], this framework enables adaptive knowledge
acquisition from complementary ”teachers”, effectively bal-
ancing stability and adaptability.

Specifically, we developed a Degradation-Aware Mod-
ule (DAM), based on Fourier priors, which isolates
degradation-specific information within the channel dimen-
sions of U-Net’s deeper layers [61]. This module divides
the model up to session(t) into two teacher groups, as
depicted in Figure 4. This structure allows the model
to effectively learn diverse degradation cues while main-
taining robustness in background reconstruction. Addi-
tionally, we introduced an Importance-Guided Aggregation
Module (IGAM), which uses an importance-weight ma-
trix to dynamically combine guidance from each teacher
group, boosting the model’s performance. ILAWR success-
fully demonstrates incremental learning on four synthetic
datasets for rain, snow, haze, and raindrop degradations,
using Rain100H [50], RESIDE [20], Snow100K [24], and
Raindrop [34] datasets. We also pioneered the first incre-
mental weather removal benchmark using four real-world
datasets—SPA+ [61], REVIDE [57], RealSnow [61], and
LOL-v2 [51]—enabling continuous removal of rain, snow,
fog, and low-light artifacts.

The main contributions of this work include:
• We propose ILAWR, an effective and efficient solution

tailored to real-world scenarios, addressing the challenges
of incremental learning in adverse weather removal.

• Based on Fourier priors, we design DAM for incremen-
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Figure 2. The pipeline of the proposed Incremental Learning Ad-
verse Weather Removal (ILAWR). Our model learns under the
paradigm of incremental learning, gathering data from diverse
weather conditions, continuously updating network parameters.
The final model f (θT ) is capable of restoring various degraded
images (gray arrow) to address real environmental variations.

tal learning in low-level vision tasks. This module effec-
tively extracts degradation-specific knowledge and back-
ground reconstruction knowledge from teacher models.

• We introduce a simple yet effective multilateral distilla-
tion approach that employs importance-guided aggrega-
tion to combine diverse degradation and reconstruction
knowledge from multiple teacher models. This strategy
significantly reduces catastrophic forgetting across vari-
ous degradation types.
Comprehensive experiments on both synthetic and real-

world datasets demonstrate the superior performance of our
method in handling incremental adverse weather removal,
validating its effectiveness and robustness.

2. Related Work
Adverse Weather Removal. Images captured in nature are
subject to degradation due to adverse weather conditions,
prompting the development of numerous image restoration
algorithms designed to remove effects of adverse weather
such as rain, snow, and haze. The cutting-edge image
restoration algorithms today are based on deep learning
models. [12] first employ the Deep Detail Network (De-
tanilNet) for deraining. Additionally, advanced network ar-
chitectures are increasingly applied to single-image derain-
ing [48], desnowing [5], and dehazing tasks [7]. Single-task
models are inadequate for real-world applications, leading
to the emergence of integrated methods for multi-task image
restoration [49]. These approaches utilize a unified set of
network parameters for inference across various restoration
tasks. As diverse degraded datasets are incrementally gath-
ered from the natural world, models must continually learn
new degradation-clean mapping rules. These strategies,
bound by the single-shot supervised learning paradigm, face
the challenge of costly retraining on all data versus the risk
of catastrophic forgetting associated with incremental learn-
ing through streaming data input.
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Incremental Learning Schemes. In recent years, an in-
creasing number of studies have turned their attention to
the practical deployment of image restoration models on
edge devices. PIGWM [59] pioneered the introduction of
incremental learning to deraining, using parameter impor-
tance in regularization methods to minimize performance
gaps between model parameters, facilitating incremental
deraining on images with diverse degradation levels. More-
over, techniques utilizing parameter expansion and hyper-
graph convolution networks [13] are applied for incremen-
tal learning in deraining and generalization tasks. AM [15]
leverages an associative memory management approach for
feature reconstruction in incremental deraining, while DPL
[23] introduces feature-level prompt learning through dual
hints input for task-invariant and task-specific image knowl-
edge acquisition in the context of incremental deraining.
The work closest to ours, CLAIO [8], achieves incremental
weather removal on three synthetic datasets using knowl-
edge replay and distillation. PIGWM’s reliance on regu-
larization fails to sustain performance as the incremental
dataset expands. Techniques involving parameter expansion
and hint learning amplify memory and computational over-
head, while methods centered on associative memory and
replay tend to squander substantial cache. Inspired by hu-
mans learning from various teachers throughout their lives,
multi-teacher distillation models have been employed in the
field of image classification [45, 58] in recent years, yield-
ing superior performance.

3. Motivation
Adverse weather conditions like rain, snow, fog, and low
light are primarily generated based on atmospheric optics
involving various particles present in the air [30–32], ex-
hibiting high levels of randomness and diversity [29]. Con-
sequently, artificially curated paired datasets always fail to
encompass all mapping rules for every degradation type
at once. Faced with the continuous acquisition of small
batches of data in real-world settings, an ideal restoration
model should possess the following capabilities.
Stability and efficiency. Existing all-in-one image restora-
tion models only support one-time training and fine-tuning,
and to maintain good performance, they retain a large num-
ber of parameters. Due to the imbalance in information
across degradation datasets acquired from different batches,
this single mixed training approach exacerbates model over-
fitting on degradation types with larger datasets, while in-
creasing costs, thus hindering the model’s generalization to
unknown degradation types. As shown in Figure 3, when
there is significant variation in data quantity across different
weather conditions, our incremental learning method even
outperforms the previous state-of-the-art (SOTA) on aver-
age metrics, despite their mixed training mode.
Continuous learning capability. In a continuously chang-
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Figure 3. We simulated biased training data distributions con-
tinuously obtained by using training datasets Rain100H (3K),
Snow100K (100K), and RESIDE (400K). The circle size indicates
the FLOPs of various methods. ILAWR outperformed previous
all-in-one and incremental learning models.

ing environment, the restoration network should be able to
continuously adapt and update in an incremental learning
fashion without requiring substantial resources. As illus-
trated in Figure 1, existing incremental learning approaches
rely on regularization constraints [21, 59], sample replay
distillation [8], and model parameter expansion [13], lack-
ing an effective incremental learning framework tailored for
low-level visual design. Moreover, they also introduce poor
memory overhead and computational efficiency.

Our analysis inspired a novel degradation-aware multi-
lateral distillation technique in Figure 1. This method em-
ploys continuous learning guided by knowledge from multi-
ple teacher models, focusing on degradation types and back-
ground reconstruction. It optimizes performance without
requiring sample replay or parameter expansion.

4. Methodology
As shown in Figure 2, ILAWR sets forth a flow of T in-
cremental sessions as D = {D1, · · · , DT }, where each
Dt={(xti, yti)}

nt

i=1 represents a specific adverse weather
condition. In session(t), nt pairs of samples are collected
for training, with pair comprising a clean image yti ∈ Y and
a degraded image xti ∈ X . {X ,Y} represent the domains of
degraded and ground truth image data. Our aim is to train
a model f (·|θT ) : X 7→ Y , with parameters θT derived
from training in session(T ). Notably, during training on
session(t), old data {D1, · · · , Dt−1} is unavailable, and
final testing occurs across all domains in {D1, · · · , DT }.

4.1. Overall Pipeline of ILAWR
We devise the Degradation-Aware Multilateral Distillation
(DAMD) algorithm to realize ILAWR, training a compact
network in an incremental learning paradigm for adverse
weather removal tasks, as illustrated in Figure 4. Given an
input image xti ∈ RC×H×W , where C is the number of
channels, andH×W is the size of the image. We construct
a restoration network f = P ◦ ψ based on the U-Net [61]
framework, ψ and P denotes the feature projection and out-
put projection. We employ Charbonnier loss [4] for content
reconstruction, which is mathematically defined as follows:
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Figure 4. The overall illustration of our method. (a) Illustrates our network during inference stage. For simplicity, the global residual
connections are omitted. (b) Depicts the degradation transfer phenomenon observed after exchanging the amplitude spectra of degraded
image pairs using Fourier transform, inspiring the design of the Degradation-Aware Module. (c) Degradation-Aware Module (DAM). It
modulates feature maps by leveraging the data distribution of the amplitude spectra obtained after Fourier transform to extract degradation
information latent in the channel dimension. (d) Visualizes our proposed Importance-Guided Aggregation Module (IGAM) used to obtain
the ultimate guidance from each set of teachers. (e) Implements the training process of ILAWR. Refer to Algorithm 1 for specific details.

Lcontent =
1

nt

nt∑
i=1

√
∥f t (xti)− yti∥

2
+ ϵ2, (1)

where ϵ is seen as a tiny constant (e.g., 10−5 ) for stable
and robust convergence. For the perception, we also use the
contrast regularization [7, 8], which can be denoted as:

Lcontrast(f(x
t
i), y

t
i , x

t
i) =

−
nt∑
i=1

L∑
l=1

wl log
e−|El(f(x

t
i))−El(y

t
i)|/τ

e−|El(f(xt
i))−El(yt

i)|/τ+e−|El(f(xt
i))−El(xt

i)|/τ
,

(2)

where e denotes the exponential operation, El with l =
{1, 2, · · · , L} extracts the l-th hidden layer features from
the fixed pre-trained model VGG-19 [40], τ (> 0) is the
temperature parameter that controls the sharpness of the
output, | · | denotes the L1 distance, and wl is the weight
coefficient for the l-th hidden feature from the fixed VGG-
19 network. The value of parameter wl and τ follow [7].

Therefore, we define the basic loss function for the single
weather image restoration task as:

Lbase = Lcontent + αLcontrast, (3)

α is a hyperparameter used for training the restoration net-
work f in all baseline methods, i.e., for each individual ad-
verse weather removal task and fine-tuning setup.

4.2. Degradation-Aware Distillation.
Given that the Fourier domain can characterize global fea-
tures of images, an increasing number of recent works in-
tegrate frequency domain information to address low-level
visual problems [44]. Given an image x ∈ RH×W×C , the
Fourier transformF converts it to Fourier space as the com-
plex component F(x), which is expressed as:

F (x) (u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x (h,w) e−j2π( h
H u+ w

W v),

(4)
where u and v indicate the coordinates of the Fourier space.
F−1 (x) defines the inverse Fourier transform accordingly.
Both the Fourier transform and its inverse procedure can be
efficiently implemented using FFT/IFFT algorithms [11].
The amplitude component A (x) (u, v) and phase compo-
nent P (x) (u, v) are expressed as:

A (x) (u, v) =
√

R2 (x) (u, v) + I2 (x) (u, v),

P (x) (u, v) = arctan

[
I (x) (u, v)

R (x) (u, v)

]
,

(5)
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Algorithm 1 Degradation-Aware Multilateral Distillation
Input: Flows of T incremental datasets D={D1, · · · , DT },
where Dt=

{(
xti, y

t
i

)}nt

i=1
represents nt specific adverse weather

degraded-clean image pairs. xti ∈ X and yti ∈ Y . {X ,Y} repre-
sent the domains of degraded and ground truth image data.
Parameter: Restoration network

{
f1, · · · , fT

}
parameterized

by {θ1, · · · , θT }, where f t = Pt ◦ ψt. Mt signifies the DAM,
employed to extract deep-level degradation information from the
network f t in Session(t), It represents IGAM, merging outputs
from multiple teachers into aggregated guidance, Et is number of
training epochs, LKL refers to the Kullback-Leibler (KL) diver-
gence. α1,α2, ϵ, λ, ζ are the hyper-parameters.
Output: All-in-one image restoration model f (·|θ) : X 7→ Y

1: Load pre-trained model (VGG-19) for Lcontrast.
2: for t = 1, 2, · · · , T do
3: Random sample a batch Xt =

{(
xti, y

t
i

)}R

i=1
.

4: for e = 1, 2, · · · , Et do
5: if t > 1 then
6: Guide1 = I

(∑t−1
i=1M

i
(
ψi (X )

))
7: Lt

teach1
= Lt

KL

(
Guide1,Mt−1

(
ψt (X )

))
8: Guide2 = I

(∑t−1
i=1 f

i (X )
)

9: Lt
teach2

= Lt
base1

(
Guide2, f

t (X ),X
)

10: Train f : Lt
f = Lt

base1
+λLt

teach1
+ζLt

teach2
[20]

11: Update f t: θt ← θt + ϵ∇Lt
f , f t.no grad()

12: else
13: Train f : L1

f = L1
base1

(
f1 (X ) ,Y,X

)
14: Update f1: θ1 ← θ1 + ϵ∇L1

f , f1.no grad()

15: TrainM: Lt
M = L1

base2

(
P
(
Mt (X )

)
,Y,X

)
[21]

16: UpdateMt: θM ← θM + ϵ∇Lt
M,Mt.no grad()

17: return Parameters θT of all-in-one adverse weather removal
model fT : X 7→ Y derived after training in session(T )

where R(x) (u, v) and I(x) (u, v) represent the real and
imaginary parts respectively. The Fourier transform and in-
verse procedure are applied independently to each channel.

For the image restoration tasks in this study, we con-
ducted Fourier transforms on image pairs corresponding to
the 5 degradation types. By observing the characteristics of
the spectrum plots as shown in Figure 4(b), through hori-
zontal comparisons, we noted that the disparity in the fre-
quency domain spectra between paired clean and degraded
images primarily manifests in the amplitude. Additionally,
images under different weather conditions exhibit signifi-
cant differences in their amplitude spectra. Through vertical
comparisons, it is evident that after swapping the amplitude
spectra of paired degraded-clean images and subsequently
restoring the RGB images via inverse Fourier transforms,
corresponding degradation transfers are observed across all
5 weather conditions. Therefore, the amplitude spectra in
the Fourier domain notably encapsulate more degradation
information within the images.

Therefore, we devised the Degradation-Aware Module
(DAM) as illustrated in Figure 4(c), utilizing the Fourier
priors of images to aid the model in extracting degradation-

specific information. Specifically, for the deep-level feature
maps ψ(xti) ∈ RC×H×W of the network, our aim is to learn
the particular degradation information contained within its
channel dimensions. Firstly, we compute the channel-wise
mean of f to obtain the general features across channels:

g = AVG
(
ψ
(
xti
))
∈ R1×H×W , (6)

next, we perform Fourier transforms on both ψ (xti) and g,
extracting the amplitude spectra:

Aavg ← F (g) ∈ R1×H×W ,

Ainitial ← F
(
ψ
(
xti
))
∈ RC×H×W ,

(7)

we isolate the unique information along their channel di-
mensions as degradation-specific information:

Aspecific = Ainitial −Aavg

(
∈ RC×H×W

)
. (8)

Finally, we obtain the degradation-specific weight tensor:

w = GELU (RDBS (Aspecific)), (9)

where w ∈ RC×1×1, RDBS consists of a series of
dense residual connections of dilated convolution blocks, as
shown in Figure 4(c). The modelM of Degradation-Aware
Module (DAM) is defined as follows:

M
(
ψ
(
xti
))

= Conv
(
w ⊙ ψ

(
xti
))
. (10)

As depicted in Figure 4(e), the DAM, which extracts
degradation-specific information, divides the teachers into
two groups, guiding and constraining the student model, en-
hancing its capability to address different degradation cues
while ensuring stability in image background reconstruc-
tion. The guidance in Teacher Group 1 is all generated by
DAM. To reduce the distribution gap between the student
and teacher models in extracting degradation information,
we employ Kullback-Leibler (KL) divergence loss to im-
plement distillation:

Lt
teach1

= Lt
KL

(
Guide1,Mstudent

(
ψt (X )

))
= KL

[
Mteacher||Mstudent

(
ψt (X )

)]
,

(11)

whereM refers to the DAM, and details regarding the train-
ing updates for modelM can be found in Algorithm 1. The
guidance in Teacher Group 2 is all generated by the restora-
tion net f from each session:

Guide2 = f (X ) = P (ψ (X )) , (12)

we utilize the restoration results from the previous models
as guidance to constrain the stability of the student in back-
ground reconstruction. In session(t), the distillation loss
employs a basic loss:

Lt
teach2

= Lt
base1

(
Guide2, f

t
(
xti
)
, xti

)
= Lt

content + α1Lt
contrast,

(13)

where α1 is a hyperparameter used in Teacher Group 2.
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Table 1. Haze→Rain→Snow (Setting 1) results on synthetic datasets. The Individual Training result serves as a performance upper
bound, and compared to Sequential Fine-tuning , our ILAWR effectively mitigates catastrophic forgetting. Compared to state-of-the-

art all-in-one and incremental learning methods, our approach demonstrates a superior advantage of up to 0.62dB (PSNR↑).

Method Venue
Average RESIDE [20] Rain100H [50] Snow 100K [24]

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Individual Training - 31.97 0.9357 31.77 0.9412 30.45 0.9345 33.68 0.9314
Sequential Fine-tuning - 20.63 0.7282 16.20 0.8142 13.47 0.4541 32.21 0.9162

EWC [19] PNAS 16 22.27 0.7192 28.33 0.9577 13.74 0.4024 24.73 0.7975
LwF [21] TPAMI 17 19.32 0.6803 20.87 0.8544 13.03 0.3763 24.05 0.8101
MAS [2] ECCV 18 23.03 0.7489 29.18 0.9661 16.68 0.5010 23.23 0.7797
POD [10] ECCV 20 21.31 0.6988 20.49 0.8296 15.35 0.3988 28.08 0.8680

PIGWM [59] CVPR 21 22.46 0.7214 28.93 0.9522 14.01 0.4162 24.45 0.7959
AFC [18] CVPR 22 26.27 0.8163 26.99 0.9012 22.48 0.6567 29.34 0.8911

TransWeather [42] CVPR 22 28.56 0.9064 28.52 0.9612 25.20 0.8333 31.95 0.9247
MutiTS [6] CVPR 22 29.87 0.9237 29.96 0.9692 26.06 0.8606 33.59 0.9412

WGWS [61] CVPR 23 30.31 0.9385 29.67 0.9724 28.29 0.9014 32.97 0.9417
RAM [35] ECCV 24 30.35 0.9100 29.75 0.9439 28.31 0.8411 32.99 0.9451

CLAIO [8] TMM 24 30.70 0.9334 31.03 0.9775 28.52 0.8900 32.54 0.9328
ILAWR - 31.32 0.9380 31.41 0.9774 28.91 0.8960 33.64 0.9405

Table 2. Haze→Rain→Snow→Raindrop (Setting 2) results on synthetic datasets. Compared to state-of-the-art incremental learning

and all-in-one methods, as continuous weather conditions increase to 4, we demonstrate a more significant advantage (0.85dB PSNR↑).

Method Venue
Average RESIDE [20] Rain100H [50] Snow 100K [24] Raindrop [34]

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

TransWeather [42] CVPR 22 27.29 0.8456 27.61 0.8439 23.67 0.8137 29.14 0.8854 28.73 0.8393
MutiTS [6] CVPR 22 27.19 0.8509 27.84 0.8442 23.71 0.8213 28.69 0.8971 28.51 0.8408

WGWS [61] CVPR 23 29.09 0.8722 28.57 0.8844 25.64 0.8467 30.83 0.9253 31.31 0.8322
RAM [35] ECCV 24 29.05 0.8685 28.53 0.8771 24.99 0.8237 31.13 0.9343 31.55 0.8388

PIGWM [59] CVPR 21 23.25 0.7168 27.82 0.9030 13.81 0.4010 24.13 0.7520 27.25 0.8110
CLAIO [8] TMM 24 29.28 0.8954 28.74 0.8920 25.81 0.8713 31.59 0.9335 30.96 0.8847

ILAWR - 30.13 0.9037 29.81 0.9131 27.33 0.8862 32.21 0.9365 31.15 0.8791

Input PIGWM CLAIOWGWS RAMTransWeather Ours

Hazy

Rainy

Snowy

Figure 5. Setting 1 generalize to the visual effects of the unknown
real world, our method achieves superior visual results.

4.3. Importance-Guided Aggregation.

Inheriting diverse knowledge from multiple teachers can
improve the generalization of the student model [14, 43].
Given the significant differences among the intermediate
features of teachers, employing non-linear transformations
to process features is a preferred solution [33]. As il-
lustrated in Figure 4(d), we introduce the Importance-
Guided Aggregation Module (IGAM) to consolidate the
guidance generated by multiple teachers. During training at
session(t), the Guidance Pool generated by the old models

is defined as:

G = {G1, G2, · · · , Gt−1} , (14)

the Guidance Pool generated by Teacher Group 1 and
Teacher Group 2 is denoted as G1 and G2, respectively. The
corresponding outputs generated by the student model are
denoted as:

S1 =M
(
ψ
(
xti
))
, S2 = f

(
xti
)
= P

(
ψ
(
xti
))
, (15)

when there is a greater discrepancy between the distribution
of teacher guidance and student output, it often indicates
more significant information. We utilize Kullback-Leibler
(KL) divergence along each channel of the feature maps to
measure this disparity, resulting in distance vectors:

Distj = KL (S||Gj) , j = 1, · · · , t− 1, (16)

we apply SoftMax on t− 1 distance vectors along the same
channel dimensions to generate an importance matrix:

Vt = softmax
([
Dist1, · · · , Distt−1

])
, (17)
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Table 3. Haze→Rain→Snow→Low-Light (Setting 3) results on real datasets. Compared to state-of-the-art incremental learning and

all-in-one methods, Our ILAWR achieves superior results on real-world datasets (1.16dB PSNR↑).

Method Venue
Average REVIDE [57] SPA+ [61] RealSnow [61] LOL-v2 [51]

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

TransWeather [42] CVPR 22 24.27 0.7963 18.01 0.8054 31.65 0.8266 27.25 0.7325 20.16 0.8207
MutiTS [6] CVPR 22 24.42 0.8177 17.72 0.8113 33.27 0.8732 26.72 0.7807 19.98 0.8055

WGWS [61] CVPR 23 25.68 0.8520 18.06 0.8217 34.16 0.9171 28.05 0.8121 22.46 0.8569
RAM [35] ECCV 24 24.75 0.8291 17.63 0.8059 33.37 0.8979 27.96 0.7963 20.02 0.8164

PIGWM [59] CVPR 21 22.51 0.7938 16.73 0.7768 30.49 0.8837 22.64 0.6864 20.16 0.8281
CLAIO [8] TMM 24 25.62 0.8420 17.94 0.8171 33.66 0.9073 27.79 0.8003 23.09 0.8432

ILAWR - 26.78 0.8566 18.76 0.8303 35.19 0.9237 28.41 0.8109 24.74 0.8616

multiplying the importance matrix with the teacher guid-
ance and then merging each feature sub-map yields the final
guidance. The IGAM model I is defined as follows:

I (G) = Concat
(
Vt ⊙ G

)
. (18)

The IGAM model aggregates the diverse guidance from
each group of teachers into the final guidance:

Guide1 = I
(∑t−1

i=1
Mi

(
ψi (X )

))
,

Guide2 = I
(∑t−1

i=1
f i (X )

)
.

(19)

During the training process in session(t), the models to
optimize and update parameters areM and f . As shown in
Algorithm 1,M and f are individually trained in each iter-
ation, with the other model’s parameters frozen. combining
Equations 11, 13, and 19 through multilateral distillation
aggregation, the total training loss of of model f t is:

Lt
f = Lt

base1 + λLt
teach1

+ ζLt
teach2

, (20)

where λ and ζ are hyperparameters used to balance the
guidance from the two groups of teachers. And the total
optimization objective modelMt is defined as follows:

Lt
M = Lt

base2 = Lt
content + α2Lt

contrast, (21)

where α1 and α2 are used to balance fidelity and perceptual
aspects. Based on experience, we set α1 = 0.3 and α2 =
0.2. Detailed ablation studies of λ and ζ is in Sec. 5.3.

5. Experiments
In the incremental learning task of adverse weather removal,
we conducted experiments on synthetic datasets includ-
ing RESIDE [20], Rain100H[50], Snow100K [24], Rain-
drop [34], as well as real datasets REVIDE [57], SPA+
[61], RealSnow [61] and LOL-v2 [51]. During training
and testing, we followed the configuration of the current
state-of-the-art model CLAIO. We fed the data incremen-
tally into the model for training, and for fair comparison,
we also adopted the weather sequence of Haze-Rain-Snow.
We quantitatively evaluated the results using peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM).

5.1. Implementation Details
We implemented our method on the PyTorch platform using
8 NVIDIA GTX 1080Ti GPU. The optimizer used is Adam
with an exponential decay rate of 0.9. The initial learning
rate is set to 5e-5, and a cosine annealing strategy is em-
ployed for adjustment. The patch size for images is set to
128, and based on tuning experience, the hyperparameters
are set as follows: α1 = 0.3, α2 = 0.2, λ = 0.3, ζ = 0.4.

5.2. Evaluation and Comparison
Synthetic Datasets. To validate the effectiveness of
the proposed incremental learning method, we conducte
two sets of experiments using the base restoration net-
work f (·|θ): Individual Training (training separately
with multiple datasets using different sets of parameters),
and Sequential Fine-tuning (sequentially fine-tuning on
multiple datasets). As shown in Table 1, when con-
ducting continuous weather removal with three condi-
tions Haze→Rain→Snow (Setting 1), we mitigate catas-
trophic forgetting compared to the sequential fine-tuning
method and outperformed previous all-in-one and incre-
mental learning methods in objective metrics. As shown
in Figure 5, our ILAWR also exhibits improved general-
ization performance on real-world datasets. As shown in
Table 2, when continuous weather conditions increase to 4,
i.e., Haze→Rain→Snow→Raindrop (Setting 2), ILAWR
further enhances the performance compared to others.
Real Weather Datasets. As shown in Table 3,
We introduce common low-light degradation found
in real-life scenarios, providing the first benchmark
for continuous weather removal in real-world settings:
Haze→Rain→Snow→Low-Light (Setting 3). The visual
comparison on a real-world dataset in Figure 6 illustrates
that ILAWR can better handle continuous adverse weather
removal in real-world scenarios. We simultaneously present
visualizations of feature maps before and after the DAM
module, where degradation-related details are better pre-
served, extracting more degradation details for teachers.

5.3. Ablation Study
The ablation in this section were all conducted in Setting 1.
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Figure 6. Real-world datasets visualization comparisons of our method with previous approaches for Setting 3 in Table 3. We successfully
restored various degraded images, alleviating catastrophic forgetting in continuous adverse weather removal, and recovered more back-
ground details compared to other methods. The last two columns visualize the feature maps before and after the DAM module, indicating
that DAM extracted more degradation-related details while reducing the background information mixed in the degradation features.

Table 4. Ablation experiment of weather sequence.

Task order Average RESIDE [20] Rain100H [50] Snow100K [24]

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
haze→rain→snow 31.32 0.938 31.41 0.977 28.91 0.896 33.64 0.941
haze→snow→rain 31.31 0.945 31.27 0.965 28.96 0.917 33.72 0.952
rain→haze→snow 31.35 0.943 31.74 0.984 28.86 0.908 33.44 0.937
rain→snow→haze 31.39 0.943 31.57 0.961 28.77 0.922 33.84 0.946
snow→haze→rain 31.28 0.947 31.53 0.974 28.52 0.914 33.78 0.954
snow→rain→haze 31.39 0.940 31.47 0.980 29.12 0.905 33.58 0.934

Table 5. Ablation experiment of DAM and IGAM.

f (·|θ) DAM IGAM RESIDE [20] Rain 100H [50] Snow100K [24]
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

① ! 16.20 0.814 13.47 0.454 32.21 0.916
② ! ! 25.14 0.831 22.37 0.852 32.13 0.909
③ ! ! 26.48 0.953 22.16 0.836 32.16 0.921
④ ! ! ! 31.41 0.977 28.91 0.896 33.64 0.941

Table 6. Ablation experiment of Lteach1 and Lteach2 .

Lbase Lteach1
Lteach2

RESIDE [20] Rain 100H [50] Snow100K [24]
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

① ! 16.20 0.814 13.47 0.454 32.21 0.916
② ! ! 24.67 0.816 22.45 0.862 32.04 0.897
③ ! ! 25.88 0.923 22.09 0.827 32.24 0.926
④ ! ! ! 31.41 0.977 28.91 0.896 33.64 0.941

Table 7. Model efficiency comparisons on a 256× 256 image.
Methods TransWeather WGWS RAM CLAIO Ours

#Pram (M : 106) 38.05 5.97 25.31 5.59 4.95

Inference Time (s) 0.026 0.030 0.067 0.045 0.032
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Figure 7. Ablation experiment of λ and ζ.

Weather sequence. By altering the sequence of weather
conditions in each session, we investigated the impact of
training order on the model. As shown in Table 4, the
model’s error variation due to changes in training order re-
mained within 1%, indicating stable performance.
DAM and IGAM. A study was conducted to assess the ef-
fectiveness of the two proposed modules in this paper, with

results presented in Table 5. It was observed that the ab-
sence of DAM significantly degraded performance, espe-
cially on the Rain100H dataset. The best performance was
achieved when both DAM and IGAM were available.
Loss function Lteach1

and Lteach2
. As shown in Table 6,

Lteach1 was found to significantly enhance performance on
the Rain100H dataset. The presence of Lteach1 was benefi-
cial in enhancing performance on Rain100H. Better perfor-
mance found both Lteach1

and Lteach2
are available, con-

firming the effectiveness of a multi-teacher model.
The hyperparameters λ and ζ. Based on experience, we
set α1 = 0.3 and α2 = 0.2, then conducted ablation studies
on λ and ζ, as shown in Figure 7. A high ζ value resulted in
insufficient degradation learning, while an excessively high
λ led to a sudden performance drop. Balancing the two
teachers’ knowledge, we adjusted λ = 0.3 and ζ = 0.4.
Model efficiency. As shown in Table 7, the superior
ILAWR achieves faster inference time and lower parame-
ter count compared to competitors.

6. Conclusion
In this paper, we introduce the Incremental Learning for
Adverse Weather Removal (ILAWR) framework based
on Degradation-Aware Multilateral Distillation (DAM) ap-
proach. Leveraging Fourier priors of images, DAM enables
the teacher model to extract more degradation information.
Through a simple yet effective multilateral distillation ap-
proach, our model significantly reduces catastrophic forget-
ting across various degradation types. Extensive experi-
ments validate that our approach surpasses existing meth-
ods on synthetic and real datasets, demonstrating promising
prospects for adaptability to actual scenario.
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