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Abstract

We investigate complex video question answering via chain-
of-evidence reasoning — identifying sequences of temporal
spans from multiple relevant parts of the video, together
with visual evidence within them. Existing models strug-
gle with multi-step reasoning as they uniformly sample a
fixed number of frames, which can miss critical evidence
distributed nonuniformly throughout the video. Moreover,
they lack the ability to temporally localize such evidence
in the broader context of the full video, which is required
for answering complex questions. We propose a frame-
work to enhance existing VideoQA datasets with evidence
reasoning chains, automatically constructed by searching
for optimal intervals of interest in the video with support-
ing evidence, that maximizes the likelihood of answering a
given question. We train our model (VITED) to generate
these evidence chains directly, enabling it to both localize
evidence windows as well as perform multi-step reasoning
across them in long-form video content. We show the value
of our evidence-distilled models on a suite of long video
QA benchmarks where we outperform state-of-the-art ap-
proaches that lack evidence reasoning capabilities.

1. Introduction
Video Question Answering (VideoQA) is a critical task to-
wards general-purpose video understanding, for which large
vision-language models (VLMs) [16, 44, 55] have recently
demonstrated strong performance on a variety of bench-
marks [17, 30, 32, 47–49]. Despite their popularity, these
models typically excel at questions for which information
is readily available throughout the video (e.g., high-level
actions, colors/counts of objects, etc.), but struggle on long-
form videos [9, 26, 30, 32] and on questions that require
gathering and aggregating evidence from the full video [49].
For instance, answering a question like, “Why does the
baby put their hand in their mouth at the beginning of the
video?” requires more than just locating the action — it in-
volves an intricate approach that gathers contextual clues
both before and after the action to infer the underlying rea-
son. For instance, examining what occurred just before or

Question: What does the girl do at the start before she walks the dog?

ViTED
Evidence chain: The girl walks the dog from 18 
to 23.6 seconds. From 4.7 to 6.25 seconds, the 
girl waves at the dog. Answer: wave at it

Video,
Question

Figure 1. Main idea. We produce multiple, temporally localized
pieces of evidence (the “evidence chain”) to support complex rea-
soning in VideoQA. Our VITED model is trained to generate this
evidence chain to enable temporally-grounded chain-of-thought
reasoning in video.

after the baby put their hand in their mouth and observing
how they performed the action (e.g., slowly or quickly) can
offer valuable insights into their intent.

Current models face limitations in effectively processing
the temporal relationships among visual frames, as well as
in bridging the gap between a question and the evidence
needed to answer it. On the one hand, current models do
not temporally ground their responses, and rather sample
a fixed number of video frames at regular intervals, poten-
tially missing important moments from the video (e.g., fail-
ing to identify the short window when the girl waves at dog
in Fig. 1, left). Consequently, these models struggle to an-
swer questions requiring complex temporal understanding,
e.g., “what did the girl do right before interacting with the
dog?” in a video where she approaches, picks up a ball, then
engages with the dog; and multi-hop reasoning, e.g., “why
did the baby put his hand in his mouth?” in a video where
the mother feeds him with a spoon, followed by his uncom-
fortable expression and an attempt to remove the food.

On the other hand, temporal grounding models can in-
deed localize text queries to specific intervals in a video [13,
22, 33], but they require the text in advance — i.e., they can
localize the evidence needed to answer the question if al-
ready provided with the evidence text, but they cannot iden-
tify and ground this evidence based on the question alone.
For example, it might identify the moment when the dog
approaches the girl (Fig. 1), but it may not establish how
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this action relates to the question (“why did she wave?”).

To address these limitations, we propose to consoli-
date evidence generation, temporal grounding and ques-
tion answering into one model that we call Video Temporal
Evidence Distillation for Video Understanding (VITED).
Our model is a temporally-aware VLM that is trained to
generate both answers to given questions, as well as tem-
porally grounded evidence chains to support the answer —
time intervals of the video together with textual clues within
the temporal span (see Fig. 1, bottom). Since this kind of ev-
idence data is not readily available, we present a framework
to automatically synthesize high-quality evidence chains on
top of existing VideoQA datasets. Specifically, we gener-
ate a pool of evidence containing textual evidence relevant
to the question, extracted from video segments of various
lengths and at multiple levels of detail (e.g., short clips
with single actions, to high level activities across the full
video). We then present a search-and-refinement algorithm
over this evidence pool to find optimal sequences of evi-
dence that are the most predictive of the correct answer. Fi-
nally, we augment the original VideoQA training data with
our generated evidence chains, and train our model to pre-
dict both the answer and the evidence chain that supports it,
thereby distilling the ability to localize and generate tempo-
ral evidence into the VLM.

We demonstrate the effectiveness of VITED on 6 rep-
resentative VideoQA benchmarks, CinePile [32], Percep-
tionTest [30], NExT-QA [48], STAR [47], MVBench [17].
We show that VITED is on par with or outperforms state-
of-the-art models trained with 10→ more video instruction
data. Additionally, we show that VITED provides the most
faithful and interpretable temporal evidence chain for the
answer compared with existing VideoLLMs through hu-
man studies. Finally, VITED achieves SOTA zero-shot
performance on NExT-GQA [49] — a benchmark squarely
focused on temporally grounded VideoQA — surpassing
GPT-4 driven agent approaches, highlighting our general-
izable evidence grounding capability.

In summary, we propose an approach that integrates ev-
idence generation, grounding and reasoning towards com-
plex video understanding. Our main contributions are:

• We propose a novel framework to generate and search for
evidence chain-of-thought data from existing VideoQA
datasets.

• We propose an evidence distillation approach to train a
temporally-aware video model on our high-quality evi-
dence data.

• Our VITED sets new SOTA results among models of
the same size on four VideoQA benchmarks, and sur-
passes GPT-4 driven agent on NExT-GQA, while provid-
ing high-quality explanations for its predictions.

2. Related Work
2.1. Video Understanding with LLMs
Recent LLM-based video models [16, 21, 24, 44, 55, 58]
excel in video QA but lack temporal sensitivity, often miss-
ing key moments due to uniform frame sampling and strug-
gling with multi-step reasoning. While recent methods [13,
33, 45] introduce time-aware representations for video-text
grounding, they do not evaluate on general VideoQA. In
contrast, we consolidate evidence generation, grounding,
and question answering into a single model.

Agent-based or tool-assisted VLMs rely on retrieval [35,
43], memory [5, 7, 37], or modular reasoning [27, 53] for
gathering video tokens. Our approach streamlines evidence
generation and localization into a single-pass model, by-
passing the need for multiple modules or API calls while
enhancing performance.

2.2. Chain-of-Thought Reasoning in Videos
Chain-of-thought (CoT) [46] has been widely used to en-
hance the multi-step reasoning ability of LLMs. Various
strategies have been proposed to ensure valid and logical
reasoning paths through problem decomposition [60], de-
liberate search [51], and majority voting [41, 42]. Some
works use knowledge distillation to enhance smaller mod-
els with the reasoning ability of larger models [18, 25, 36],
or internalize this reasoning through implicit distillation [3].

In VLMs, CoT-based techniques [23, 59] improve rea-
soning by generating textual rationales or synthesizing mul-
timodal infillings [34]. However, CoT for video under-
standing is under-explored. VIP [10] enhances CoT in
LLMs and VLMs for video prediction, while methods like
VSOR-CoT [39] improve video saliency prediction by rea-
soning about salient objects. MotionEpic [6] decomposes
video tasks for better question answering using a Video-
of-Thought framework. To the best of our knowledge, we
are the first to distill chain-of-thought capabilities in VLMs,
specifically for video understanding.

2.3. Visual Evidence
In image understanding, prior work has explored gathering
visual evidence in the form of region of interest [52], inter-
face layout [31] and programs [12]. In videos, prior work
largely focuses on frame-sampling that varies sampling rate
of the video depending on the content [38], employs key-
frame extraction pipelines either through off-the-shelf ap-
proaches [14, 24] or based on learned text-frame similar-
ity [19, 53]. Approaches for highlight detection cast visual
evidence as a single time-window that matches a text de-
scription [28, 33, 37]. In contrast to the above, we propose
to treat visual evidence in videos differently, as a series of
temporally grounded descriptions that chain together to en-
tail the answer to a question.
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Question: What does the person do after flipping 
the sushi to the other side at the start?

argmax P(A|C*,Q)

Chain-of-Thought Narrator

LLM
Y

N

Temporal 
Evidence Data

Large Language Model (LLM)

E*

Vision and Language Model (VLM)

[12-18s]

The person is flipping the sushi package to the other side.

The person rotates the sushi, examining it closely and possibly reading the text on it.

[3-6s]

[12-24s]

The person carefully peels back the plastic wrapper packaging of the sushi. The person flips the sushi from 3 to 6 seconds and then peels back 
the plastic wrapper of the sushi between 12 to 24 seconds.

Answer correct?

Tear the plastic.

Figure 2. Overview of VITED evidence generation framework. There are three main stages: (1) We first generate the evidence pool
— detailed captions for segments at multiple granularities — and rank them based on relevance to the question (left, Sec.3.1) (2) Next,
we search over the evidence pool to derive evidence chains that are most predictive of the target answer, and summarize it into a coherent
and logical chain-of-thought (top-right, Sec. 3.2) (3) Finally, if the evidence chain successfully leads to the correct answer, we add it to our
dataset for training our model (bottom-right, Section 3.3)

3. Approach

Our goal is to enable evidence-based video reasoning in
VLMs by generating and distilling evidence chain data
(i.e., time intervals with textual clues that support question-
answering) into a model. This approach is crucial for
datasets with complex reasoning questions. For example, in
a study on NExT-QA, we found 54% of questions required
localizing and reasoning over one or more salient windows
(see Appendix A7). In short, we convert the standard ques-
tion answering process (Q↑A) into an evidence-based rea-
soning one (Q↑Evidence + A).

Existing VideoQA datasets provide only ques-
tion/answer text (e.g., Q: what happened after the dog
barked? A: he jumped) — they do not provide temporal
spans, or may provide a single, coarse span without
explanation, making them insufficient for chain-of-thought
evidence grounding. Temporal grounding datasets contain
temporal spans for a query (e.g., Query: “A barking dog”,
Window: “4-9 seconds”), directly expressing the evidence
to localize. However, questions in VideoQA datasets are
more complex and do not reveal the evidence needed to
determine the answer. We therefore propose a framework
to construct evidence chains for videos. See Fig. 1 (right).

Our approach works as follows. First, we generate a
pool of potential evidence from segmented video intervals
using off-the-shelf VLMs (Sec. 3.1). Next, we filter and
search through the evidence pool to identify the most plau-
sible evidence chain using a combination of LLMs and
VLMs (Sec. 3.2). Finally, we distill this reasoning into our
temporally-aware VLM model by training a model to gen-
erate the evidence chains (Sec. 3.3).

3.1. Generating the Evidence Pool
We begin by generating a pool of potential evidence E
for videos split into multiple segments and across a hi-
erarchy of temporal granularities. Uniform segmentation
or sparse sampling might miss key details because evi-
dence may be unevenly distributed across a video, oc-
curring at different granularities (e.g., static scenes vs.
rapid actions). To address this, we propose a non-
uniform segmentation of the video across N hierarchi-
cal levels. In each level, we create a sequence of sub-
clips, each of length L, and separated by stride S be-
tween them. In our setup, we use N = 5, (L, S) ↓
{(1/16, 1/16), (1/8, 1/16), (1/4, 1/8), (1/2, 1/4), (1, 1)}.1 This
approach results in a set of video segments {vc1, . . . , vcn},
covering five levels of granularity from global (full video
context with L = 1 and S = 1) to fine-grained (small, lo-
calized segments with L = 1/16 and S = 1/16). See Fig. 2
(left) and Appendix A8 for details of the hierarchy.

We construct our evidence pool by prompting a VLM
(LLaMA-3.2-Vision-Instruct-11B [4]) to generate evidence
for each variable-length segment vci. In short, the model
is asked to “describe the contents of this segment that are
relevant to the given question (but do not simply answer the
question).” The full prompt is in Appendix A9.

Fig. 2 (left) illustrates our evidence pool generation
pipeline. After this process, we are left with a pool of can-
didate evidence E = {ev1, ..., evm} from five hierarchical
levels that captures various temporal granularities of events
in the full video, where each evi = (ts, te, ω)i represent-
ing the start time, end time, and evidence text for the vi-

1Both L and S are expressed as fractions of the full video duration.
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sual chunk vci, respectively. We include an example of
an evidence pool generated across all granularities in Ap-
pendix A8.

3.2. Refining and Searching for Evidence Chains
Each evidence piece evi ↓ E may provide only partial in-
formation needed to answer the question and may lack ex-
plicit connections, such as temporal or cause-effect relation-
ships among evidences. To construct a coherent evidence
chain from this large, noisy pool, we propose a novel evi-
dence search algorithm based on a text-only LLM (LLaMA-
3.1-8B-Instruct [4]). This algorithm first narrows down the
hypothesis space for possible evidence chains, then applies
a beam search to identify the strongest chain.

Evidence Refinement To reduce noise, we begin by nar-
rowing down the hierarchical evidence pool E to a reduced
candidate pool E→ by ranking candidates directly using the
LLM. We provide the full evidence pool to the LLM, and
prompt it to “Provide the evidence that will help reach the
answer in a step-by-step manner. Limit your evidence chain
to at most K steps.” This pool consists of K evidence seg-
ments representing a smaller, more manageable set of seg-
ments likely to be relevant to the question Q. The top-W
evidence segments that are most likely to decode the cor-
rect answer are then selected from this reduced pool. This
initial refinement narrows the search space and provides a
focused foundation for constructing evidence chains. See
Figure 2 (bottom left).

Evidence Chain Search Next, we search over sequences
of evidence to identify high-likelihood chains, looking for
the most coherent answer paths via iterative beam search.
Starting from a refined initial beam of evidence segments,
we initialize a beam with width W = K/2, half the size
of the refined evidence pool. In each iteration, new evi-
dence segments are appended to existing chains within the
beam, generating expanded chains that may improve the
likelihood of reaching the correct answer. Each expanded
chain is then scored with the LLM with its likelihood of sup-
porting the correct answer recalculated. Chains that meet
a specified probability threshold T are retained as poten-
tial candidates, and the beam is updated to only include the
top-W evidence chains based on likelihood scores. The ev-
idence search process is summarized in Algorithm 1.

This process continues until either an evidence chain ex-
ceeds the threshold probability T or a fixed number of it-
erations is reached. The algorithm ultimately outputs the
evidence chain C→ with the highest likelihood of correctly
answering the question, ensuring a well-supported and co-
herent response. See Figure 2 (top right).

Evidence Chain Summarization and Filtering While
the evidence chains C→ contain rich information related to

Algorithm 1 Evidence Chain Search
1: Input: Question Q, Answer A, Evidence Pool E→ =

{ev1, . . . , evm}, Beam Width W , Threshold T
2: Output: Optimal Evidence Chain C→

3: Initialize: Evidence chain C ↔ ↗, Beam B ↔ {}
4: Beam Search
5: Initialize beam B ↔ {evi : top-W by P (A|Q, evi)}
6: while any Ci in B is updated do
7: for each chain Ci ↓ B do
8: Expand Ci by adding evj ↓ E→ \ Ci

9: Compute P (A|Q,Ci ↘ evj)
10: If P (A|Q,Ci ↘ evj) > T , update Ci

11: end for
12: Update B ↔ {Ci ↓ B : top-W by P (A|Q,Ci)}
13: end while
14: Set C→ ↔ argmaxCi↑B P (A|Q,Ci)

the question, each piece of evidence was originally gener-
ated independently of each other, lacking event sequence
information when simply concatenated. To address this, we
summarize the entire evidence chain to be sequence-aware
with a natural flow using the same text-based LLM, given
its inherent ability to do chain-of-thought reasoning.

Specifically, the LLM consolidates the interval (ts, te),
objects, events, and question cues in each evidence segment
into a logical reasoning path that explicitly references the
time intervals, and derives the final answer through step-
by-step reasoning. In short, we prompt the LLM to “convert
this relevant evidence and its temporal span into a chain-of-
thought reasoning based on the video.” See Figure 2 (bot-
tom left). The detailed prompt is in Appendix A9.

To ensure high-quality reasoning paths, we filter chains
based on the LLM’s ability to reach the correct answer.
Specifically, we retain only those chains C→

i that allow the
LLM to correctly derive the answer A. Formally, we define
a filtering criterion for a chain C→

i as:

f(C→
i ) =

{
1, if argmaxÂ log p(Â|Q,C→

i ) = A,

0, otherwise,
(1)

where Q is the question, A is the correct answer, and
log p(Â|Q,C→

i ) represents the log-likelihood of candidate
answer Â given Q and C→

i . This ensures that only evidence
chains that allow the model to logically connect the ques-
tion, multi-hop evidence, and answer are retained. Success-
ful chains are then added to the training data for the video
model. This process yields a final dataset consisting of a
video, question, evidence chain-of-thought, and answer.

3.3. Distilling Evidence Chains Into a Single Model
Finally, we distill the evidence chain information into our
VITED model through curriculum training. For this, we
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Question: What does the striped shirt baby does when he gets the shoes?
Options: A) lifts the shoes up. B) crawl after the foot. C) walk away. D) throw the shoes away.

Temporal Evidence Chain-of-Thought: 
The striped shirt baby is being helped by an adult to put on shoes from 2.449 to 4.938s. 
From 14.812 to 17.301s, we see the striped shirt baby holding a shoe in his hand.
From 19.75 to 39.5s in the video, where the striped shirt baby is seen on the beach, and 
then he gets the shoes. After getting the shoes, he is seen holding them in his hands.
Answer: The baby lifts them up and holds them in his hands. Therefore, A) lifts the shoes up.

Figure 3. Example of temporal evidence on NExT-QA.

Figure 4. Analysis of evidence quality. Left: Human evalua-
tion score on the quality of temporal evidence chain-of-thought.
Right: Distribution of the number of hops in synthesized evi-
dence chain across four datasets.

add an extra training stage, temporal evidence distillation,
to the traditional instruction tuning in VLM models [33, 58].

Starting with a base VLM model, we perform instruc-
tion tuning (predicting answer tokens) as Stage-1. This en-
ables the model to answer questions but without support-
ing evidence. Traditional chain-of-thought techniques (e.g.,
prompting the model to “think step-by-step”) may be ap-
plied with limited success, as shown in our experiments. To
improve this, we introduce evidence distillation in Stage-2,
where the model learns to predict both the evidence chain
(Sec. 3.2) and answer tokens, enabling it to reason across
video segments. In both stages, the model is trained using
next token prediction with cross-entropy loss to maximize
the likelihood of generating evidence and/or answer tokens,
conditioned on the video and question.

During inference, the model is required to generate the
temporal evidence chain followed by the answer or directly
answer the question depending on the input prompt.

In our experiments, we build on top of strong back-
bone VLM models, namely TimeChat [33] — a temporally-
aware model suited to our fine-grained hierarchical tempo-
ral evidence data and LLaVA-Video [58] — a recent, SOTA
VideoQA model.

4. Experiments
We evaluate models on a suite of VideoQA benchmarks,
including CinePile [32] for long-video understanding, Per-
ceptionTest [30] for low-level video perception, NExT-

QA [48], STAR [47] and MVBench [17] for complex rea-
soning, and NExT-GQA [49] for temporal evidence ground-
ing. For all datasets, we report MCQ accuracy.

Baselines We compare with state-of-the-art VLMs from
existing literature as well as several variants of our approach
to show the benefit of our temporal evidence distillation.
• Base VLM is the off-the-shelf VLM (TimeChat [33] and

LLava-Video [58]) used for our experiments.
• Chain-of-thought implements the standard CoT mecha-

nism by adding “let’s think step-by-step” to the inference
prompt. This is to show the non-trivial nature of ground-
ing and generating temporal evidence in current VLMs.

• Video Instruction Finetuning is the model after standard
instruction tuning on VideoQA datasets.

• Dense Caption Distillation is our model variant trained
to generate dense captions (instead of evidence chains)
by the same models that generate the evidence pool. This
is to assess the value of temporal evidence beyond naive
caption augmentation.

• Temporal Evidence Distillation is our proposed ap-
proach in Sec. 3.3 that trains a model to generate temporal
evidence chains alongside direct answers, identifying se-
quences of temporal spans from multiple relevant parts of
the video, together with visual evidence within them.

Note that all baselines are trained on the same data to allow
apples-to-apples comparisons. For completeness, we also
compare against state-of-the-art approaches from the litera-
ture that benefit from training on larger scale datasets.

Implementation and Training Details We use LLaMA-
3.2-Vision-Instruct-11B as the evidence pool generator and
LLaMA-3.1-8B-Instruct for evidence refinement and search
in Sec. 3.1 and 3.2 respectively. We set beam width W = 4,
threshold T = 0.7, and the maximum iterations as 3 in Al-
gorithm 1. We use checkpoints from the official code repos-
itory as initializations for our TimeChat [33] and LLaVA-
Video [58] base models.

We train VITED-TimeChat for 10 epochs, and VITED-
LLaVA-Video for 1 epoch at each stage. We include dataset
usage at each training stage and evaluation dataset details in
Appendix A11. VITED is trained on 291K video question
answering samples from public datasets such as NExT-QA,
STAR, and PerceptionTest. Details of full data mix and ad-
ditional hyperparameters can be found in Appendix A11.
We use a batch size of 64, with 8 nodes of 8-V100 (32G)
machine. For TimeChat-based models, we unfreeze only
the image Q-Former, video Q-Former, and linear layer and
process 96 input frames for each video, while for LLava-
Video, we unfreeze only the adapter and the LLM back-
bone. We use LoRA [11] with a rank 32 for TimeChat-
based and rank 128 for LLaVA-based VITED.
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Models Params CinePile PercepTest NExT-QA STAR MVBench NExT-GQA

State-of-the-art Video LLMs
SeViLA [53] 4B - - 73.8 64.9 - 16.6
VideoLLaVA [20] 7B 22.51 - - - - -
LongVA [56] 7B - - 68.3 - - -
LLaMA-3.2V [4] 11B 39.55 52.65 67.58 45.62 44.72 11.64
InternVideo2 [44] 6B - 63.4 78.6 - 67.2 -
LLaVA-OneVision [16] 7B 46.42 57.1 79.4 66.24 55.91 0

TimeChat Base
TimeChat [33] 7B 13.67 20.34 21.71 21.03 17.08 0.00
TimeChat (Chain-of-Thought) 7B 14.27 20.96 25.60 17.54 22.05 0.00
TimeChat (Video Instruction Tuning) 7B 55.86 57.39 71.05 68.39 47.48 0.00
VITED (Dense Caption Distillation) 7B 57.85 59.94 71.94 69.99 50.12 0.00
VITED (Temporal Evidence Distillation) 7B 58.98 63.66 73.42 70.99 50.46 27.61

LLaVA-Video Base
LLaVA-Video [58] 7B 53.77 67.90 83.20 66.88 58.60 0.04
LLaVA-Video (Chain-of-Thought) 7B 54.82 66.91 84.61 65.34 59.50 0.03
LLaVA-Video (Video Instruction Tuning) 7B 54.97 67.03 83.93 67.74 59.55 0.00
VITED (Dense Caption Distillation) 7B 54.79 67.07 83.91 67.56 58.53 0.00
VITED (Temporal Evidence Distillation) 7B 56.39 67.50 84.13 68.23 60.95 25.19

Table 1. VideoQA benchmark results. Our temporal evidence distillation is consistently better than dense caption distillation, direct
video instruction tuning, and naive chain-of-thought. VITED built on LLaVA-Video achieves SOTA on 4 out of 6 VideoQA benchmarks.

Model LLM NExT-GQA

IoP@0.5 Acc@GQA

LLaMA-3.2V [16] LLaMA-3 [4] 19.8 11.6
FrozenBiLM [50] DeBERTa [8] 23.7 17.5
SeViLA [53] Flan-T5 [2] 22.9 16.6
LLoVi [54] GPT-4 [29] 38.0 26.8

VITED LLaMA-2 [40] 41.2 27.6

Table 2. Results on NExT-GQA [49]. IoP@0.5 and Acc@GQA
represent intersection over prediction of evidence and accuracy of
grounded question answering.

E-pool S-CoT NExT-QA

Temporal Causal Descriptive Avg.

✁ ✁ 68.22 71.65 74.87 71.05
✂ ✁ 73.50 74.35 78.87 74.79
✁ ✂ 69.91 73.76 81.98 73.80
✂ ✂ 73.46 76.34 81.03 76.14

Table 3. Ablation of evidence data with and without Evidence
pool (E-pool) or chain-of-thought summarization (S-CoT) stages.

4.1. Quality of Generated Evidence

To begin, we analyze the quality of evidence chains them-
selves. First, we verify whether generated evidence chains
capture sufficient detail to answer questions (i.e., without
re-watching the video). We do this by prompting a text-only
LLaMA-3.1-8B-Instruct with a question and an evidence
chain, and measuring the accuracy of selecting the correct
answer on NeXT-QA. Through this process, our generated
evidence chain yields 72.05%, significantly improving over
the conventional chain-of-thought (51.71%). The remain-
ing gap can be attributed to shortcomings in the base VLM
responsible for generating the evidence pool. These issues
include hallucinations in video segment descriptions and
vague descriptions that omit crucial information, which in
turn propagate errors throughout the entire evidence chain.

Next, we evaluate the quality of evidence directly by
asking two human annotators to score a subset of evidence
chains across five key aspects on a 3-point scale (good, av-
erage, bad). These are (1) Temporal: Does the temporal
window match the evidence text? (2) Faithfulness: Is the
evidence faithful to the video content? (3) Logical: Is the
reasoning logical across evidence? (4) Relevance: How rel-
evant is the evidence chain to the video/question? and (5)
Completeness: Does the evidence chain capture all required
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Stage-1 Stage-2 CinePile STAR NExT-GQA

CRD NPA STA TEMP TH Avg. Int. Seq. Pre. Fea. Avg. IoP Acc

✁ ✁ 13.04 11.86 17.16 11.86 1.92 13.62 20.02 21.31 24.84 19.18 21.04 0.00 0.00
✂ ✁ 57.05 54.15 58.99 44.59 63.46 55.86 63.30 70.20 74.68 72.04 68.39 0.00 0.00
✁ ✂ 59.59 57.20 59.81 48.30 66.99 58.12 66.93 73.16 79.03 75.92 71.76 41.60 27.42
✂ ✂ 59.80 58.89 61.57 49.23 65.38 58.98 65.76 73.06 75.80 75.31 70.99 41.22 27.61

Table 4. Stage-1 vs. Stage-2 training. Effect of Stage-1 (standard video instruction tuning, Q→A) and Stage-2 (temporal evidence
finetuning, Q→A, Q→E,A, Q→A,E) on performance (Sec. 3.3).

Model NExT-QA
Avg

Temporal Causal Descriptive

No Evidence 68.22 71.65 74.87 71.05
Direct Multi-Evidence 72.65 75.25 81.21 75.34
GT-Guided Sampling 72.36 74.31 80.50 74.64

VITED 73.46 76.34 81.03 76.14
w/o Hier 70.75 74.61 80.54 74.28
w/o Search 69.69 73.78 78.72 73.22
w/o Multi-Hop 70.35 74.92 83.25 74.74

Table 5. Ablation on Evidence Data Framework. 1) using off-
the-shelf model to generate evidence chain, 2) hierarchical evi-
dence pool (Hier), evidence chain search (Search), multi-hop tem-
poral evidence (Multi-Hop).

information in the video to answer the question? Full in-
structions are in Appendix A12. Figure 4 (left) presents
the average score in each category based on human anno-
tations. We find that while it is harder to generate reliable
evidence on datasets with longer videos, our approach still
scores over 80.4% on average across the five aspects, indi-
cating the effectiveness of our synthetic data pipeline.

Finally, we show statistics of our synthesized evidence
data in Figure 4 (right). We find that, for benchmarks with
longer videos, such as CinePile tend to favor larger num-
ber of hops compared with shorter duration video bench-
marks, such as STAR and NExT-QA. We show a qualitative
example of our temporal evidence in Figure 3. See Ap-
pendix A14 for more examples and analysis.

4.2. VITED for Video Question Answering
In Table 1, our VITED with temporal evidence distillation
significantly outperforms video instruction tuning across
seven video-based QA benchmarks, achieving gains such
as +3.12% on CinePile, +6.27% on PerceptionTest, and
+27.61% on NExT-GQA with TimeChat-base. Addition-
ally, VITED-LLaVA-Video surpasses the SOTA baseline
LLaVA-Video by +2.62% on CinePile, +2.35% on STAR,
and +25.19% on NExT-GQA. Our temporal evidence dis-
tillation also consistently surpasses video instruction tuning
and dense caption distillation on top of our base video mod-
els. This result underscores the model’s strength in han-

dling temporally distributed evidence, which is critical for
accurately interpreting video content where events unfold
over time. While LLaVA-Video excels in video question
answering and TimeChat in video temporal grounding, nei-
ther is tailored for grounding the evidence entailed in ques-
tions, leading to near-zero accuracy on NExT-GQA evi-
dence grounding task.

4.3. VITED for Grounding Visual Evidence
From Table 1, VITED shows the benefits of temporal
evidence capability in achieving strong results on NExT-
GQA. This is significant as evidence grounding arises nat-
urally from our model’s training, without relying on ex-
plicit grounding modules [1, 22] or manually labeled evi-
dence grounding data [15, 49]. We further compare with
the current SOTA in evidence grounding on NExT-GQA in
Table 2 across two standard metrics, Intersection over Pre-
diction (IoP) and Accuracy (Acc) of grounded question an-
swering (GQA). VITED achieves a remarkable IoP@0.5
score of 41.22 and Acc@GQA of 27.61%, outperforming
even GPT-4 driven agent approaches like LLoVi [54], and
making it the best model to date.

4.4. Ablation Experiments
We present experiments ablating key design choices in our
approach: the importance of different modules in evidence
generation (Table 3), the role of training stages (Table 4),
various evidence generation strategies (Table 5). Addi-
tional ablations on evidence-pool generators and hyper-
parameters are in Appendix A13. Unless otherwise spec-
ified, we show single-task fine-tuning results on NExT-QA,
using the TimeChat backbone for all the ablations.

Can we directly generate evidence with VLMs? First,
we explore simpler methods of evidence generation — by
simply prompting off-the-shelf VLMs to directly generate
them. We test two strategies: (1) Direct Multi-Evidence
Grounding, where we prompt the model to “provide a de-
tailed sequence of information to help answer the question
in the form [start time, end time] {supporting evidence}”,
given the question and options; and (2) GT-Guided Evi-
dence Sampling, where we sample up to three evidence
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TimeChat (CoT): After walking towards the bucket at the start, the person on the 
left scoops out hot liquid.

LLaVA-Video (CoT): B. The person on the left stops cycling for a while, then moves 
towards the bucket to scoop out hot liquid.

ViTED:  From 0.0 to 0.954 seconds, the person is walking towards the bucket, 
which is the start. The next relevant action is from 2.893 to 3.848 seconds, where 
the person walks towards the bucket and then proceeds to pour the molten metal 
into the bucket. This action matches option B, scoop out hot liquid.

What does the person on the left do after walking towards the bucket at the start? 
A. stop cycling for a while. B. scoop out hot liquid. C. dance. D. cover with his 
hands. E. move backwards.

TimeChat (CoT): The man wearing a hat outside swung his papers to blow them in 
order to create a blast of air to heat the workpiece in a forge.

LLaVA-Video (CoT): The correct answer is: A. The man wearing a hat outside 
swung his papers because the wind was blowing them, causing them to flutter and 
move around.

ViTED:  From 0.0 to 4.018 seconds,  the man wearing a hat outside is swinging his 
papers. From 6.041 to 8.035 seconds, the man's hand movement suggests that he 
is trying to communicate something. Thus the most appropriate answer is: D.

Why did the man wearing a hat outside swing his papers? A. wind blowing his 
paper. B. want to throw paper. C. to hit the boy. D. show boy direction. E. act cool.

Caption should mention highlights (no 
need to specify the wrong word there I 

think – it should be clear that it’s wrong); 
and blue = temporal window (no need to 
mark specific frame blue or anything, that 

will look messy). 

Figure 5. Examples of generated evidence chains. Compared to traditional chain-of-thought approaches, VITED demonstrates temporal
evidence generation and reasoning capabilities, accurately analyzing the sequence of actions in the video to reach the correct final answer.
Colored text and highlights are for visualization only and correspond to wrong evidence, correct evidence and temporal localization
windows of generated evidence (blue text).

chains from the same model, and use the ground-truth an-
swer to select the most appropriate one. Full details of each
strategy are in Appendix A10.

Our results in Table 5 (top) show that both methods are
able to produce coherent evidence chains that enhance per-
formance compared to the model with no additional evi-
dence. Both baseline strategies surpass the baseline with-
out evidence by a large margin, which indicates the impor-
tance of evidence. The strategy with the ground truth guid-
ance is even worse, indicating that the input guidance with
answer can lead model to make up non-plausible evidence
chains. Meanwhile, we can see our VITED surpasses both
strategies, indicating that our evidence generation pipeline
is effective. Overall, our approach outperforms these direct
variants highlighting the need for more elaborate evidence
generation strategies.

In Table 5 (bottom), we show additional ablations ex-
amining the necessity of: hierarchical evidence pools by
utilizing only a single level (S=1, L=1) of the hierarchy
(w/o Hier); evidence search by directly using the filtered
evidence pool E→ (w/o Search); and multi-hop evidence by
forcing evidence to be single hop (w/o MultiHop). We ob-
serve that there is smaller or no performance degradation in
“Descriptive” type of questions, compared with “Temporal”
and “Causal” types. This indicates the design of our hier-
archical evidence pool, evidence search, and multi-hop are
essential to complex video understanding.

Importance of evidence generation stages We ablate
different stages of the evidence generation pipeline, namely
the need for the evidence pool itself (Sec. 3.1), the chain-
of-thought summarization of evidence (Sec. 3.2) and their
interplay. We simply replace the evidence pool with a
single generated evidence chain (similar to the direct ap-
proaches above) and/or drop the summarization step from

the pipeline, leaving evidence chains in their raw form.
Our results in Table 3 show that both stages are impor-

tant to achieve optimal distillation. Although, without the
evidence pool, our VITED can still achieve on par results
as our full model on ‘Descriptive’ category, it is far worse
in the ‘Temporal’ and ‘Causal’ category. While when the
summarization module is dropped, the model performance
degrades severely in the ‘Descriptive’ category, and slightly
on ‘Causal’ category. Without these two evidence gener-
ation stages, the model is consistently worse than our full
VITED across three aspects.

Are both training Stage-1 and 2 essential? In Table 4,
we ablate Stage-1 and Stage-2 in our proposed tempo-
ral evidence curriculum training strategy. We show ac-
curacy on subcategories: Character and Relationship Dy-
namics (CRD), Narrative and Plot Analysis (NPA), Setting
and Technical Analysis (STA), Temporal (TEMP), Theme
Exploration (TH) on CinePile, Interaction (Int.), Sequence
(Seq.), Prediction (Pre.), and Feasibility (Fea.) on STAR.
Without Stage-1 and Stage-2 is equivalent to our base
TimeChat model. Adding video instruction tuning (Stage-
1) leads to significant improvements on CinePile and STAR,
but no gain on NExT-GQA which requires evidence ground-
ing. With our Stage-2 (temporal evidence finetuning), we
achieve SOTA results on CinePile, STAR and NExT-GQA.

5. Conclusion
We proposed a novel pipeline to synthesize high-quality
chain-of-evidence data on top of existing video understand-
ing data, and a video model to distill this temporal video
evidence data via curriculum training. Our results show no-
table improvements over state-of-the-art models with larger
sizes and more training data, by unlocking temporally-
grounded chain-of-thought reasoning in videos.
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