
Diffusion Model is Effectively Its Own Teacher

Xinyin Ma Runpeng Yu Songhua Liu Gongfan Fang Xinchao Wang*

National University of Singapore
maxinyin@u.nus.edu, xinchao@nus.edu.sg

(a) DiT-XL/2 For ImageNet 512×512 (b) Stable Diffusion v1.5

Figure 1. Generated Images before (left) and after (right) our proposed self-distillation framework on DiT-XL/2 for ImageNet 512⇥512
and Stable Diffusion v1.5 with 10 DDIM sampling steps.

Abstract

In this paper, we introduce a novel self-distillation

paradigm for improving the performance of diffusion mod-

els. Previous studies have shown that introducing a teacher

to distill the diffusion model can enhance its sampling effi-

ciency. We raise an intriguing question: can the diffusion

model itself serve as its teacher to further improve the per-

formance of itself? To this end, we propose a new paradigm

called Self Step-Distillation (SSD). The core idea of SSD

is to integrate the predictions or the intermediate activa-

tions of the diffusion model at each timestep with its pre-

ceding timestep through a fusion mechanism. We propose

two forms, explicit SSD and implicit SSD (iSSD), to perform

N-step to N-step distillation from the diffusion model itself

to achieve improved image quality. We further elucidate

the relationship between SSD and high-order solver, high-

lighting their underlying relationship. The effectiveness of

SSD is validated through extensive experiments on diffu-

*Corresponding author

sion transformers of various sizes and across different sam-

pling steps. Our results show that this novel self-distillation

paradigm can significantly enhance performance. Addition-

ally, our method is compatible with the distillation method

designed for few-step inference. Notably, with iSSD trained

less than one epoch, we obtain a 32-step DiT-XL/2 achiev-

ing an FID of 1.99, outperforming the original 250-step

DiT-XL/2 with an FID of 2.26. We further validate the ef-

fectiveness of our method on text-to-image diffusion models,

such as Stable Diffusion, and also observe notable improve-

ment in image quality.

1. Introduction

Diffusion-based generative models [5, 16, 51] have gained
significant attention for their remarkable capability to gen-
erate diverse, high-fidelity outputs across various domains.
It has been proven effective in tasks such as image synthe-
sis [42, 44, 46], video generation [1, 17, 18] and natural
language processing [27, 33]. Unlike previous generative
approaches like VAEs [24] and GANs [12], Diffusion Mod-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12901

els (DMs) rely on a unique process where noise is gradu-
ally refined into meaningful data by reversing a specified
noise pathway [20]. This iterative noise-to-data transfor-
mation gives DMs exceptional versatility, allowing them
to be applied successfully in image editing [21], inpaint-
ing [35], super-resolution [11], object detection [3], 3D gen-
eration [43], etc.

Recent studies have emphasized the effectiveness of
knowledge distillation [15] as a tool for enhancing inference
efficiency or accelerating pre-training for diffusion mod-
els [38, 50]. These methods typically achieve distillation
through the use of an external teacher model or a teacher
with more sampling steps. To improve inference efficiency,
approaches such as progressive distillation and consistency
distillation [23, 36, 47, 52] employ an extensive multi-step
sampling process as a teacher model to distill the student
model with fewer steps. These teacher models more accu-
rately approximate the denoising trajectory, thereby guiding
the student model to enable the few-step generation or even
one-step generation [7]. Other studies [13, 19, 22] focus
on distilling compact diffusion models by training smaller
models under the supervision of larger, high-capacity mod-
els. Besides, [60] demonstrates that aligning model repre-
sentations using guidance from an external pre-trained vi-
sion encoder can facilitate faster convergence.

The aforementioned methods can significantly enhance
the sampling efficiency of diffusion models through dis-
tillation. However, the student models are constrained by
the performance of the teacher model, with their training
aimed at matching, but not surpassing, the teacher’s perfor-
mance. This raises an intriguing question: Can distillation

be leveraged to improve the generation quality of the dif-

fusion model itself, potentially exceeding the performance

of the teacher model? This shifts the focus from traditional
N -to-M step distillation or model compression for speed to
a form of N -to-N step self-distillation aimed at enhancing
the generation quality of the original diffusion model.

We thereby explore the unique form of self-distillation
within diffusion models. While self-distillation has been
studied extensively in conventional architectures [10, 39,
61, 62], its application to diffusion models remains unex-
plored. explore the special way that self-distillation oper-
ates in diffusion models by utilizing the properties of dif-
fusion models. Given the temporal relationships between
steps that form a sequence of predictions, we introduce Self
Step-Distillation in both explicit and implicit forms. The
core idea is that, with careful design, the model can enhance
its performance by mimicking the next-step prediction. To
achieve this, we propose a fusion of predictions and features
across different steps, and redefine the computational flow
for the student model. Once the student model is trained, it
can be reverted to the original computational pipeline. We
also illustrate how this fusion mechanism relates to high-

order solvers.
We mainly conduct our experiments on diffusion trans-

formers [40] due to their exceptional performance. We
conduct experiments on DiT models ranging from DiT-
S/2 to DiT-XL/2 and sampling steps from 4 to 250. With
our method, a self-distilled DiT-XL/2 with 50 sampling
steps surpasses the performance of the pre-trained DiT-
XL/2 with 250 sampling steps (2.02 vs 2.14 in FID). To
further examine the N -to-N distillation setting and show
that our method is complementary to the few-step distil-
lation, we applied our method on a progressively distilled
DiT-XL/2. This resulted in an enhanced generation qual-
ity, with an FID of 1.99 achieved using 32 sampling steps.
Additionally, we tested the generalizability of our method
by applying it to Stable Diffusion, confirming its effective-
ness in the text-to-image setting. All experiments require
fewer than 10k optimization steps and a short training dura-
tion—approximately 40 minutes for DiT-XL/2 and 3 hours
for Stable Diffusion. Consequently, our method can be con-
sidered a quick self-improvement technique for diffusion
models, which we further show that it can operate without
dependence on training data.

To summarize, the contributions of our work are:
• We demonstrate for the first time that self-distillation can

enhance the performance of diffusion models itself, sig-
nificantly surpassing the original model.

• We introduce a novel self-distillation framework for dif-
fusion models, termed Self Step-Distillation. By corrupt-
ing and fusing predictions and intermediate activations,
we redefine the computational flow of the teacher and stu-
dent diffusion model to facilitate self-distillation.

• We analyze the underlying mechanisms of this unique
self-distillation approach and reveal its connection to
high-order solvers.

• Experimental results demonstrate that our self-distillation
method significantly enhances the performance of diffu-
sion models, including both DiT and Stable Diffusion, as
well as distilled few-step diffusion models.

2. Related Work
Distillation in Diffusion Models. knowledge distillation
[15] becomes a popular paradigm to improve the efficiency
of diffusion models. Progressive Distillation [47] proposes
to half the steps of sampling by matching the samples gen-
erated by N deterministic steps with 2N steps. Consistency
distillation [52] enforces the self-consistency between any
pair of steps and makes the boundary condition avoid triv-
ial solutions. [36] extends it into the latent space, and
[23, 54] divides the whole trajectory consistency into sub-
phase consistency. SFD [64] solves the accumulative errors
in local distillation by sampling and imitating the whole tra-
jectory. [59] distills the diffusion model into a one-step gen-
erator by matching at the distribution level with adversarial

12902

Denoise

Explicit
SSD

Implicit
SSD

Timestep Input

Teacher

Student

Fusion

Fusion

//

...
...

Fusion

Fusion

Stop
Gradient

Figure 2. The overall framework of Self Step-Distillation. Here
✓� means that the weight of the model is frozen.

loss. [6] shows that the high-order term, jacobian-vector
products, can be distilled into a separate neural network.
Guided diffusion [38] matches the combined output of the
classifier-free guidance with a single model, and reduces the
sampling steps for unconditional generation and conditional
generation. The adversarial objective can also be incorpo-
rated in diffusion training to stabilize the training process
[30, 48]. Apart from this, another line of work uses knowl-
edge distillation to make the diffusion model small and effi-
cient [8, 58]. Feature-level knowledge distillation is widely
adopted in those works to accelerate the post-training of
these compressed diffusion models [8, 13, 22].

Efficiency in Diffusion Models. Balancing the image
quality and the sampling speed is a challenging topic in
diffusion models [20, 55]. (1) Fast solver for sampling.

One common way to reduce the sampling steps is to em-
ploy a training-free solver to off-the-shelf pre-trained diffu-
sion models. Those methods approximate the true trajec-
tory of probability flow ODE, such as Euler’s method [50],
Heun’s method [20], the exponential integrator with Tay-
lor expansion [34], the unified predictor-corrector frame-
work [63] and numerical methods [32]. (2) Structural Ef-

ficiency. Besides of optimizing the number of model eval-
uations, another way is to encourage structural efficiency.
Redesign the model architectures [58], pruning [8, 29, 65]
and quantization [14, 28] constructs lightweight diffusion
model. Cache-based methods [37, 56] leverage the sim-
ilarity between steps to reduce calculations. (3) Pipeline

Efficiency. Breaking the sequential nature of denoising is
another way to improve the efficiency of diffusion models.
[49] uses Picard iteration to iteratively refine until conver-
gence. [4, 25] decouples the images or models into multiple
components and assigns them to different devices.

Self-Distillation Knowledge distillation is widely used
for compressing compact networks, while self-distillation
focuses on improving the performance of networks. [10]
investigate distillation with a student network parameter-
ized identically to its teacher, demonstrating that the student
could significantly outperform the teacher. [61] explores
distilling knowledge from deeper network layers into shal-
lower ones. Several works [2, 39, 57] examine the under-
lying reasons for this phenomenon, commonly attributing it
to the ”dark knowledge” encoded in soft labels. [62] high-
light the importance of predictive diversity, while [41] sys-
tematically investigates self-distillation carefully and inter-
prets self-distillation as a process of learning previously un-
learned perspectives of input data. Unlike these prior works,
our focus is not on leveraging soft labels from teacher pre-
dictions to guide student network training. Instead, we ex-
plore a unique mechanism in diffusion models to enhance
their performance.

3. Method
In this section, we elaborate on the design of our self-
distillation framework. We first show our proposed frame-
work of the self-distillation paradigm in Section 3.2, and
then give the explanation about why it works in Section 3.3
and Section 3.4.

3.1. Preliminary
We begin from the forward and reverse processes in diffu-
sion probabilistic models. Let qdata(x) represent the data
distribution. The forward process entails adding noise in-
crementally to a clean image x0 ⇠ qdata (x). At a given
timestep t, the distribution of xt, which includes the noise
added up to that point, is defined by:

q (xt | x0) = N
�
xt;

p
↵̄tx0, (1� ↵̄t) I

�
(1)

where ↵t is a time-dependent function that controls the
noise scheduling. As t approaches a sufficiently large
value, the final state xT becomes nearly the same as a
Gaussian noise. For denoising, starting from a noise in-
put xT ⇠ N (0, I), an image can be progressively recon-
structed through iterative sampling from the conditional dis-
tribution q(xt�1|xt). This conditional probability is typi-
cally approximated by a parameterized distribution, given
as p✓ (xt�1 | xt) = N (xt�1;µ✓ (xt, t) ,⌃✓ (xt, t)). Here,
µ✓ (xt, t) is parameterized by ✓, and it follows:

µ✓ (xt, t) =
1

p
↵t

✓
xt �

1� ↵t
p
1� ↵̄t

✏✓ (xt, t)

◆
(2)

where ✏✓ (xt, t) represents the noise estimation function at
timestep t given input xt. The training objective for dif-
fusion models is to minimize the difference between the
predicted noise and the ground-truth noise ✏t added during

12903

the forward process. This is typically framed as a simpli-
fied version of the variational bound on the negative log-
likelihood of x0. The objective can be written as:

Lt = Et⇠[1,T],x0⇠qdata(x)

h
k✏t � ✏✓ (xt, t)k

2
i

(3)

3.2. Overall Framework
Next, we introduce the design of this unique form of
self-distillation within diffusion models. To achieve self-
distillation, three essential components must be defined: the
construction of the teacher model, the formulation of the
student model, and the definition of the training objective.
Given that we have only a single pre-trained model without
any external supervision. This poses a critical challenge:
how can a single pre-trained diffusion model be used to con-
struct both a teacher and a student model, with the teacher
model designed to be more capable than the student?

We focus on the timesteps of diffusion models, which
inherently give us a sequence of predictions for one sam-
ple. Denote the model to have L layers. x(l) denotes the
input for layer l, where l 2 {1, 2, . . . , L}. x(1)

t = xt rep-
resents the input to the network at timestep t. Each layer l
applies a function f✓l parameterized by ✓l, which includes
operations such as multi-head self-attention and pointwise
feedforward module in Transformer [53], and residual or
convolution blocks in U-Net [45]. Thus, for each layer, the
layer-wise computation at timestep t can be formulated as:

x(l)
t = f✓l�1

⇣
x(l�1)
t , t

⌘
(4)

Here the calculation is conditioned on the timestep t, al-
though not all blocks in diffusion model use t as a condi-
tional input. After all L layers have been processed, the
final output of the model is the predicted noise, represented
as ✏(xt, t) = x(L+1)

t .
To construct the teacher and student models, we re-

quire the outputs for two timesteps, t and s, where s repre-
sents the preceding denoising step of t under a pre-defined
solver, satisfying s > t. We denote the predictions of
the teacher and the student model as ✏T (xt, xs, t, s) and
✏S (xt, xs, t, s), respectively. Our approach to building the
teacher and student models is based on a core principle: us-
ing the predictions from a later step as stronger supervision
to guide the prediction at an earlier step. The rationale be-
hind this principle will be discussed in detail later. Based
on this guideline, we develop the below two distinct forms
for self-distillation.

Explicit Form: For the explicit self step-distillation, we
build a teacher model by fusing the predicted noise:

✏T (xt, xs, t, s) = �✏✓� (xt, t) + (1� �)✏✓� (xs, s) (5)

The student prediction use the predicted noise at timestep
s: ✏S (xt, xs, t, s) = ✏✓ (xs, s). Here, ✓� represents the
model would be frozen during training.

Implicit Form: For the implicit self step-distillation, we
redefine the computation flow in the model. We fuse
the outputs at the same intermediate layer but different
timesteps t and s, denoted x(l)

t and x(l)
s respectively. The

fused output at this layer is now calculated as:

x̃(l)
t = �f✓�

l�1

⇣
x(l�1)
s , s

⌘
+ (1� �)f✓l�1

⇣
x̃(l�1)
t , t

⌘
(6)

where x̃(l�1)
t represents the fused output from the previous

layer, and x̃(l)
t serves as the input for the next layer, re-

placing the original x(l)
t . The above equation serves as a

weighted fusion of layer output in two timesteps. The fi-
nal prediction ✏S (xt, xs, t, s) = x̃(L+1)

t is obtained from
these fused features, forming the prediction for the student
model. With this, the computation flow of the student model
is changed. In constrast, the teacher model functions as the
original denoising predictor at timestep t, with its prediction
output expressed as ✏T (xt, xs, t, s) = ✏✓�(xt, t)

Training Objective. We take the pre-trained model as
both the initialization for the teacher and the student model.
The teacher ✓T model remained frozen while the update
of parameters is performed on the student side. The self-
distillation objective here is the matching between the stu-
dent ✏S (xt, xs, t, s) and the teacher ✏T (xt, xs, t, s). The
distillation objective would be:

min
✓

Es⇠[1,T],x0⇠qdata(x)

h��✏T (xt, xs, t, s)� ✏S (xt, xs, t, s)
��2

i

(7)
Here, xs represents x0 with added noise, and xt is obtained
by performing one step from xs in the ODE solver. After
the training phase is completed, no fusion operations are ap-
plied during the inference stage. The model’s computation
remains identical to its original configuration but benefits
from the enhancements gained through the self-distillation
process.

3.3. Distill from High-Order Solver
In this section, we explain why this self-distillation frame-
work works. In order to reduce the discretization error for
the first-order ODE solver, such as Euler [20], one straight-
forward way is to use the higher-order solver for the diffu-
sion ODEs. The cost for this is that it needs twice or third or
even more times of function evaluation. We show that our
self-distillation framework serves as an approximated form
for distilling it into the same network without introducing
additional parameters.

12904

We perform a single step forward from timestep s to
timestep t. We compare the formulation of DPM-Solver-
1 and DPM-Solver-2 [34].

DPM-Solver-1:xt =
↵t

↵s
xs � wt✏✓ (xs, s) (8)

DPM-Solver-2:xt =
↵t

↵s
xs � wt✏✓ (xu, u) (9)

Here the timestep u is an intermediate timestep between t
and s. As defined in DPM-Solver-2, timestep u has �u :=
log (↵u/�u) which is the average of those for timestep t and
timestep s, and xu denotes the state one step forward from
s to u. The term wt is a weight factor that depends only on
the timestep. Using DPM-Solver-2, which is more accurate
than DPM-Solver-1, the following training objective can be
interpreted as encouraging the predictions of the first-order
solver to align more closely with those of the second-order
solver:

min
✓

Es⇠[1,T],x0⇠qdata(x)

h
wt k✏✓ (xs, s)� ✏✓ (xu, u)k

2
i

(10)
Building on the above equation, if the goal is to approx-

imate a higher-order solver using a first-order solver, the
training objective simplifies to: matching the prediction at

the current step with the prediction at a subsequent step.

3.4. Ways to approximate ✏✓(xu, u)

However, this method requires the prediction at the inter-
mediate step between timestep s and t, which is not al-
ways feasible in N -step to N -step distillation. A feasible
scenario involves using a linear interpolant noise scheduler,
where xs = (1� s/T)x0 +(s/T)✏, and the model predicts
the velocity instead of the noise ✏. Under these conditions,
the objective can be reformulated to align ✏✓(xs, s) with
✏✓(xt, t). The corresponding results are presented in Table
1, with detailed proofs provided in the Appendix. With 10
and 250 sampling steps, consistent improvements in sample
quality are observed, validating the effectiveness of Eq.10.
However, as expected, performance declined in both cases
when using ✏-prediction without incorporating these prop-
erties into the noise scheduler and the specific model pre-
diction type.

The question now arises: how we can approximate
✏✓(xu, u) given ✏✓(xs, s) and ✏✓(xt, t). One straightfor-
ward way is to get the approximation of ✏✓(xu, u) by Tay-
lor Expansion, whose results turned to be the interpolating
between ✏✓(xs, s) and ✏✓(xt, t). Following the assumption
in [34] that ✏✓(xs, s) is Lipschitz w.r.t xs, we have:

✏✓ (xu, u) = ✏✓ (xs, u) + (✏✓ (xu, u)� ✏✓ (xs, u))

= ✏✓ (xs, s) + ✏(1)✓ (xs, s) (u� s) +O

⇣
(u� s)2

⌘

(11)

Model Sampler NFEs IS FID sFID
v-prediction with linear interpolant noise scheduler

REPA - SiT-XL/2 SDE 250 305.7 1.42 4.70
REPA - SiT-XL/2⇧ w/ Eq.10 SDE 250 306.3 1.41 4.68

REPA - SiT-XL/2⇧ ODE 10 233.9 5.85 7.82
REPA - SiT-XL/2⇧ w/ Eq.10 ODE 10 238.4 5.11 7.48

✏-prediction

DiT-XL/2 ODE 50 238.6 2.26 4.29
DiT-XL/2 w/ Eq.10 ODE 50 230.8 2.81 6.41
DiT-XL/2 w/ Eq.12 ODE 50 239.9 2.21 4.41

DiT-Xl/2 ODE 10 158.3 12.38 11.22
DiT-XL/2 w/ Eq.10 ODE 10 51.8 45.99 26.95
DiT-XL/2 w/ Eq.12 ODE 10 184.7 7.99 9.91

Table 1. Results on v-prediction and ✏-prediction diffusion mod-
els. For the experiments on REPA, we use the EMA model as the
teacher for the experiments with 250 steps.

where ✏(1)✓ (xs, s) is the first-order derivative w.r.t s. As
above, we derive ✏(1)✓ (xs, s) the same way between two dif-
ferent timesteps t and s, and we have:

✏✓ (xu, u) = (1� �)✏✓ (xs, s) + �✏✓ (xt, t) (12)

where � = (u� s) / (t� s). We get the same form as the
explicit self step-distillation. The results with this equation
are also shown in Table 1.

While the aforementioned method can approximate
✏✓(xu, u) to some extent, it remains suboptimal. An alter-
native approach is the implicit form of interpolation, which
approximates ✏✓(xu, u) by interpolating on features rather
than on the output. This one shares the same form with im-
plicit self step-distillation. This idea is inspired by previous
works [26, 37], which demonstrated that certain intermedi-
ate activations in timestep s can be reused in later timestep
u to produce an approximated output for timestep u, with
minimal effect on image quality. Consequently, we inter-
polate on the intermediate layers, and experimental results
indicate that this method yields better performance than in-
terpolation on predictions.

4. Experiment
In this section, we demonstrate the effectiveness of our pro-
posed method. In Section 4.2, we present empirical ev-
idence that both SSD and iSSD consistently enhance the
performance of a pre-trained DiT across various image res-
olutions, model sizes, and sampling steps. Additionally,
Section 4.3 provides the results of applying these meth-
ods to text-to-image generation. Section 4.4 highlights how
iSSD can be applied to distilled models, yielding further
performance improvements. Finally, Section 4.5 offers an
in-depth analysis.

4.1. Experimental Setup
Models. For the conditional generation on ImageNet, we
take all four DiT models: DiT-S/2, DiT-B/2, DiT-L/2, and

12905

Method NFEs Train Epochs IS " FID # sFID # Prec. " Rec. " NFEs Train Epochs IS " FID # sFID # Prec. " Rec. "
– 256⇥256 – – 512⇥512 –

DiT-XL/2 250(ODE) 1400 243.4 2.14 4.56 0.81 0.61 250(SDE) 600 240.8 3.04 5.02 0.84 0.54
SiT-XL/2 250(SDE) 1400 277.5 2.06 4.49 0.83 0.59 250(SDE) 600 252.2 2.62 4.18 0.84 0.57

DiT-XL/2 50 1400 238.6 2.26 4.29 0.80 0.60 50 600 204.1 3.28 4.50 0.83 0.55
+ SSD 50 1400 + 0.8 239.9 2.21 4.41 0.80 0.60 50 600 + 0.4 205.2 3.18 4.59 0.83 0.57
+ iSSD 50 1400 + 0.8 250.0 2.02 4.22 0.81 0.60 50 600 + 0.4 210.2 2.86 4.06 0.84 0.54

DiT-XL/2 20 1400 223.5 3.48 4.89 0.79 0.57 20 600 186.3 5.10 5.73 0.82 0.55
+ SSD 20 1400 + 0.8 228.6 2.82 4.63 0.79 0.60 20 600 + 0.4 194.7 4.01 5.33 0.83 0.56
+ iSSD 20 1400 + 0.8 227.5 2.67 4.85 0.79 0.60 20 600 + 0.4 200.8 3.69 4.41 0.84 0.54

DiT-XL/2 10 1400 158.3 12.38 11.22 0.67 0.53 10 600 128.4 15.19 11.58 0.74 0.49
+ SSD 10 1400 + 0.8 184.7 7.99 9.91 0.71 0.56 10 600 + 0.4 158.5 9.61 11.09 0.78 0.54
+ iSSD 10 1400 + 0.8 209.6 4.92 7.62 0.79 0.53 10 600 + 0.4 164.9 6.97 7.05 0.83 0.51

Table 2. Image quality on ImageNet 256⇥256 and 512⇥512, with DiT-XL/2 as the base model. Prec. and Rec. denotes Precision and
Recall. We adopt CFG=1.5 in all the experiments for ImageNet.

Model NFEs Train Epochs IS " FID # sFID # Prec. " Rec."
– DiT-S/2 –

DiT-S/2 250 400 59.4 26.51 7.31 0.59 0.56

DiT-S/2 50 400 53.5 29.21 5.89 0.57 0.58
+ iSSD 50 400 + 0.2 54.6 27.75 5.73 0.58 0.58

DiT-S/2 20 400 52.0 32.62 7.43 0.55 0.55
+ iSSD 20 400 + 0.2 52.5 30.62 8.23 0.56 0.55

DiT-S/2 10 400 40.1 49.50 18.33 0.43 0.48
+ iSSD 10 400 + 0.2 40.7 46.17 18.89 0.45 0.48

– DiT-B/2 –
DiT-B/2 250 200 119.6 10.12 5.39 0.73 0.55

DiT-B/2 50 200 101.8 12.84 4.81 0.71 0.56
+ iSSD 50 200 + 0.2 104.9 11.77 4.99 0.71 0.56

DiT-B/2 20 200 97.5 15.40 6.11 0.68 0.54
+ iSSD 20 200 + 0.2 100.6 13.84 8.63 0.71 0.52

DiT-B/2 10 200 72.1 28.99 15.54 0.56 0.48
+ iSSD 10 200 + 0.2 77.9 21.40 13.37 0.61 0.53

– DiT-L/2 –
DiT-L/2 250 200 196.3 3.73 4.62 0.82 0.54

DiT-L/2 50 200 168.8 4.77 4.41 0.78 0.55
+ iSSD 50 200 + 0.2 172.7 4.41 4.44 0.80 0.56

DiT-L/2 20 200 160.5 6.42 5.26 0.77 0.53
+ iSSD 20 200 + 0.2 172.3 4.92 4.87 0.80 0.53

DiT-L/2 10 200 118.5 16.01 12.63 0.67 0.47
+ iSSD 10 200 + 0.2 143.7 7.75 4.99 0.75 0.55

Table 3. Image quality on ImageNet 256⇥256 with DiT-S/2, DiT-
B/2 and DiT-L/2

DiT-XL/2. For DiT-XL/2, we utilize the official pre-trained
model, whereas for the other three models, we train them
for 1 million to 2 million steps. For the text-to-image gen-
eration experiments, we employ Stable Diffusion v1.5 [44]
as our base model.

Evaluation. We follow previous work [40] to use IS, FID,
sFID, Precision and Recall as the evaluation metric. For
text-to-image generation, we test the FID on the validation
set of COCO2014 and COCO2017 [31].

Training and Sampling Details. For training, the teacher
and student models are both initialized from the base model,
with the teacher remaining fixed during training. We use
DDIM [50] as our base ODE solver and only utilize N-step
predictions during training if the fine-tuned model would be
evaluated under N-step. For DiT, we set a learning rate of
5e-6, a batch size of 128. The training epochs for each ex-
periment are listed in the tables. Exponential Moving Aver-
age (EMA) is not used due to the short training period. We
follow the original DiT setup without weight decay, warm-
up, or learning rate schedulers. Models were evaluated with
10, 20, and 50 numbers of function evaluations (NFEs), and
we show that even the basic ODE algorithms outperformed
many advanced samplers with our algorithms. More de-
tails, especially for text-to-image generation, are in the Ap-
pendix.

4.2. Conditional Generation
Results on DiT-XL. We show the results of DiT-XL/2 in
Table 2. With less than 1 epoch for optimizing DiT-XL/2,
our method achieves consistent performance improvement
upon the base models. Notably, our method with 50 NFEs
can exceed the performance of the base DiT-XL/2 sampled
250 times by a large margin (2.02 vs 2.14), both under the
same ODE sampler. Also this improvement can be observed
in the resolution of 512, where the base DiT achieves the
FID of 3.04, while our method can improve it to 2.86. We
also notice improvement compared with the 250-step SiT,
with our method sampled with only 50 steps. Besides, we
found the implicit SSD performs better than the explicit
SSD in most cases, and sometimes the implicit SSD out-
performs the explicit SSD by a large margin. We show the
qualitative results on ImageNet in the Appendix.

Results on small-scale DiTs. We also apply our method
under smaller DiT models, showing that the method can be
generalized to models with different sizes. Since in the ex-

12906

Figure 3. Visualization of generated images using various sam-
pling algorithms with NFEs=10. From left to right, the algorithms
shown are: PLMS, DDIM, DPM-Solver-2, and SSD.

Dataset NFEs DDIM PLMS DPM-Solver-2 Ours

COCO2014 10 12.78 17.71 15.23 10.94
20 12.68 12.65 14.63 10.56

COCO2017 10 22.79 29.51 24.46 20.85
20 22.43 22.14 24.02 20.69

Table 4. FID Comparison with different samplers on the validation
set of COCO2014 and COCO2017

periment in DiT-XL/2, we found iSSD consistently outper-
forms SSD, we here test the performance of iSSD on these
DiT models. From Table 3, with only 0.2 epoch for train-
ing, we observe a large improvement upon the base model.
It would only take several minutes to finish the training, and
thus, can be seen as a cheap way to improve the perfor-
mance of the trained models.

4.3. Text-to-Image Generation
We apply SSD to Stable Diffusion v1.5. The experimental
details are outlined in Appendix. Our method is compared
against DDIM [50], DPM-Solver-2 [34] and PLMS [32] on
COCO2014 and COCO2017, as shown in Table 4. Our ap-
proach demonstrates significant improvements in FID, out-
performing other methods. Notably, our results with 10
NFEs surpass those achieved with 20 NFEs by competing
samplers. Visualization results further highlight that images
enhanced by our algorithm exhibit more detailed features.

4.4. Results on Distilled Models
In this section, we apply our method to a distilled model
obtained through progressive distillation (PD). Notably, this
implies that predictions at intermediate steps that are not
explicitly part of the PD process are not trained, resulting
in suboptimal performance at these steps. This experiment
aims to demonstrate that our method is effective that distills
from N steps to enhance performance across those N steps,
since using the results from intermediate steps other than
these N steps would harm the performance.

Model NFEs IS " FID # sFID # Prec. " Rec. "
DiT-XL/2 250 243.4 2.14 4.56 0.81 0.61

PD 64 ! 32 32 239.8 2.24 4.33 0.80 0.60
+ iSSD 32 246.2 1.99 4.33 0.81 0.60

PD 20 ! 10 10 209.9 4.19 5.24 0.76 0.57
+ iSSD 10 233.9 3.56 7.08 0.81 0.55

PD 20 ! 10 ! 5 5 173.0 7.00 6.59 0.73 0.58
+ iSSD 5 186.7 5.41 6.48 0.76 0.56

PD 16 ! 8 ! 4 4 152.6 8.75 7.90 0.70 0.59
+ iSSD 4 168.58 6.10 7.53 0.72 0.57

Table 5. Results of building iSSD upon diffusion models being
distilled for few-step generation.

Model IS " FID # sFID # Prec." Rec."
DiT-XL/2 13.4 107.75 94.57 0.11 0.36
PD [47] 158.3 7.84 7.11 0.70 0.60

Shortcut Model [9] - 7.8 - - -
PD + Ours 168.6 6.11 7.53 0.72 0.57

Table 6. Comparison with training-based method on ImageNet
256⇥256. We set NFEs=4 and use DiT-XL/2 for sampling.

Orthogonal to distillation methods. Table 5 presents the
results for models distilled through two-stage and three-
stage progressive distillation (PD), and Figure 4(a) illus-
trates the results on a chain of models distilled from pro-
gressive distillation. The results indicate that our method
can significantly enhance performance. Specifically, when
applied to a 32-step distilled model, our approach achieves
an FID of 1.99 with minimal additional computational cost,
representing a substantial improvement over the distilled
model and even the pre-trained DiT-XL/2. However, when
comparing our method to the model directly distilled from
PD, the performance at 10-step NFE is slightly lower (4.19
vs. 4.92). We position our method as an auxiliary step that
complements and further refines the performance of dis-
tilled models, providing an orthogonal improvement.

Comparison with training-based methods. We evalu-
ated our model against flow-matching algorithms designed
for training diffusion models to enable few-step genera-
tion. The experiments are performed using 4 steps to gen-
erate images, and the backbone for diffusion models is
DiT-XL/2. The results, summarized in Table 6, indicate
that our method surpasses the performance of competing
algorithms. Specifically, when compared to the ShortCut
Model [9], an enhanced variant of the flow matching model
adapted for DiT, our approach achieves superior results
(FID: 6.1 v.s. 7.8).

4.5. Analysis
Comparison with continual training. To demonstrate
that the observed performance improvements are not merely

12907

(a) (b) (c) (d)
Figure 4. Analysis of our proposed self-distillation framework includes: (a) iSSD consistently enhancing the quality of distilled DMs, (b)
significant improvements in sample quality achieved by training only one step in the ODE trajectory, (c) evaluation of the performance of
the teacher, student, and the final model, and (d) a substantial impact observed with variations in �

Model NFE Train Epochs IS" FID#

DiT-XL/2 10 1400 158.3 12.38
DiT-XL/2⇧ 10 1400 + 0.8 156.7 12.97

DiT-XL/2 + iSSD 10 1400 + 0.8 209.6 4.92

DiT-S⇧ 250 400 27.6 51.55
DiT-S⇧ 250 420 27.9 51.13

DiT-S⇧ + iSSD 250 400 + 2 28.7 48.38

Table 7. Comparison with Continual Training. The superscript ⇧
means we train these models from the official codebase.

due to additional training iterations, we conducted experi-
ments on DiT-XL/2 (officially pre-trained and only have the
EMA model) and DiT-S/2 (has both the EMA and the base
model). The results in Table 7 show that even with fewer
training epochs, our method significantly outperforms mod-
els trained for 20 epochs on DiT-S/2. This confirms that the
performance gains stem from the proposed self-distillation
approach rather than extended training iterations.

Synthetic Data v.s. Real Data. An additional exploration
involves assessing whether a model’s performance can be
improved when only the model itself is available, without
any supplementary training data or external models. We
conducted experiments under this setting, and the results
are presented in Table 8. The findings indicate that, while
real data remains the optimal choice for achieving the high-
est performance, the use of synthetic data can still result in
substantial improvements in generation quality, albeit with
a slight performance trade-off compared to using real data.

Distill upon only one step. In Figure 4(b), we show the
results of applying iSSD to a single step. This process yields
two models; here, our focus is on determining which step
has the greatest impact on images. The results indicate that
applying self-distillation in the later stages of denoising pro-
vides the most significant benefit to image quality.

Training dynamics for the teacher and the student in
iSSD. Figure 4(c) presents the training dynamics ob-

Model Data Source IS FID sFID Precision Recall
DiT-XL/2 - 158.3 12.38 11.22 0.67 0.53

iSSD Original Data 209.6 4.92 7.62 0.79 0.53
iSSD Synthetic - 10 step 206.2 5.07 9.03 0.79 0.52
iSSD Synthetic - 20 step 207.9 5.02 8.99 0.79 0.53

Table 8. Results on Synthetic Data on ImageNet 256⇥256. The
experiments are based on DDIM with 10 sampling steps.

served during our experiments. It is crucial to note that the
student model used in training differs from the one used for
inference. The student model with fused activations starts
with lower performance compared to the teacher model and
remains inferior after training. In contrast, the unfused one,
which maintains the same architecture and computation
way for each layer, shows consistent improvement through-
out training and eventually achieves significantly better per-
formance than the teacher model.

Effect of gradient influential term �. We show the ef-
fect of �, as defined in Eq.5 and Eq.6. Though in Eq.12, we
can directly calculate � if we adopt the same intermediate
step as in DPM-Solver, we also put this timestep scheduler
in this hyper-parameter, and search the best � for our ap-
proach. Figure 4(d) show for iSSD, with � equals a small
value, the model would get poor results. We show the �
used in each of our experiments in Appendix.

5. Conclusion
In this paper, we propose a novel self-distillation approach
named Self Step-Distillation. We introduce two forms for
Self Step-Distillation. Furthermore, we explain this ap-
proach by analyzing it through the lens of distillation with
high-order samplers. Experimental results demonstrate that
our method significantly outperforms the performance of
the teacher model, achieving substantial improvements in
both conditional generation and text-to-image generation.
However, our method also has certain limitations. For in-
stance, we still rely on suboptimal approaches to approxi-
mate the prediction of the intermediate step. Additionally,
our method is relatively sensitive to hyperparameters.

12908

Acknowledgement
This project is supported by the Ministry of Education, Sin-
gapore, under its Academic Research Fund Tier 2 (Award
Number: MOE-T2EP20122-0006).

References
[1] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-

horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
22563–22575, 2023. 1

[2] Kenneth Borup and Lars N Andersen. Even your teacher
needs guidance: Ground-truth targets dampen regularization
imposed by self-distillation. Advances in Neural Information

Processing Systems, 34:5316–5327, 2021. 3
[3] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Dif-

fusiondet: Diffusion model for object detection. In Proceed-

ings of the IEEE/CVF international conference on computer

vision, pages 19830–19843, 2023. 2
[4] Zigeng Chen, Xinyin Ma, Gongfan Fang, Zhenxiong

Tan, and Xinchao Wang. Asyncdiff: Parallelizing diffu-
sion models by asynchronous denoising. arXiv preprint

arXiv:2406.06911, 2024. 3
[5] Prafulla Dhariwal and Alexander Nichol. Diffusion models

beat gans on image synthesis. Advances in neural informa-

tion processing systems, 34:8780–8794, 2021. 1
[6] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie:

Higher-order denoising diffusion solvers. Advances in Neu-

ral Information Processing Systems, 35:30150–30166, 2022.
3

[7] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim
Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim
Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yan-
nik Marek, and Robin Rombach. Scaling rectified flow trans-
formers for high-resolution image synthesis, 2024. 2

[8] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural
pruning for diffusion models. Advances in neural informa-

tion processing systems, 36, 2024. 3
[9] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter

Abbeel. One step diffusion via shortcut models, 2024. 7
[10] Tommaso Furlanello, Zachary Lipton, Michael Tschannen,

Laurent Itti, and Anima Anandkumar. Born again neural
networks. In International conference on machine learning,
pages 1607–1616. PMLR, 2018. 2, 3

[11] Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yan-
jing Li, Xiaoyan Luo, Jianzhuang Liu, Xiantong Zhen, and
Baochang Zhang. Implicit diffusion models for continu-
ous super-resolution. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages
10021–10030, 2023. 2

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-

nications of the ACM, 63(11):139–144, 2020. 1

[13] Yatharth Gupta, Vishnu V Jaddipal, Harish Prabhala, Sayak
Paul, and Patrick Von Platen. Progressive knowledge dis-
tillation of stable diffusion xl using layer level loss. arXiv

preprint arXiv:2401.02677, 2024. 2, 3
[14] Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou,

and Bohan Zhuang. Ptqd: Accurate post-training quantiza-
tion for diffusion models. arXiv preprint arXiv:2305.10657,
2023. 3

[15] Geoffrey Hinton. Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531, 2015. 2

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information

processing systems, 33:6840–6851, 2020. 1
[17] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,

Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 1

[18] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. Advances in Neural Information Processing

Systems, 35:8633–8646, 2022. 1
[19] Tao Huang, Yuan Zhang, Mingkai Zheng, Shan You, Fei

Wang, Chen Qian, and Chang Xu. Knowledge diffusion for
distillation. Advances in Neural Information Processing Sys-

tems, 36, 2024. 2
[20] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.

Elucidating the design space of diffusion-based generative
models. Advances in Neural Information Processing Sys-

tems, 35:26565–26577, 2022. 2, 3, 4
[21] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen

Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 6007–6017, 2023. 2
[22] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and

Shinkook Choi. Bk-sdm: Architecturally compressed stable
diffusion for efficient text-to-image generation. In Workshop

on Efficient Systems for Foundation Models@ ICML2023,
2023. 2, 3

[23] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Mu-
rata, Yuhta Takida, Toshimitsu Uesaka, Yutong He, Yuki
Mitsufuji, and Stefano Ermon. Consistency trajectory mod-
els: Learning probability flow ode trajectory of diffusion,
2024. 2

[24] Diederik P Kingma. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013. 1
[25] Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang,

Han Cai, Junjie Bai, Yangqing Jia, Ming-Yu Liu, Kai Li,
and Song Han. Distrifusion: Distributed parallel infer-
ence for high-resolution diffusion models. arXiv preprint

arXiv:2402.19481, 2024. 3
[26] Senmao Li, Taihang Hu, Joost van de Weijer, Fahad Shahbaz

Khan, Tao Liu, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-
Ming Cheng, and Jian Yang. Faster diffusion: Rethinking the
role of the encoder for diffusion model inference, 2024. 5

12909

[27] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang,
and Tatsunori B Hashimoto. Diffusion-lm improves control-
lable text generation. Advances in Neural Information Pro-

cessing Systems, 35:4328–4343, 2022. 1
[28] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen

Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer.
Q-diffusion: Quantizing diffusion models. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 17535–17545, 2023. 3
[29] Yize Li, Yihua Zhang, Sijia Liu, and Xue Lin. Pruning

then reweighting: Towards data-efficient training of diffu-
sion models. arXiv preprint arXiv:2409.19128, 2024. 3

[30] Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-
lightning: Progressive adversarial diffusion distillation.
arXiv preprint arXiv:2402.13929, 2024. 3

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings,

Part V 13, pages 740–755. Springer, 2014. 6
[32] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo

numerical methods for diffusion models on manifolds. arXiv

preprint arXiv:2202.09778, 2022. 3, 7
[33] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete

diffusion language modeling by estimating the ratios of the
data distribution, 2024. 1

[34] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. Advances

in Neural Information Processing Systems, 35:5775–5787,
2022. 3, 5, 7

[35] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In Proceed-

ings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 11461–11471, 2022. 2
[36] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang

Zhao. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv preprint

arXiv:2310.04378, 2023. 2
[37] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deep-

cache: Accelerating diffusion models for free. arXiv preprint

arXiv:2312.00858, 2023. 3, 5
[38] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik

Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 14297–14306, 2023. 2, 3
[39] Hossein Mobahi, Mehrdad Farajtabar, and Peter Bartlett.

Self-distillation amplifies regularization in hilbert space. Ad-

vances in Neural Information Processing Systems, 33:3351–
3361, 2020. 2, 3

[40] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 4195–4205,
2023. 2, 6

[41] Minh Pham, Minsu Cho, Ameya Joshi, and Chinmay
Hegde. Revisiting self-distillation. arXiv preprint

arXiv:2206.08491, 2022. 3
[42] Dustin Podell, Zion English, Kyle Lacey, Andreas

Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion mod-
els for high-resolution image synthesis. arXiv preprint

arXiv:2307.01952, 2023. 1
[43] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-

hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv

preprint arXiv:2209.14988, 2022. 2
[44] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 10684–10695, 2022. 1, 6
[45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2015: 18th International Conference,

Munich, Germany, October 5-9, 2015, Proceedings, Part III

18, pages 234–241. Springer, 2015. 4
[46] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in neural information

processing systems, 35:36479–36494, 2022. 1
[47] Tim Salimans and Jonathan Ho. Progressive distillation

for fast sampling of diffusion models. arXiv preprint

arXiv:2202.00512, 2022. 2, 7
[48] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin

Rombach. Adversarial diffusion distillation. In European

Conference on Computer Vision, pages 87–103. Springer,
2025. 3

[49] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh,
and Nima Anari. Parallel sampling of diffusion models.
arXiv preprint arXiv:2305.16317, 2023. 3

[50] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint

arXiv:2010.02502, 2020. 2, 3, 6, 7, 1
[51] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-

hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv preprint arXiv:2011.13456, 2020. 1

[52] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint

arXiv:2303.01469, 2023. 2
[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017. 4
[54] Fu-Yun Wang, Zhaoyang Huang, Alexander William

Bergman, Dazhong Shen, Peng Gao, Michael Lingelbach,
Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, Hong-
sheng Li, and Xiaogang Wang. Phased consistency model,
2024. 2

12910

[55] Daniel Watson, William Chan, Jonathan Ho, and Moham-
mad Norouzi. Learning fast samplers for diffusion models
by differentiating through sample quality. In International

Conference on Learning Representations, 2022. 3
[56] Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang

Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang,
Sam Tsai, Jonas Kohler, et al. Cache me if you can: Acceler-
ating diffusion models through block caching. arXiv preprint

arXiv:2312.03209, 2023. 3
[57] Chenglin Yang, Lingxi Xie, Siyuan Qiao, and Alan

Yuille. Knowledge distillation in generations: More tol-
erant teachers educate better students. arXiv preprint

arXiv:1805.05551, 2018. 3
[58] Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang.

Diffusion probabilistic model made slim. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 22552–22562, 2023. 3
[59] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shecht-

man, Fredo Durand, William T Freeman, and Taesung Park.
One-step diffusion with distribution matching distillation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 6613–6623, 2024. 2
[60] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon

Jeong, Jonathan Huang, Jinwoo Shin, and Saining Xie.
Representation alignment for generation: Training diffu-
sion transformers is easier than you think. arXiv preprint

arXiv:2410.06940, 2024. 2
[61] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-

glong Bao, and Kaisheng Ma. Be your own teacher: Improve
the performance of convolutional neural networks via self
distillation. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 3713–3722, 2019. 2,
3

[62] Zhilu Zhang and Mert Sabuncu. Self-distillation as instance-
specific label smoothing. Advances in Neural Information

Processing Systems, 33:2184–2195, 2020. 2, 3
[63] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and

Jiwen Lu. Unipc: A unified predictor-corrector frame-
work for fast sampling of diffusion models. arXiv preprint

arXiv:2302.04867, 2023. 3
[64] Zhenyu Zhou, Defang Chen, Can Wang, Chun Chen, and

Siwei Lyu. Simple and fast distillation of diffusion models.
arXiv preprint arXiv:2409.19681, 2024. 2

[65] Haowei Zhu, Dehua Tang, Ji Liu, Mingjie Lu, Jintu Zheng,
Jinzhang Peng, Dong Li, Yu Wang, Fan Jiang, Lu Tian, et al.
Dip-go: A diffusion pruner via few-step gradient optimiza-
tion. arXiv preprint arXiv:2410.16942, 2024. 3

12911

