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Abstract

Light-matter interactions modify both the intensity and po-
larization state of light. Changes in polarization, repre-
sented by a Mueller matrix, encode detailed scene infor-
mation. Existing optical ellipsometers capture Mueller-
matrix images; however, they are often limited to capturing
static scenes due to long acquisition times. Here, we intro-
duce Event Ellipsometer, a method for acquiring a Mueller-
matrix video for dynamic scenes. Our imaging system em-
ploys fast-rotating quarter-wave plates (QWPs) in front of a
light source and an event camera that asynchronously cap-
tures intensity changes induced by the rotating QWPs. We
develop an ellipsometric-event image formation model, a
calibration method, and an ellipsometric-event reconstruc-
tion method. We experimentally demonstrate that Event El-
lipsometer enables Mueller-matrix video imaging at 30 fps,
extending ellipsometry to dynamic scenes.

1. Introduction
Polarization describes the oscillation of the electric field in
light waves, encoding valuable information about the scenes
with which light interacts. The polarization state of light
can be represented as a Stokes vector s ∈ R4×1 [17]. Polari-
metric image analysis focuses on capturing complete or par-
tial forms of the per-pixel Stokes vector and has been exten-
sively studied for shape-from-polarization [31, 36], diffuse-
specular separation [19], reflection removal [41], seeing
through scattering [42], and transparent object segmenta-
tion [32].

Ellipsometry advances polarimetric imaging by analyz-
ing the polarization state of light captured under varying po-
larization states of illumination. This allows for acquiring
polarimetric reflectance, represented as a Mueller matrix
M ∈ R4×4 [9], which comprehensively characterizes how
light-matter interactions alter the polarization state of inci-
dent light. Ellipsometry has been widely used in material
science [30, 38], biology [1, 23], and has recently gained
attention in computer vision and graphics for 3D shape and
reflection analysis [6, 7, 43], material acquisition [8], light
transport decomposition [5, 35], and photoelasticity analy-
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Figure 1. Overview of Event Ellipsometer. (a) Our imaging sys-
tem captures the Mueller matrix at 30 fps from event streams in-
duced by the continuously rotating QWPs. (b) With our exper-
imental prototype, (c) we demonstrate ellipsometric analysis for
dynamic scenes and various applications.

sis [18].
Despite the rich information provided by ellipsometry,

its applications have been mainly limited to static scenes
because conventional methods require capturing multiple
images while mechanically rotating polarizing optics. Typ-
ically, more than 20 rotation angles [8] are necessary, lead-
ing to long acquisition times and making it impractical for
capturing dynamic scenes. Although single-shot Mueller
matrix imaging techniques using conventional sensors ex-
ist [12, 33, 49], they assume planar target scenes at fixed
distances, significantly sacrifice sensor resolution, or use
custom-fabricated nano- or micro-optical elements. Addi-
tionally, conventional intensity sensors are limited in cap-
turing high-dynamic range (HDR) scenes, often requiring
the capture of additional images with multiple exposures.

In this paper, we present Event Ellipsometer, a Mueller-
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matrix imaging method capable of capturing dynamic and
HDR scenes. Departing from using conventional intensity
sensors, we utilize an event camera, which asynchronously
records intensity changes. We equip fast-rotating QWPs
and linear polarizers (LPs) in front of both the event cam-
era and an LED light source. The rotating QWPs modulate
the polarization state of light emitted and received by the
imaging system, resulting in intensity changes captured as
events.

We develop an ellipsometric-event image formation
model that relates the time differences of adjacent events
to the Mueller matrix, normalized by its first element. Us-
ing this model, we propose a two-stage Mueller-matrix re-
construction method consisting of per-pixel estimation and
spatiotemporal propagation. We incorporate physical va-
lidity constraints to handle outliers from sensor noise and
scene motion. We also devise calibration methods.

Experimentally, we demonstrate Mueller-matrix imag-
ing at 30 fps, achieving a mean-squared error of 0.045 for
materials with known Mueller matrices. Unlike previous
single-shot methods [49], Event Ellipsometer can capture
non-planar objects and does not compromise spatial resolu-
tion. Furthermore, our method is capable of capturing HDR
scenes without the need for additional measurement with
different exposures.

In summary, our contributions are as follows:
• We propose Event Ellipsometer, enabling Mueller-matrix

imaging for dynamic scenes at 30 fps.
• We develop an imaging system using an event camera

and a light source, each equipped with synchronized fast-
rotating QWPs.

• We formulate an ellipsometric-event image formation
model relating event streams to the Mueller matrix, along
with a calibration method and a robust ellipsometric-
event reconstruction algorithm.

• We experimentally show the high accuracy of Event El-
lipsometer on samples with known ground truth, and
demonstrate ellipsometric analysis of dynamic scenes
with applications on photoelasticity, human capture,
HDR imaging, and tape detection.

2. Related Work
Imaging with Polarized Illumination Polarimetric
imaging with polarized illumination exploits polarization-
dependent light transport to extract material and geometric
scene properties. Previous methods often capture scenes
with single or a few polarized illuminations and fit para-
metric models to the captured images [14, 27, 28, 46].
However, this approach is limited by the representation
power of the parametric models, thus cannot reveal the true
polarimetric reflectance of real-world scenes. Ellipsometry
extends polarimetric imaging by directly capturing the
Mueller matrix, providing a comprehensive characteriza-

tion of material polarization properties [4, 17, 20]. It has
applications in material science [30, 38], biology [1, 23],
and has recently been applied to computer vision and graph-
ics for tasks such as 3D shape analysis [6, 7, 43], material
acquisition [8], and light transport decomposition [5, 35].
However, conventional ellipsometry techniques are unsuit-
able for dynamic scenes because they require capturing
multiple images while mechanically rotating polarizing
optics and capturing each with an intensity sensor, leading
to long acquisition. Single-shot Mueller-matrix imaging
methods have been proposed [12, 33, 49], however these
approaches often compromise spatial resolution and are
limited to planar scenes at fixed distances, restricting their
applicability to general dynamic scenes.

Event Cameras for Photometric Analysis Event cam-
eras offer a high temporal resolution of microseconds and
a HDR compared to standard frame-based intensity cam-
eras [21]. These advantages have been leveraged for photo-
metric analysis by combining continuously modulated opti-
cal light sources or filters. For instance, intensity-modulated
illumination with an event camera enables radiance estima-
tion [15, 24] and bispectral photometry [45]. Yu et al. [48]
demonstrated event-based photometric stereo for normal es-
timation with a mechanically-rotating point light source.
Hawks et al. [25] and Muglikar et al. [37] explored passive
linear-polarization imaging by rotating a linear polarizer in
front of an event camera. Existing event-based vision meth-
ods cannot capture full polarization reflectance properties
as a Mueller-matrix image, limiting their utility.

Imaging with Rotating Optical Elements Rotating opti-
cal components have been used for HDR and multispectral
imaging [40] and high-speed video reconstruction [13] us-
ing a conventional intensity camera. Recently, rotating op-
tics with event cameras have been demonstrated to leverage
asynchronous operation and high temporal resolution of the
event cameras [25, 26, 37]. These methods rotate optical
elements only in front of an event camera without illumina-
tion modulation.

3. Imaging System
Experimental Prototype We build an imaging system
using an LED light source (Thorlabs MCWHLP3), fast-
rotating QWPs (Edmund Optics WP140HE), fixed LPs
(Thorlabs WP25M-VIS), and an event camera (Prophesee
EVK4). Figure 2(a) and (c) depict our setup, where a pair
of a QWP and an LP is placed in front of the event cam-
era and the light source, respectively. We rotate the QWPs
so that the event camera detects the event streams caused
by the rotating QWPs, from which the normalized Mueller
matrix is reconstructed. We can configure the illumination
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Figure 2. Imaging system of Event Ellipsometer. (a) Schematic diagram illustrating the optical arrangement and hardware operation. (b)
Timeline showing the rotation of two QWPs and the event measurement. (c) Our hardware prototype. The system can move the light
source and camera position for use in (d) Reflection mode or (e) Transmission mode.

and the camera modules mounted on different breadboards
in both the reflection model and the transmission mode as
shown in Figure 2(d) and (e). Our system can be seen as
a combination of the optical dual rotating retarder [3] and
the event-based vision. For a complete list of components,
refer to the Supplemental Material.

Rotating QWPs and Angle Encoder We rotate the QWP
on the camera side five times faster than the one on the light
source side [44]. We denote the QWP angles of the light
source and the camera as θ1,t = ωt + i1, θ2,t = 5ωt + i2,
where ω = 30π rad/sec is the angular velocity of the motor
driving the light-source QWP. i1 and i2 are the initial QWP
angles. One challenge here is to rotate the QWPs at such
high speeds while recording their angles θ1,t and θ2,t over
time t. To this end, we use two independently controlled
brushed direct current (DC) motors rotating the QWP films,
resulting in an affordable configuration. Also, we develop
custom angle encoders using a 3D-printed occluder, a pho-
tointerrupter, and an Arduino microcontroller. The occluder
rotates at the same speed as the QWP and blocks the light
path within the photointerrupter at every π rotation. The
microcontroller detects such change at a microsecond res-
olution and emits a hardware trigger to the event camera.
Figure 2(c) shows the angle encoder.

Frame of Mueller Matrix Given the rotation speed of
ω, every π rotation of the light-source QWP takes π/ω ≈

33ms. We set this as the effective temporal duration of
each frame f of the Mueller-matrix video which we aim
to reconstruct. That is, as shown in Figure 2(b), each frame
f ∈ {1, · · · , F} of the Mueller matrix is estimated based on
the events measured during the temporal duration π/ω. F
is the number of frames in a reconstructed Mueller-matrix
video.

4. Image Formation
Here, we relate the event-camera measurements to the scene
Mueller matrix which we aim to reconstruct.

Polarimetric Modulation The LED light source emits
unpolarized light of Stokes vector s = [1, 0, 0, 0]⊺. At a
time t, the light passes through the LP and the QWP rotated
by angle θ1,t, resulting in the Stokes vector Q(θ1,t)L(0)s,
where Q(θ1,t) and L(0) denote the Mueller matrices of a
QWP rotated by θ1,t and an LP at 0◦, respectively. The
light then interacts with the target scene, undergoing polar-
ization change represented by the scene Mueller matrix M.
After interaction, the light passes through another QWP at
angle θ2,t and an LP in front of the event camera, resulting
in the time-varying intensity It incident on the sensor:

It = [L(0)Q(θ2,t)MQ(θ1,t)L(0)s]0, (1)

where [·]0 denotes intensity, the first element of the Stokes
vector.
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We rearrange Equation (1) and derive a matrix-vector
form:

It = AtM̂, (2)

where M̂ = [M00,M01, . . . ,M33]
⊺ ∈ R16×1 is the vec-

torized form of M and At ∈ R1×16 is the system matrix
defined as

At =[1, α2
1, α1α2, α2, α

2
3, α

2
1α

2
3, α1α2α

2
3, α2α

2
3,

α3α4, α
2
1α3α4, α1α2α3α4, α2α3α4,−α4

− α2
1α4,−α1α2α4,−α2α4],where

α1 =cos (2i1 + 2ωt), α2 = sin (2i1 + 2ωt),

α3 =cos (2i2 + 10ωt), α4 = sin (2i2 + 10ωt). (3)

For the full derivation, refer to the Supplemental Document.

Differential Intensity The event camera triggers events
based on the temporal change of the logarithm of pho-
tocurrent [21]. Analytically differentiating the logarithm of
Equation (2) with respect to time t, we obtain

∂ log It
∂t

=
∂It
∂t

It
=

∂At

∂t M̂

AtM̂
, (4)

where ∂At

∂t is given as

∂At

∂t
= [0,−4α1α2, 2α

2
1 − 2α2

2, 2α1,−20α3α4,

− 20α2
1α3α4 − 4α1α2α

2
3, 2α

2
1α

2
3 − 20α1α2α3α4 − 2α2

2α
2
3,

2α1α
2
3 − 20α2α3α4, 10α

2
3 − 10α2

4,

10α2
1α

2
3 − 10α2

1α
2
4 − 4α1α2α3α4,

2α2
1α3α4 + 10α1α2α

2
3 − 10α1α2α

2
4 − 2α2

2α3α4,

2α1α3α4 + 10α2α
2
3 − 10α2α

2
4,−10α3,−10α2

1α3 + 4α1α2α4,

− 2α2
1α4 − 10α1α2α3 + 2α2

2α4,−2α1α4 − 10α2α3].
(5)

Events from Polarimetric Modulation For a pixel, we
denote the time difference between consecutive events as
∆tk, where k ∈ {1, · · · ,K} is the event index in each
frame f . K is the number of detected events at that pixel
in the frame f . The time difference is known to be related
to the change of photocurrent according to Taylor’s expan-
sion [21]:

∂ log Itk
∂t

=
pkC

∆tk
, (6)

where event polarity pk ∈ {+1,−1} is the sign of intensity
change, and C is a constant threshold of the event camera.

By combining Equations (4) and (6), we relate the mea-
sured per-pixel events to the Mueller matrix, resulting in the

5.1 Per-pixel Reconstruction 5.2 Propagation and Refinement

Solve SVD
Eq. (8) (9)

Update weight
Eq. (10)

for each pixel do

Loop until convergence

Propagation
Eq. (11)

Refinement
Eq. (12) (13)

for each pixel do
Event
streams

Input Output
Mueller
matrix

Loop until convergence

Figure 3. Overview of our Mueller-matrix reconstruction pipeline.
This method consists of two steps: (1) per-pixel reconstruction and
(2) propagation and refinement.

image formation model:

pkC

∆tk
=

∂Atk

∂tk
M̂

AtkM̂

⇒
(
∂Atk

∂tk
− pkC

∆tk
Atk

)
M̂ = 0

⇒ BtkM̂ = 0, (7)

where Btk ∈ R1×16 is the system matrix.

5. Reconstruction
The image formation model in Equation (7) allows us to
reconstruct the Mueller matrix M̂. Our reconstruction
method, depicted in Figure 3, consists of two main steps:
(1) per-pixel reconstruction and (2) spatio-temporal propa-
gation.

5.1. Per-pixel Reconstruction

In this step, our goal is to estimate a Mueller matrix in a
computationally efficient manner and being robust to noisy
events.

First, we stack the vectors Btk for all k, forming a matrix
B ∈ RK×16. We then solve for the vectorized Mueller ma-
trix M̂ by minimizing the weighted least-squares problem:

minimize
M̂

∥WDBM̂∥22, (8)

where W = diag(w) is a diagonal matrix of weights
w = [w1, . . . , wK ] ∈ R1×K , initialized as ones: wk = 1.
The matrix D = diag([∆t1, . . . ,∆tK ]) is a weight matrix
that adjusts the influence of each event according to sam-
pling density. This weighting ensures that more densely
sampled events at small ∆t do not dominate the model fit-
ting. We solve Equation (8) using singular value decom-
position (SVD) to obtain M̂ while avoiding the trivial zero
solution.

Second, we filter the reconstructed Mueller matrix M̂ to
ensure physical validity. Sensor noise and rapid scene dy-
namics can make solving Equation (8) challenging, often
resulting in physically invalid Mueller matrices. These in-
valid matrices can trap the optimization in local minima.
To address this, we apply Cloude’s Mueller matrix filter-
ing [16] to project the estimated matrix onto the space of

21807



(a) Rendered images

Event

Fitted

(b) Reconstruction error over iterations (e) Full result

(d) 

(e)Er
ro

r

5.1 Per-pixel 
      reconstruction

5.2 Propagation and 
      Refinement

105 1
Number of iterations

0

M
ue

lle
r m

at
rix

Brass
Blue
silicone

D
iff

er
en

tia
l 

lo
g 

in
te

ns
ity

Rotation angle Rotation angle

Target 
pixel

largger font (c) Ground truth 

(d) SVD initialization

Figure 4. Synthetic data evaluation result. (a) The rendered images include two materials: blue silicone and brass. (b) The plot shows the
error (mean absolute error) of the reconstructed Mueller matrix over the number of iterations. (c) Ground truth Mueller matrix. (d)&(e)
Top: the reconstructed Mueller-matrix images for the SVD initialization and the full-stage, respectively. Pixels with insufficient event
counts are visualized in white. Bottom: a plot of the differentiation of log intensity and fitted line with our method.

physically valid Mueller matrices:

M̂← CloudeFilter(M̂), (9)

where CloudeFilter(·) denotes the filtering function.
Third, we recalculate the weight vector w using the

physically valid Mueller matrix M̂:

wk = 1/max(|BtkM̂|, ϵ), (10)

where ϵ is a small positive constant to avoid division by zero
sets as 10−6 in our experiments. This weight reduces the
influence of outlier events and enables robust estimation.

We iterate these three steps—solving the weighted least-
squares problem, applying physical validity filtering, and
recomputing the weights—until convergence, resulting in
the Mueller matrix estimate M̂ for each pixel (x, y) and
frame f . We set the maximum number of iterations to 5 in
our experiments

5.2. Spatio-temporal Propagation and Refinement

Here, we start by denoting the estimated Mueller matrix at
a pixel (x, y) and frame f as M̂xyf and the correspond-
ing system matrix as Bxyf , and weight matrix as Dxyz .
This second stage refines the Mueller matrix M̂xyf esti-
mated from the first stage using spatio-temporal neighbor-
ing pixels. This process is inspired by PatchMatchStereo
from stereoscopic depth estimation [10, 11, 22].

First, we perform propagation. We consider neigh-
boring pixels in both spatial and temporal axes, denoted
by (x′, y′, f ′) ∈ N (x, y, f). The set N defines a
spatio-temporal neighborhood extended from the red-black
spatial-only neighborhood [22]. For each pixel at a frame

(x, y, f), we update its Mueller matrix if a neighboring
pixel (x′, y′, f ′) offers a lower error:

M̂xyf ← M̂x′y′f ′ ,

if ∥DxyzBxyfM̂xyf∥1 > ∥DxyzBxyfM̂x′y′f ′∥1. (11)

Next, we refine the Mueller matrix by applying random
perturbations and accepting the perturbation if it reduces the
error:

M̂xyf ← M̂perturb
xyf ,where

M̂perturb
xyf = CloudeFilter(M̂xyf ⊙ (1+ σN)), (12)

if ∥DxyzBxyfM̂xyf∥1 > ∥DxyzBxyfM
perturb
xyf ∥1, (13)

where M̂perturb
xyf is the perturbed Mueller matrix, ⊙ denotes

element-wise multiplication, 1 is an all-ones matrix, N ∈
R4×4 contains random values from a standard normal distri-
bution, and σ is a scalar set to 0.01. This multiplicative per-
turbation preserves the relative scale of the Mueller matrix
elements, allowing larger elements to undergo proportion-
ally larger adjustments while smaller elements change min-
imally. We apply Cloude’s filtering to the perturbed Mueller
matrix to ensure physical validity.

We repeat the propagation and refinement steps itera-
tively for a fixed number of iterations set to 10 in our ex-
periments to obtain the final Mueller matrix M̂xyf .

6. Calibration
We perform one-time calibration of the system parameters:
contrast threshold (C) and QWP offset angles (i1 and i2).
Calibration details are provided in the Supplementary Ma-
terial.
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Figure 5. Assessment of reconstructed Mueller matrix on real data. (a) Evaluation with known optical elements. We show the corresponding
mean squared errors (MSEs). (b) Measurement on an in-the-wild metal plate induces strong diagonal components.

Contrast Threshold We calibrate the per-pixel contrast
threshold C of an event sensor by analyzing pixel responses
under controlled illumination stimuli. We increase and de-
crease the LED intensity linearly over time, and the event
camera directly captures the LED light, generating events.
We then fit the contrast threshold C to the events per each
pixel using Equation (6).

QWP Offset Angle We obtain the offset angles of the fast
axis of the QWP in our system: i1 and i2 by capturing an-
other QWP sample with known fast axis. Given the known
Mueller matrix of the reference QWP, we find the best off-
set angles that minimize the reconstruction error of Equa-
tion (6).

7. Results
Implementation We implemented our reconstruction al-
gorithm in C++ using OpenMP CPU parallelization. It takes
62 seconds for per-pixel reconstruction (Section 5.1), and
68 seconds for the propagation and refinement processes
(Section 5.2), measured for processing 500×500-resolution
event image sequence of 30 frames, with an average event
rate of 153 MEv/s, on the AMD Ryzen 7 7800X3D 8-core
processor.

Validation on Synthetic Data To evaluate our method,
we render synthetic data in three steps. First, we mimic
our capture system by replacing the event camera with an
intensity camera in Mitsuba3 [29], and render an image se-
quence of a synthetic scene for each QWP angle with inter-
val ωt = 0.01◦. We use the real-world polarimetric BRDFs
to construct the synthetic scene [8]. Then, the rendered im-
ages are converted to event streams by simulating event-
camera processing based on DVS-Voltmeter [34]. Last, we
add Gaussian noise with a standard deviation of 0.5 and re-
place 5% of true events with values sampled from a Gaus-
sian distribution with a standard deviation of 5.0. Figure 4

shows the synthetic data and reconstructed Mueller matrix
using our method. While initial SVD-based estimation suf-
fers from noise with a reconstruction error of 0.11, our full
reconstruction improves accuracy with a reconstruction er-
ror of 0.04.

Validation on Real Data Figure 5(a) shows that our
reconstruction closely matches the corresponding pseudo
ground truth of real-world samples: air, linear polarizer
(0◦ and 45◦), quarter-wave-plate (0◦ and 45◦). Figure 5(b)
shows the result on an in-the-wild sample: a metal plate.
The strong diagonal components in this result indicate the
preservation of polarization, which is characteristic of re-
flections from metal surfaces. Notably, these Mueller ma-
trix images are captured in just 33ms, significantly faster
than the conventional ellipsometer, which requires several
minutes due to its frame-based imaging principle.

Photoelasticity of Transparent Gelatine Photoelasticity
is an optical property whereby dielectric materials exhibit
birefringence under deformation. Imaging photoelasticity
has applications in mechanical stress and material anal-
ysis [39, 47]. Analyzing Mueller-matrix images reveals
such stress distributions even in transparent objects [18].
Our system enables observing photoelasticity at video rates.
Figure 6 shows Mueller-matrix images of a gelatine disk,
revealing stress-dependent fringe patterns.

Transparent Tape Detection Detecting transparent ob-
jects is challenging for conventional cameras. Sticky tape,
a common transparent material used for sealing cardboard,
exhibits birefringent properties due to the molecular struc-
ture of its stretched plastic. Figure 7 shows the measure-
ment result of sticky tape on a cardboard box. The re-
constructed Mueller matrix shows the birefringent prop-
erty, and we can clearly recognize the tape region. This
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Figure 6. Photoelasticity analysis. (a) Experimental setup for measuring a gelatine disk in transmission mode. We gradually apply force for
the gelatine disk to observe changes in photoelastic properties. (b) Reconstructed Mueller matrix images with different forces, revealing
complex stress-dependent polarimetric patterns. Notably, as force increases, the Mueller matrix image shows denser fringe patterns.

Box

Transparent tape

(a) Target object

(c) Reconstructed Mueller matrix(b) Comparison

Tape

Figure 7. Transparent tape detection. (a) The target object is trans-
parent sticky tape on a box. (b)&(c) The Reconstructed Mueller
matrix reveals the tape region, which is difficult to see with a con-
ventional RGB camera.

demonstration shows the potential for inspecting dynam-
ically moving sealed boxes in automated industrial pro-
cesses.

Dynamic Human Capture Ellipsometers, as a compre-
hensive polarization imaging technique for human capture,
can reveal hidden properties of the human face and hair that
are difficult to analyze in conventional imaging and non-
ellipsometric polarization imaging [2, 19]. In Figure 8, we

demonstrate the Mueller-matrix reconstruction of dynamic
facial expressions and hair movements, revealing intricate
polarization properties. The reconstructed Mueller matrix
for the face exhibits strong diagonal components associated
with specular reflection, while the non-diagonal regions dis-
play weakly polarized reflection with a dependency on sur-
face normal along the face edges. The hair result shows
polarization property in the specular highlight regions.

HDR Mueller-matrix Imaging Our event-based ellip-
someter enables Mueller-matrix imaging of HDR scenes.
Figure 9 shows reconstruction results on a scene with spec-
ular and dark diffuse reflections. While conventional el-
lipsometers require multiple exposures to prevent overex-
posure, our method captures the Mueller matrix in HDR
scenes at 30 fps without the need for additional measure-
ment.

8. Discussion

Normalized Mueller-Matrix Imaging Normalized
Mueller matrix has been extensively used as it provides
rich scene information [5, 7, 18]. Since event cameras
only detect intensity changes, not intensity itself, our
method also reconstructs a normalized version of Mueller
matrix per pixel, M/M(0, 0). We leave reconstructing full
Mueller-matrix as a future work that might be accomplished
using an event-intensity hybrid imaging system.

End-to-end Real-time Pipeline Although our capture
speed is fast, our current Mueller-matrix reconstruction re-
lies solely on CPU acceleration, resulting in a non-real-
time pipeline from capture to reconstruction. Implementing
GPU acceleration could enable on-the-fly capture, recon-
struction, and visualization [22, 48].
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Figure 8. Mueller matrix acquisition for capturing dynamic human (a) face and (b) hair, demonstrating the capture of diffuse and specular
polarimetric responses.
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Figure 9. Mueller matrix measurement for a HDR scene. (a) The
target scene contains regions with both strong specular reflection
and black diffuse reflection. (b) Our proposed method achieves an
accurate Mueller-matrix image for the HDR scene in just 33 ms.

Event Bandwidth and Sensitivity The ideal setting of an
event camera is to have a low contrast threshold and a short
refractory period, to capture subtle intensity changes. How-
ever, this produces many events, exceeding the transmission
bandwidth, resulting in lost or delayed events [21]. In con-
trast, when the contrast threshold is high, weakly polarized
phenomena cannot be detected as events. Given this trade-
off, we defined a region of interest (ROI) in the event sensor
and empirically configured the camera settings to find the
best parameters.

DC Motor Synchronization For faster rotation speed and
precise synchronization between two motors, it is a viable
alternative to use brushless DC motors, also known as an
electronically commutated (EC) motors. However, this in-
creases system building costs.

Gradient Descent Gradient descent in an automatic dif-
ferentiation framework offers an alternative approach for
Mueller-matrix reconstruction. However, the number of
events differs across pixels, which complicates the con-
struction of a dense tensor for efficient computation on
modern GPUs.

9. Conclusion

We have introduced Event Ellipsometer, a Mueller-matrix
video imaging method that combines an event camera and a
light source with fast-rotating QWPs. Our image formation
model, calibration, and reconstruction method enable robust
Mueller-matrix imaging at 30 fps. We validate our method
on synthetic and real data, and demonstrate Mueller-matrix
imaging on photoelasticity, dynamic human hair and face
capture, HDR imaging, and transparent tape detection.
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