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Figure 1. Performance evaluation. The proposed CoA incorporates model compression in synthetic domain for efficiency and bilevel
adaptation in real domain for adaptability, as illustrated in the central sub-figure (b). The left sub-figure (a) presents efficiency across
various metrics, clearly showing that our CoA outperforms others by a significant margin. The right sub-figure (c) shows adaptability
across different scenes, where it is evident that our CoA consistently performs excellently.

Abstract

Learning-based image dehazing algorithms have shown
remarkable success in synthetic domains. However, real
image dehazing is still in suspense due to computa-
tional resource constraints and the diversity of real-world
scenes. Therefore, there is an urgent need for an algo-
rithm that excels in both efficiency and adaptability to ad-
dress real image dehazing effectively. This work proposes a
Compression-and-Adaptation (CoA) computational flow to
tackle these challenges from a divide-and-conquer perspec-
tive. First, model compression is performed in the synthetic
domain to develop a compact dehazing parameter space,
satisfying efficiency demands. Then, a bilevel adaptation in
the real domain is introduced to be fearless in unknown real
environments by aggregating the synthetic dehazing capa-
bilities during the learning process. Leveraging a succinct
design free from additional constraints, our CoA exhibits
domain-irrelevant stability and model-agnostic flexibility,
effectively bridging the model chasm between synthetic and
real domains to further improve its practical utility. Ex-
tensive evaluations and analyses underscore the approach’s
superiority and effectiveness. The code is publicly available
at https://github.com/fyxnl/COA.

*Corresponding author.

1. Introduction
Image dehazing tasks aim to utilize the atmospheric optical
model and advanced computing theory to achieve efficient
restoration of scene information and image details through
inverse imaging solution or data-driven model learning. It
has drawn much attention in multiple emerging computer
vision areas recently [46] [27] [28]. Similar to other low-
level vision tasks [32] [11], image dehazing technology has
evolved from an early stage focused on improving synthetic
data metrics to a direction aimed at effectively generaliz-
ing across various real-world haze scenarios. Current ap-
proaches face dual challenges: efficiency-oriented meth-
ods achieve real-time processing but lack scene adaptabil-
ity, while adaptability-focused techniques dynamically ad-
just strategies at the cost of high computational complex-
ity that hinders deployment in resource-constrained envi-
ronments. This paper addresses these limitations through
novel architectural innovations in both computational effi-
ciency and adaptive scene understanding.

1.1. Related Works
Efficiency-oriented Dehazing Methods. This work fo-
cuses on enhancing computational efficiency through op-
timization algorithms, model simplification, or machine
learning methods to enable faster processing under lim-
ited resources. Broadly, dehazing methods can be divided
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into image enhancement-based, physics-based, and image
layering-based approaches. Image enhancement-based de-
hazing methods [24] treat the task as an image improve-
ment problem, increasing contrast and color accuracy with
techniques like histogram equalization and color correction.
Physics-based methods [17], [28] are more specific, lever-
aging hazy image priors and constraints to aid inverse prob-
lem solving. Image layering-based approaches, such as that
of Zhang et al. [41], increase efficiency by breaking down
the image into scales or layers, progressively refining trans-
mittance maps and enhancing detail using multilevel pyra-
mid structures and dense connectivity. Despite their compu-
tational and real-time advantages, they struggle with stabil-
ity and consistent quality, especially in complex real-world
haze conditions, often resulting in partial dehazing and in-
sufficient color clarity.
Adaptability-focused Dehazing Methods. Adaptive de-
hazing methods tailor their strategies based on specific im-
age attributes to improve dehazing effectiveness. These
methods encompass three main types: local feature-
based, atmospheric scattering model-based, and domain
adaptation-based approaches. Local feature-based meth-
ods [15] adaptively adjust dehazing intensity according to
local contrast and brightness variations, which helps re-
store image details effectively. Atmospheric scattering
model-based adaptive dehazing methods [20] dynamically
adjust the transmittance estimation by analyzing different
regions of the image to achieve more accurate restoration.
These methods can, to some extent, balance both efficiency
and adaptability. Domain adaptation-based dehazing meth-
ods [26, 37] have gradually emerged in the field of image
dehazing in recent years. These methods learn a shared fea-
ture representation, enabling the model to simultaneously
adapt to the features of both the source domain and the
target domain. Although these methods yield superior de-
hazing results, their complex models and dynamic image-
specific adjustments often increase computational costs, po-
tentially impacting real-time applicability.

1.2. Our Contributions

To address the challenges of efficiency and adaptabil-
ity in real image dehazing, this work proposes a new
Compression-and-Adaptation (CoA) scheme as shown in
Fig. 1 (b). The predefined model is compressed in the syn-
thetic domain to ensure computational efficiency (refer to
Fig. 1 (a)). Further, a bilevel adaptive learning is developed
to leverage the dehazing capability acquired in the synthetic
domain to improve adaptability (see Fig. 1 (c)) in the real
domain. Our key contributions are summarized as
• Following the divide-and-conquer paradigm, we propose

a new CoA learning strategy that first compresses the pre-
defined model and then adapts it to unseen scenes, offer-
ing an efficient solution for real image dehazing. To the

best of our knowledge, this is the first work to success-
fully integrate both efficiency and adaptability, achieving
the best of both worlds in real image dehazing.

• To adapt to unlabeled, diverse real-world scenes, we pro-
pose a new cross-domain bilevel model designed to learn
dehazing parameters for the real domain constrained by
synthetic dehazing learning. Additionally, we derive
a bilevel adaptive learning scheme that effectively har-
nesses the synthetic dehazing capacity, preventing insta-
bility and enhancing adaptability.

• Benefiting from succinct design free from additional con-
straints, CoA shows two key properties on three standard
real benchmarks. It shows stability across synthetic do-
mains, improving 14.2% on average across four metrics
(evaluated on three domains). CoA also offers flexibility
with dehazing models, reducing computational cost by at
least 73% in parameters (tested on three methods).

2. The Proposed Method
In this section, we first rethinking real image dehazing,
highlighting two key practical needs. We then propose
model compression and bilevel adaptation to meet these
needs, followed by an overview of the network architecture
and training loss.

2.1. Rethinking Real Image Dehazing
Despite the strong performance of advanced image dehaz-
ing techniques [31, 36, 44] on synthetic datasets [8, 21, 30],
these datasets often rely on simplifying assumptions, result-
ing in a substantial gap between synthetic and real-world
domains. Addressing the core challenges in real-world im-
age dehazing involves two key aspects:
• Efficiency: Edge devices often have limited computa-

tional resources compared to systems with ample capac-
ity, requiring dehazing models to be highly efficient.

• Adaptability: Real-world imaging conditions vary dy-
namically. Dehazing models must therefore be adaptable
to maintain reliable performance.
The latter is more challenging, relying on effective learn-

ing mechanisms like unsupervised learning [12]. However,
current methods struggle with unsupervised learning due to
difficulty in capturing statistical regularities, making trans-
ferring dehazing capabilities from the synthetic to real do-
main a viable alternative. To provide an intuitive presenta-
tion of the goal upon the above demands, we build

min
θreal

f
(
θreal

(
θsyn

))
,

s.t.,

{
κ
(
θreal

)
< κ

(
θsyn

)
, (efficiency)

ζ
(
θreal

)
> ζ

(
θsyn

)
, (adaptability)

(1)

where θsyn and θreal represent parameters in synthetic and
real domain, respectively. The function κ(·) and ζ(·) denote
the evaluator for efficiency and adaptability, respectively.
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Figure 2. Qualitative comparisons of algorithmic properties. Arrows indicate specific regions that highlight visible differences.

To achieve this, we propose a divide-and-conquer strat-
egy: the first phase focuses on model compression for effi-
ciency, while the second phase employs bilevel adaptation
for adaptability. Details are provided below.

2.2. MoC:Model Compression in Synthetic Domain
The main challenge in model compression is transferring
dehazing capabilities from a large-scale parameter space to
a smaller one. Here we propose a composite loss function1

with context alignment to realize it.

min
θs
syn

Lsyn(θ
s
syn) + La

(
θs
syn,θ

t
syn

)
, (2)

where θt
syn and θs

syn are the pre-trained teacher model and
desired student model in the synthetic domain, respectively.
The function Lsyn and La represent a group of supervised
losses and the context alignment loss, respectively.

During model compression, the student model follows
the teacher model’s training strategy on paired synthetic
data. To maximize the retention of the teacher model’s
capabilities, we introduce a context alignment loss (La)
that aligns the outputs of the teacher and student encoders
at corresponding positions. By weighting the loss func-
tions across layers, this approach enables fine-grained fea-
ture alignment, improving knowledge transfer and model
optimization. The layered alignment ensures both global
feature distributions and layer-specific details are accu-
rately matched, resulting in more precise compression of
the teacher model into the student model.

2.3. BiA:Bilevel Adaptation to Real Domain
After compressing the model for efficiency, we address
adaptation to real-world scenes by proposing a cross-
domain bilevel model. This is followed by a bilevel adap-
tive learning scheme to enable smooth transition from the
synthetic to real domain.

2.3.1. Cross-Domain Bilevel Modeling
The gap between the synthetic and real domains makes
adaptation challenging. The dehazing parameters in the
synthetic and real domains (θs

rea) have a nested subordinate
1Details of the specific loss functions can be found in Sec. 2.4.

Algorithm 1 Learning via Compression-and-Adaptation

Require: The pre-trained teacher model θt
syn, the initial

parameter θs
syn, step-sizes ηmsyn, η

b
syn, coefficient α, iter-

ation numbers N in MoC phase and T in BiA phase.
Ensure: The optimal parameters θs

rea.
1: % The MoC Phase
2: for n = 0 : N − 1 do
3: Calculate the gradient g of Eq. (2).
4: θs

syn(n+ 1) = θs
syn(n)− ηmsyng(θ

s
syn(n),θ

t
syn).

5: end for
6: Initialize the dehazing model’s parameter in the real do-

main by θs
rea = θs

syn(N).
7: % The BiA Phase
8: for t = 0 : T − 1 do
9: % Update the lower-level parameter θs

syn in Drea.

10: θs
syn(t+ 1) = θs

syn(t)− ηbsyn
∂(Lrea+L1)

∂θs
syn

.
11: % Update the upper-level parameter θs

rea by EMA.
12: θs

rea(t+ 1) = αθs
rea(t) + (1− α)θs

syn(t+ 1).
13: end for
14: return θs

rea(T ).

relationship. This coupling can be effectively modeled us-
ing bilevel programming techniques [9, 29]. From the per-
spective of hyperparameter optimization, our cross-domain
bilevel model is written as:

min
θs
rea

Lrea

(
θs
rea,θ

s
syn

(
θs
rea

)
;Drea

)
,

s.t., θs
syn(θ

s
rea) ∈ argmin

θs
syn

Ψ(θs
rea,θ

s
syn),

(3)

where

Ψ(θs
rea,θ

s
syn) = Lrea(θ

s
syn;Drea) + L1(θ

s
syn,θ

s
rea), (4)

where Lrea and L1 represent the loss constraints2 for real
domain and alignment. The datasets Drea and Dsyn are cap-
tured in the real and synthetic domains, respectively.

Actually, suppose an effective loss Lrea could be de-
signed to constrain the output in the real domain, the adapta-
tion might be achieved solely through the upper-level model

2Their specific forms can be found in Sec. 2.4.
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Testing
Benchmark Metrics

Stability across various synthetic domain Flexibility with different dehazing model
RESIDE Haze4K THaze MSBDN DehazeFormer DEA

Base CoA Base CoA Base CoA Base CoA Base CoA Base CoA

RTTS [22]

FADE↓ 1.4753 1.2687 1.7368 1.0850 1.2078 0.8594 1.3354 1.1556 1.1866 0.9325 1.2117 0.9332
PM2.5↓ 163.77 139.04 170.03 110.84 131.77 88.871 135.68 95.793 126.77 115.00 121.98 89.813
Entropy↑ 7.2963 7.3458 7.3446 7.4637 7.4319 7.5798 7.3968 7.5382 7.4815 7.5511 7.4623 7.5426
BIQME↑ 0.5562 0.5639 0.5511 0.5748 0.5773 0.5932 0.5696 0.5819 0.5733 0.5928 0.5789 0.5860

URHI [22]

FADE↓ 1.4463 1.3013 1.7263 1.0278 1.3146 0.9272 1.3488 0.9549 1.3263 1.1726 1.2796 1.0321
PM2.5↓ 164.36 145.01 172.98 119.97 140.35 98.793 146.43 99.856 141.11 125.87 133.97 108.94
Entropy↑ 7.2867 7.3152 7.3711 7.4657 7.4652 7.5928 7.4144 7.5574 7.5009 7.5817 7.4920 7.5658
BIQME↑ 0.5499 0.5542 0.5481 0.5681 0.5821 0.5961 0.5727 0.5832 0.5757 0.5948 0.5786 0.5863

FATTAL [6]

FADE↓ 0.5136 0.4778 0.5828 0.3734 0.4203 0.3142 0.4315 0.3327 0.4271 0.3875 0.4270 0.3976
PM2.5↓ 81.738 80.289 81.401 110.97 62.312 91.639 69.272 104.56 78.093 60.693 81.387 80.723
Entropy↑ 7.3847 7.4575 7.3999 7.5006 7.4482 7.5858 7.4121 7.5460 7.4566 7.5610 7.4315 7.5569
BIQME↑ 0.5645 0.5802 0.5554 0.5919 0.5945 0.6189 0.5807 0.6055 0.5927 0.6117 0.5903 0.6097

Table 1. Quantitative comparison of algorithmic properties. In the left portion, our designed architecture serves as the baseline teacher
model. In the right portion, the THaze dataset is used as the synthetic domain.

(initialized with θs
syn). However, as discussed in Sec. 2.1,

the challenge of accurately modeling real haze distributions
makes this process difficult to implement. To this end, we
introduce lower-level sub-optimization to ensure a feasible
solution and maintain the correct optimization trajectory.
Experimental validation can be seen in Sec. 5.2.

2.3.2. Bilevel Adaptive Learning
Without compromising the model’s dehazing capability
in the synthetic domain, narrowing the performance gap
between the synthetic and real domains is a central fo-
cus. Inspired by the Exponential Moving Average (EMA)
method [2], we draw on its smoothing characteristics during
the training process and introduce a dynamic weight adjust-
ment mechanism to achieve a balance in learning between
the synthetic and real domains, formulated asθs

syn(t+ 1) = θs
syn(t)− ηbsyn

∂(Lrea + L1)

∂θs
syn

,

θs
rea(t+ 1) = αθs

rea(t) + (1− α)θs
syn(t+ 1),

(5)

where α represents the moving average coefficient, and L1

denotes the ℓ1-norm supervised loss used to reduce the risk
of the model overfitting to the real domain. Specifically,
during each update, θs

rea is adjusted by θs
syn, allowing the

model to strike a balance between the synthetic and real do-
mains throughout the learning process. The overall algo-
rithm can be seen in Alg. 1.

2.4. Network Architecture and Training Loss
This section introduces the details about network architec-
ture and training loss adopted in this work.

2.4.1. Network Architecture
We emphasize that our primary focus is on developing an
effective learning mechanism to enhance the model’s adapt-
ability to the real domain. Notably, our approach offers

flexibility3 with different dehazing models. To this end,
we adopt a hybrid architectural design, incorporating a pre-
trained Res2Net encoder [10] with the decoder of multi-
scale boosted dehazing network [5].

2.4.2. Loss Functions in MoC Phase
In the MoC process, to enable the student model to learn
the features extracted by the teacher model more effectively
and to enhance the quality the generated images. We define

Lsyn = λsuℓsu + λssℓss + λpeℓpe, (6)

where ℓsu, ℓss, ℓpe denote ℓ1-norm supervised loss, SSIM
loss, and perceptual loss, respectively. The coefficient
λsu, λss, λpe are positive balancing parameters.

To more effectively enhance consistency between the
student and teacher models in the feature space, the design
of La incorporates a similarity measure of feature distribu-
tions. Its formulation can be written as follows:

La =

L−1∑
i=0

wi ·
(
(Ti − Si)

2
)
, (7)

where wi represents the weights of i-th layer in the teacher
feature map Ti and the student feature map Si.

2.4.3. Loss Functions in BiA Phase
Here we incorporate the CLIP model to construct the train-
ing loss Lrea to constrain the output in the real domain. We
select haze images IH and clear images IC as references,
initialize corresponding prompts TH and TC , and input them
into the CLIP text encoder, while feeding the images into
the image encoder. The sample categories are predicted us-
ing the text-image similarity in the CLIP space. To mini-
mize the classification error between positive and negative

3For further details, please refer to Sec. 3.
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Figure 3. Quantitative comparison on three real-world datasets. Four no-reference image quality assessments were calculated.

Figure 4. Qualitative comparisons on daytime haze and dusty scenes. All these observations come from RTTS and URHI datasets.

samples, we employ the binary cross entropy loss to opti-
mize the text prompt pair. After training the text prompts to
effectively distinguish between real haze and clear images,
we can derive Lrea based on the contrastive similarity loss:

Lrea =
ecos

(
Φimage(IR),Φtext(TH)

)
∑

i∈{H,C} e
cos

(
Φimage(IR),Φtext(Ti)

) , (8)

where IR corresponds to the real haze image processed by
the model obtained through the model compression process.

3. Exploring Algorithmic Property

CoA presents an effective learning strategy to improve ef-
ficiency and adaptability for real-world scenes, without as-
sumptions on the synthetic domain or teacher model. We
analyze CoA’s properties, highlighting its stability across
synthetic domains and flexibility with different models.

3.1. Stability across Various Synthetic Domains
We perform three synthetic benchmarks (RESIDE [21]
(the outdoor subset), Haze4K [30], and THaze [8]) and

three real-world datasets (RTTS [21], URHI [21], and FAT-
TAL [6]) to assess our stability. As shown in the left section
of Table 1, CoA consistently improves scores across four
no-reference image quality metrics. Notably, due to the di-
verse scenes in THaze, CoA achieves near-optimal perfor-
mance within the synthetic domain. We use THaze as the
synthetic domain in our comparative experiments. Fig. 2
(left) compares visual results. The dehazing effects of CoA
is significant, especially in distant regions highlighted by
arrows. Overall, CoA improves the original teacher model
across synthetic domains, demonstrating its stability.

3.2. Flexibility with Different Dehazing Models
CoA’s teacher model-irrelevant nature allows us to enhance
the adaptability of existing dehazing models across various
scenes. We applied CoA to three dehazing models (MS-
BDN [5], DehazeFormer [34], and DEA [3]) as teacher
models. The right section of Table 1 shows significant
performance improvements before and after applying CoA
across different models and test settings. Fig. 2 (right) com-
pares visual results using DehazeFormer and DEA, high-
lighting areas where CoA enhances dehazing for more vi-
sually appealing outcomes. In summary, CoA demonstrates
notable flexibility with various dehazing models. The intro-
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Method
RTTS URHI FATTAL

FADE↓ PM2.5↓ Entropy↑ BIQME↑ FADE↓ PM2.5↓ Entropy↑ BIQME↑ FADE↓ PM2.5↓ Entropy↑ BIQME↑
AirNet 1.3342 155.84 7.2959 0.5471 1.6591 143.02 6.9143 0.5258 0.4063 76.114 7.3545 0.5315
WeatherDiff 2.4102 193.27 7.1443 0.5155 2.1429 180.26 7.1419 0.5102 0.8749 118.79 7.3621 0.4937
DiffUIR 2.1305 189.61 7.1722 0.5303 1.9879 180.56 7.1811 0.5205 0.8405 116.68 7.3609 0.5049
Ours 0.8594 88.871 7.5798 0.5932 0.9272 98.793 7.5928 0.5961 0.3142 91.639 7.5858 0.6189

Table 2. Quantitative comparison on daytime haze scenes. All compared methods are designed for multi-weather image restoration.

Figure 5. Qualitative comparisons corresponding to Table 2. All examples are sourced from RTTS and URHI datasets.

(a) Qualitative comparison

Metrics GS
(ICCV’15)

MRP
(CVPR’17)

OSFD
(ACM MM’20)

GAPSF
(ACM MM’23)

CoA

PM2.5↓ 102.43 106.20 146.93 110.59 81.141
Entropy↑ 6.7025 7.0488 6.9412 6.3769 6.9907
BIQME↑ 0.4552 0.4722 0.4684 0.3895 0.5112

(b) Quantitative comparison

Figure 6. Performance evaluation on nighttime haze scenes.

duction of CoA significantly reduces the model’s parame-
ter count, improving computational efficiency. Specifically,
the parameters in the three dehazing models decrease by
94.06%, 86.74%, and 73.89%, respectively. This reduc-
tion accelerates inference speed and lowers resource re-
quirements, making the models more lightweight and better
suited for practical applications.

4. Experimental Results
4.1. Implementation Details
Training settings. The CoA model was implemented us-
ing the PyTorch framework on a single NVIDIA RTX 3090
GPU. The Adam optimizer was employed to update each
module’s parameters, with β1, β2, and ε set to 0.9, 0.999,
and 1e−8, respectively. The initial learning rate was set to
1e−4 and gradually decayed to 1e−6 using a cosine anneal-
ing schedule. The algorithm was trained on RGB channels

(a) Qualitative comparison

Metrics DM
(ACM MM’23)

SUIR
(CVPR’23)

SMDR
(AAAI’24)

CoA

UIQM↑ 4.0965 3.9853 4.0314 4.1284
CCF↑ 26.651 31.417 28.439 30.878

(b) Quantitative comparison

Figure 7. Performance evaluation on underwater scenes.

with data augmentation via random 90°, 180°, and 270° ro-
tations and horizontal flipping. We cropped random 256 ×
256 sub-regions from images, further expanding the train-
ing set. Using a pre-trained Res2Net encoder, the teacher
model achieved strong performance after just 20 epochs.
Benchmarks and metrics. Three synthetic datasets
(Haze4K, RESIDE (the outdoor subset), and THaze served
as the synthetic domain, while three real-world datasets
(RTTS, Fattal, and URHI were used for testing in the real
domain. We employed four objective metrics for real-
world haze scenes: FADE [4], PM2.5 [14], Entropy, and
BIQME [13]. For underwater enhancement, we used UIQM
and CCF to assess image quality.
Compared methods. We evaluated our CoA method
against state-of-the-art techniques across daytime, dusty,
nighttime, and underwater conditions. For daytime and
dusty conditions, we compared CoA with SGID [1], De-
hamer [16], C2P [46], KANet [7], DEA, D4 [38], D4+[39],
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Metrics SGID
(TIP’22)

Dehamer
(CVPR’22)

C2P
(CVPR’23)

RIDCP†

(CVPR’23)
D4

(CVPR’22)
D4+

(IJCV’24)
KANet

(TPAMI’24)
DEA

(TIP’24)
Ours

SIZE (M) 13.87 132.40 7.17 28.72 10.70 10.70 55.25 3.65 1.69
FLOPs (G) 108.40 48.91 352.90 144.43 2.82 2.82 4.42 32.20 2.67

Ti
m

e
(m

s) 1280×720 240.01 136.36 1169.18 630.64 51.25 51.25 22.93 86.33 24.33
1920×1080 878.94 295.98 2531.43 1588.26 105.31 105.31 205.40 190.78 52.52
2560×1440 1514.82 519.52 4409.12 — 185.55 185.55 10631 334.78 92.13

† This work requires excessive video memory for high-resolution images, resulting in the failure to produce results.

Table 3. Evaluating the computational efficiency. Note that the size of the testing image for FLOPs calculation is 224×224.

(a) Qualitative comparison
Model FADE↓ PM2.5↓ BIQME↑ SIZE (M) FLOPs (G)
Naive for Teacher 1.21 131.77 0.58 52.83 18.56
Naive for Student 1.23 135.76 0.57 1.69 2.67
MoC for Student 1.13 124.43 0.58 1.69 2.67

(b) Quantitative comparison

Figure 8. Effects of MoC phase.

and RIDCP [37]. Additionally, we assessed CoA against
multi-weather restoration models: AirNet [23], Weath-
erDiff [33], and DiffUIR [45]. For nighttime dehazing, we
benchmarked against GS [25], MRP [42], OSFD [43], and
GAPSF [19], and for underwater scenes, we compared with
DM [35], SUIR [18], and SMDR [40].

4.2. Evaluation on Regular Scenes
Quantitative comparisons. In Fig. 3, we presented a com-
parison of eight state-of-the-art dehazing algorithms with
our proposed method, using four authoritative unsupervised
evaluation metrics. It is evident that our method ranked
among the top in almost all metrics, achieving optimal or
near-optimal performance in most cases.
Qualitative comparisons. As shown in Fig. 4, the super-
vised methods (SGID, C2P, Dehamer, DEA) and unsuper-
vised methods (D4, D4+) struggle with haze removal and
generalization. RIDCP causes color distortion and over-
dehazing, especially in sandstorm and colorful haze scenes.
KANet has limitations in detail and color restoration. In
contrast, CoA excels at haze removal while preserving fine
textures, resulting in more natural and realistic images.
Comparisons with multi-weather restorers. Here we
compared CoA with state-of-the-art multi-weather degrada-
tion methods. As shown in Table 2, CoA ranks second in
one metric, outperforming others in all others, highlighting
its superiority. Fig. 5 reveals that while existing methods ex-
cel in specific scenarios, they show limitations in handling

Figure 9. Necessity of bilevel modeling.

the full spectrum of haze conditions.
Efficiency comparisons. Table 3 presents a comprehensive
comparison of our proposed CoA method with existing ap-
proaches, evaluating parameters, floating-point operations
per second (FLOPs), and processing time across various im-
age resolutions. The results clearly show that our method
has the smallest number of parameters and FLOPs among
all the evaluated methods. Notably, as the image resolution
increases, our method demonstrates a significant advantage
in processing time, indicating that our model achieves a fa-
vorable balance between performance and complexity.

4.3. Adaptability Verification

Nighttime haze scene. Compared to state-of-the-art night-
time dehazing algorithms on the NHRW dataset (Fig. 6 (a)),
many existing methods fail to handle overexposure or low-
light conditions, resulting in overly dark or distorted images
due to noise and artificial light scattering. In contrast, CoA
excels in real-world nighttime haze scenes, effectively re-
moving haze, suppressing noise, and preserving details. As
shown in Fig. 6 (b), our method outperforms others across
three authoritative objective metrics
Underwater scene. Compared to state-of-the-art underwa-
ter dehazing algorithms, DM results in reddish and blurry
images, failing to correct color distortion effectively, while
SUIR and SMDR struggle to fully eliminate haze. As
shown in Fig. 7, our method significantly reduces haze im-
pact and enhances clarity and detail visibility, closely align-
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Figure 10. Effects of BiA phase.

Figure 11. Parameters Analysis. The RTTS dataset is adopted.

ing with human visual perception standards.

5. Analytical Experiments
5.1. Effects of MoC Phase
Without feature transfer from the “naive for teacher” (naive:
end-to-end training, the same below) model via compres-
sion, the “naive for student” model struggles to capture core
data patterns, particularly in complex or extreme weather
scenarios, resulting in limited dehazing. As illustrated in
Fig. 8, while “MoC for student” may not restore details
as effectively as “naive for teacher”, it successfully inher-
its high-quality features. Even under resource constraints,
it surpasses “naive for student” in dehazing and performs
well on unsupervised metrics.

5.2. Necessity of Bilevel Modeling
Here we highlight the critical role of bilevel modeling by
training the same network model on the THaze dataset. As
shown in Fig. 9, the results on the real test set show marked
contrasts: employing only the lower-level modeling strat-
egy results in suboptimal dehazing, while relying solely on
the upper-level strategy with CLIP fine-tuning produces un-
natural effects with notable color distortion. Different from
them, the bilevel modeling strategy enables both effective
dehazing and natural visual quality, achieving a balance be-
tween dehazing performance and perceptual realism.

5.3. Effects of BiA Phase
In Fig. 10, we evaluate effects of the BiA phase. The results
clearly show significant improvements in both FADE and

Figure 12. Limitations. The example is from RS-Haze [34].

PM2.5 metrics following the BiA phase. Notably, in images
with complex backgrounds or high noise levels, our model
outperforms the baseline, demonstrating the BiA phase’s ef-
fectiveness in capturing key features and improving robust-
ness in challenging scenarios.

5.4. Parameters Analyses
We test different values of the parameter α during the BiA
phase, as shown in Fig. 11. The results indicate that α =
0.95 yields almost optimal performance. Notably, this set-
ting achieves the fastest convergence and exhibits superior
stability and accuracy across multiple evaluation metrics,
clearly outperforming other parameter settings.

5.5. Limitations
While effective in many scenarios, our method struggles
with remote sensing haze images due to additional imaging
constraints. As depicted in Fig. 12, although it improves
dehazing (outperforming DEA), non-uniform fog occlusion
remains. This stems from varying haze effects across spec-
tral bands in hyperspectral images, requiring multi-band in-
tegration for effective dehazing.

6. Conclusion

This work proposes a novel compression-and-adaptation
scheme to tackle the problem of unbalance between de-
hazing quality and computational efficiency in real image
dehazing. Following the divide-and-conquer paradigm, we
design a new CoA learning strategy that first compresses
the predefined model and then adapts it to unlabeled, di-
verse real-world scenes. We not only make a thorough ex-
ploration to take on the excellent properties of CoA, but
also we perform extensive experiments to indicate our CoA
method’s superiority in terms of image dehazing quality and
computational efficiency.
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