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Abstract

Synthetic Aperture Radar (SAR) image registration is an es-
sential upstream task in geoscience applications, in which
pre-detected keypoints from two images are employed as
observed objects to seek matched-point pairs. In gen-
eral, the registration is regarded as a typical closed-set
classification, which forces each keypoint to be classi-
fied into the given classes, but ignoring an essential issue
that numerous redundant keypoints are beyond the given
classes, which unavoidably results in capturing incorrect
matched-point pairs. Based on this, we propose a Cross-
Rejective Open-set SAR Image Registration (CroR-OSIR)
method. In this work, these redundant keypoints are re-
garded as out-of-distribution (OOD) samples, and we for-
mulate the registration as a special open-set task with two
modules: supervised contrastive feature-tuning and cross-
rejective open-set recognition (CroR-OSR). Unlike tradi-
tional open-set recognition, all samples, including OOD
samples, are available in the CroR-OSR module. CroR-
OSR conducts the closed-set classifications in individual
open-set domains from two images, meanwhile employing
the cross-domain rejection during training, to exclude these
OOD samples based on confidence and consistency. More-
over, a new supervised contrastive tuning strategy is incor-
porated for feature-tuning. Especially, the cross-domain es-
timation labels obtained by CroR-OSR are fed back to the
feature-tuning module for feature-tuning, to enhance fea-
ture discriminability. The experimental results illustrate
that the proposed method achieves more precise registra-
tion than the state-of-the-art methods. The code is released
at https://github.com/XDyaoshi/CroR-OSIR-main.

1. Introduction
Synthetic Aperture Radar (SAR) [20] has rich imaging
characteristics with all-weather and high-resolution, and it
has been widely applied in military and civilian fields. Nev-
ertheless, SAR images are generally captured in different
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Figure 1. An illustration of Closed-Set Registration and CroR
Open-Set Registration. Here, there are eight and seven pre-
detected keypoints respectively marked on two SAR images, in-
cluding three matched-point pairs labeled in red boxes and nine
redundant keypoints labeled in blue boxes. It is seen that these
redundant keypoints are forcefully classified to the seven classes
given in closed-set registration, but they would be excluded into
the reject-domain in CroR Open-Set Registration.

views or phases, resulting in inevitable diversities among
them even in the same region, which increases the difficulty
of SAR image processing [9]. Therefore, SAR image regis-
tration [31] has become an indispensable task in SAR image
processing, especially when different images are analyzed
simultaneously, and the registration precision of SAR im-
ages is essential for other downstream tasks, such as change
detection [23], target tracking [8], image fusion [28], etc.

In SAR image registration, a common workflow in-
volves first detecting keypoints on two SAR images and
then employing them as observed objects to seek out the
matched-point pairs between two images for registration.
The matched-point pairs are more accurate, the registration
is more precise. At present, the deep learning-based (DL-
based) registration has become a research hotspot of SAR
image registration. Earlier, in most DL-based registration
methods [17, 26, 39, 43, 45], SAR image registration is
treated as a classical binary classification problem that pre-
dicts whether a pair of keypoints are matched or not, and
the predicted matched-point pairs are used to estimate the
registration matrix. Recently, researchers have considered
each keypoint as an independent category [6, 18] and then
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directly constructed a multiple classification model to seek
the matched-point pairs.

In most existing methods, the classification model con-
structed for image registration is generally specified in a
classical closed-set space, here shortened as the closed-set
registration. An illustration of the closed-set registration
is given in Figure 1. Suppose m and n keypoints respec-
tively pre-detected from two SAR images (the reference
and sensed images), as shown in Figure 1. Based on these
points, a closed-set classification model with m classes is
constructed to classify n keypoints into the given classes
and then obtain matched-point pairs, as shown in Figure
1(a). It is seen that three matched points can be classified
into their matched classes, specifically pS1→Class-1 (pR1 ),
pS2→Class-2 (pR2 ), and pS5→Class-5 (pR5 ).

However, these redundant points are also classified into
the given classes at the same time, such as pS3→Class-
3 (pR3 ), pS4 and pS8→Class-4 (pR4 ), pS6 and pS7 →Class-5
(pR5 ), etc, but these keypoints are essentially unmatched-
point pairs. In practice, we normally obtain numerous re-
dundant keypoints that do not have an inherent matching
relationship to others by existing pre-detection algorithms
[16], and their quantity may exceed 90% of all keypoints.
Regrettably, in closed-set registration, the model forces all
keypoints to be classified into the given m categories, which
causes these redundant points to be inevitably incorrectly
matched. Moreover, the regions around some unmatched
points inherently share high similarity in SAR images, such
as pR5 , pR6 , pS6 and pS7 , which demands higher discriminabil-
ity of the features to distinguish them, whereas binding all
of them in a close-set space only with partial classes in-
creases the challenge of extracting discriminative features.

Noticeably, the essence of image registration is to seek
out k matched-point pairs from m and n keypoints, mean-
while filtering out r redundant points, r = m + n − 2k. It
means that there should be only c independent categories in
all keypoints, c = k + r and c < m + n, rather than m or
n categories. But, it is miserable that k and r keypoints are
unknown, which also brings the inextricable problem for the
close-set registration. Interestingly, if we refer to these re-
dundant points (r keypoints) as Out-Of-Distribution (OOD)
samples, the image registration can be regarded as an Open-
Set Recognition (OSR) [33] problem. In the open-set sce-
nario, the existing model normally identifies unseen OOD
samples with unknown classes during the testing phase.
Nevertheless, different from existing OSR, all samples (in-
cluding OOD samples) are available in registration under
the open-set scenario. And we need to catch these matched-
point pairs and exclude these redundant points (OOD sam-
ples) during the training phase.

Based on this, we propose a Cross-Rejective Open-set
SAR Image Registration method (CroR-OSIR) that aims
at excluding OOD samples (unmatched points) meanwhile

seeking out accurately matched points during the training
process. In the proposed method, a special supervised con-
trastive module SupCon is deployed to extract the fea-
tures of keypoints. In the registration module, we further
construct two independent classification domains R and S
for two images, respectively corresponding to m-class and
n-class classification problems. By uniting R and S, a
Cross-Rejective OSR module (CroR-OSR) is constructed,
which performs the rejection process within the classifi-
cation domains R and S, meanwhile considering the pro-
cessing of the combined domain D with c classes. Specif-
ically, the CroR-OSR module conducts the closed-set clas-
sification training within each domain and provides cross-
domain estimated labels for each keypoint. Based on these
cross-domain estimated labels, we further exclude unreli-
able matched-point pairs, ultimately obtaining k matched-
point pairs with high confidence. The cross-domain re-
jection processes form the foundation of CroR-OSR. The
cross-domain estimations are further fed back into SupCon
for additional feature-tuning. As shown in Figure 1(b), the
Cross-Rejective OSR algorithm figures out and rejects these
redundant keypoints during training in the cross-rejection
domain, with additional efforts in tuning the features.

Compared with most existing methods, the main contri-
butions of the proposed method are shown as follows:
• We introduce a cross-rejective open-set recognition con-

cept into SAR image registration for the first time, which
provides a novel viewpoint on the registration problem
from an open-set perspective, namely excluding the OOD
samples from all known/unknown classes during training
to promote seeking more accurate matched-points.

• This work proposes a cross-rejective OSR module with
two cross-domain rejection strategies, which can filter
out numerous redundant points during training and mean-
while obtain matched-point pairs with higher consistency,
without the requirement of additional post-processing.

• This work presents a closed-set SupCon feature-tuning
module with the guidance of the cross-domain estima-
tion iteratively, to enhance the distinguishability of fea-
tures among redundant points and matched points.

2. Related Works

2.1. SAR Image Registration

SAR image registration represents the foundation for infor-
mation fusion of SAR images captured at different times,
from different angles, or even in different modalities. The
objective is to find the accurate pairs of matched points be-
tween two images (the reference image and the sensed im-
age), and many methods have been proposed.

Initially, pixel intensity-based methods, such as NCC
(Normalized Cross-Correlation), are implemented for tem-
plate matching scenarios [32]. However, NCC-based meth-

23028



ods are sensitive to rotation and affine transformations be-
tween two SAR images. The Sum of Squared Differences
(SSD) [10] is another fast but unstable metric that directly
compares image intensity values between images, but it is
susceptible to intensity variations such as speckle noise.
The Scale-Invariant Feature Transform (SIFT) [16] is one
of the most influential methods in handcrafted feature-based
registration. Consequently, numerous extensions of SIFT
have been proposed, including Speeded-Up Robust Fea-
tures (SURF) [3], PCA-SIFT (Principal Component Analy-
sis SIFT) [12], Affine-SIFT (ASIFT) [21], Oriented FAST
and Rotated BRIEF (ORB) [30], and so on.

At present, the DL-based registration has been a research
hotspot. Zhang et al. [44] employed Convolutional Neural
Networks (CNNs) to extract deep features from adaptively
downsampled reference and sensed images. Huang et al.
[11] proposed a two-stage registration method with two cas-
caded CNNs, which facilitated the coarse-to-fine registra-
tion of discontinuous frames in video SAR images. Given
the indistinct textures and severe speckle noise in SAR im-
ages, some researchers have attempted to leverage atten-
tion mechanisms to extract richer features from SAR image
patches. Deng et al. [6] proposed to treat each keypoint
as an independent category and constructed a dual-branch
classification network, where only the overlap of classes
was considered as matched points. In practice, we observe
that most of the pre-detected keypoints (potentially more
than 90%) are unmatched points, due to the limitation of
the pre-detection algorithm. These unmatched points heav-
ily limit the existing classification deep models, with most
of which take additional post-processing algorithms to filter
the result to guarantee performance [14, 27, 43].

2.2. Open Set Recognition

Open Set Recognition (OSR) was introduced by Scheirer et
al. [33, 34], aimed at minimizing open space risk while en-
suring the classification accuracy of known classes, where
unknown-class samples appeared only during the testing
phase. In OSR, based on their probability distribution, sam-
ples are classified either as one of the known classes or as a
rejection domain, becoming an unknown class.

Traditional OSR methods are typically implemented us-
ing some classic learning models, such as SVMs, nearest
neighbours, sparse representation, etc. Popular classifica-
tion methods include One-Class SVM [35] and Support
Vector Data Description (SVDD) [36], where One-Class
SVM separates the training samples from the origin fea-
ture space with the maximum margin and SVDD encloses
the training data within a hypersphere of minimal volume.
Scheirer et al. [34] incorporated a non-linear kernel into the
solution, combined with statistical extreme value theory and
proposed a Weibull-calibrated SVM model.

In recent years, there have been many advancements in

deep models for OSR in many fields [41][19]. Among the
most recent research, OpenMax [4] is one of the pioneer-
ing works in considering the use of DNNs to estimate the
probability that an input sample belongs to an unknown
class. OpenMax seeks a meta-recognition model for each
category. It uses the libMR library to perform a Weibull fit
on the maximum distances between all correctly classified
positive training instances and the corresponding centroid.
ConOSR [42] proposes the Mixup strategy, which linearly
combines two augmented samples of an image to construct
negative pairs, and it utilizes contrastive learning to train
a neural network for determining the rejection threshold.
SLAN [40] is proposed based the formulation of multi-label
open set recognition (MLOSR) problem to recognize un-
known labels by using sub-labeling information.

3. The Proposed Method

3.1. Overview

To eliminate the impact of numerous redundant points in the
registration problem, we propose the Cross-Rejective Open-
set SAR Image Registration method, shortened as CroR-
OSIR, and the framework is shown in Figure 2, mainly
including two modules: closed-set supervised contrastive
feature-tuning and cross-rejective open-set recognition.

In CroR-OSR, we first detect m and n keypoints respec-
tively from two images by using a traditional manner. Each
keypoint is regarded as an independent category to construct
the given dataset {XR,XS}. Then, a supervised contrastive
module (SupCon) is utilized to tune the feature represen-
tation of all keypoints in the embedding space. In par-
ticular, the SupCon module is supervised by the dynamic
cross-domain estimation inferred by the CroR-OSR mod-
ule, which is beneficial to enhance the feature discriminabil-
ity. In the CroR-OSR module, two distinct classification do-
mains are deployed to learn the classification hyperplanes
for all keypoints (m+n). To reject out-of-distribution points
in the whole space, the two domains are individually trained
to classify and estimate all keypoints in their unified domain
simultaneously. During the estimation process, the rejection
rule is updated iteratively based on statistical information,
to exclude more redundant keypoints. A mutual prediction
process is constructed between two domains, to generate the
mapping of corresponding categories (m-n) and the cross-
domain estimation for all keypoints. The cross-domain es-
timation is further filtered by a domain-interactive checking
process and then fed back into SupCon.

In short, the SupCon and CroR-OSR modules are exe-
cuted in a sequential and iterative manner, and the model
eventually converges when the classification mapping rela-
tionship reaches a high level of confidence. The stabilized
mapping relationship (or cross-domain estimation) presents
the final registering result.
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Figure 2. The framework of the proposed method (CroR-OSIR).

3.2. Formulation on Open-Set Image Registration

In the traditional OSR, given an entire data space denoted as
D, it is composed of a closed space (C) and an open space
(O), where only the categories in C are given, but O is un-
known and needs to be perceived in the learning process,
D = C + O. Suppose a closed space C contain N cate-
gories, the sample set in C is denoted as XC . Meanwhile,
suppose that the open space O contains H categories, its
sample set is denoted as XO, and the entire space D is of
one sample set XD containing N +H categories. Note that
the number H of categories is unknown.

Different from the traditional closed-set task, the open-
set task minimizes not only the open space risk but also the
empirical classification risk, formulated as

min
f

Ex∈XD [αLC(f(x), y) + βLO(f(x), y)] , (1)

where y expresses the label of the sample x, f(x) represents
the model prediction for x, LC denotes the classification er-
ror risk, LO denotes the open set risk, α and β are balanc-
ing weights between two risks, and Ex∈XD [·] denotes the
expectation over the sample space XD.

Formulation. During the training phase, we treat the m
keypoints from the reference image as an individual clas-
sification domain R with m classes, and the n keypoints
from the sensed image as another domain S with n classes.
Note that during testing, the sensed image (to be registered)
will be fed only into the R domain, where the classification
results within the R domain will be used to obtain the fi-
nal matching relationships. Due to the sparse nature of the
matching points, among the m + n points from all the im-
ages, typically we expect only k points to have a matching
relationship, where 0 ≤ k ≪ min(m,n). For the R and S
domains, we denote the data as follows, respectively:

R = CR+OR: CR = {XC |m} and OR = {XO|n−k} (2)

S = CS+OS : CS = {XC |n} and OS = {XO|m−k}. (3)

When we merge the two independent domains to construct
a closed-set case, we should have

D = {XD|c}, where c = m+ n− k, (4)

but k is unknown and needs to be solved. As shown in Eqs.2
and 3, we treat the (m−k) keypoints and (n−k) keypoints
as out-of-distribution (OOD) samples for corresponding in-
dividual domain, respectively. In the traditional OSR prob-
lem, samples with unknown categories are not available to
the model during training, and the purpose is generally to
recognize those unknown categories. Differently, the fea-
ture distribution of all m+n keypoints is provided in image
registration. Interestingly, the challenge of image registra-
tion turns to be identifying the known categories (matched
k keypoints) among all keypoints, rather than the unknown
categories. Therefore, we transform the problem of search-
ing out-of-distribution keypoints into finding overlapping
ones in both domains, as shown in Eq.4, and we can fur-
ther model it as follows

min
f

Ex∈XD (LR + LS + γLcrd) , (5)

where LR and LS represent the traditional closed-set loss
for two classification domains R and S, respectively. And
the Lcrd term represents the open space risk in the special
combined domain, D, and γ is the hyperparameter. Specif-
ically, Lcrd contains open-set rejection and cross-domain
estimation process in our implementation, which constrains
the keypoints from Image-R and Image-S to present a ro-
bust matching relationship. In experiments, γ is set as 1.

3.3. Supervised Contrastive Feature-tuning

First, we pre-detect keypoints respectively from the refer-
ence image (Image-R) and the sensed image (Image-S) us-
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ing SIFT [16], and the sets of keypoints are denoted as

ρR = {pr1, pr2, . . . , prm}, (6)

ρS = {ps1, ps2, . . . , psn}, (7)

where m and n express the numbers of keypoints detected
from the reference and sensed images, respectively. More-
over, we apply augments and the multi-scale cropping strat-
egy to expand the samples, and more details can be found
in the Supplementary Material.

Recently, supervised contrastive learning has been
proven to be effective in providing discriminative features
in classification tasks, including in the open-set recognition
[13] [38, 42]. Thus, we adopt a contrastive module to tune
the features of keypoints here as follows:

Procedure 1. Here we first input all the data from
both classification domains R and S into a feature encoder,
where Swin Transformer [15] is employed, which is effec-
tive at extracting global features [1]. Assuming a batch size
of b, we denote a batch of data as ρB . First, we adopt a
single fixed-scale cropping augmentation, where we resize
image patches of different scales to a unified size of 66*66,
and then randomly crop them to a size of 64*64. After the
augmentation phase, each image patch corresponding to a
keypoint in ρB generates two different augmented versions,
denoted as ρ̃B , which is now composed of 2b image patches.
With a projection head proj, we process ρ̃B as follows:

Z̃B = proj(f(ρ̃B)) = {z1, z2, ..., z2b}. (8)

Here the projection head transforms the dimension of en-
coded keypoints to 128. After projection, a traditional su-
pervised contrastive objective in a batch is used:

Lsup =
−1

|I| · |P (i)|
∑
i∈I

∑
p∈P (i)

log
exp

(
zTi zp/τ

)∑
a∈A(i) exp

(
zTi za/τ

) ,
(9)

where I is the keypoints in the batch, |I| is the number of
keypoints in the batch, |I| = 2b, P (i) denotes the set of
keypoints belonging to the same category as keypoint i, and
A(i) represents the set of all keypoints different from point
i. τ is the temperature hyperparameter used to scale the
similarity of the projected embedding vectors.

Procedure 2. After training the module as shown above
for several epochs, we can obtain features with certain dis-
criminative information. Differently from the traditional su-
pervised contrastive manner, such features will be fed to the
upcoming classification module in both domains to provide
the category of each keypoint in the counterpart classifica-
tion domain. For example, a keypoint i from the reference
image is supposed to be classified in the domain R, while
we take the prediction result in classification domain S here
to generate a cross-domain estimation label for the point.
After taking counterpart domain predictions for all samples

in the batch, we obtained the cross-domain labels for all
samples and the category mapping relationship between the
two classification domains, R and S. The total loss Lfea is
given by

Lfea = Lsup + µL∗
crd, (10)

L∗
crd =

−1

|I| · |P̂ (i)|

∑
i∈I

∑
p∈P̂ (i)

log
exp

(
zTi zp/τ

)∑
a∈A(i) exp

(
zTi za/τ

) ,
(11)

where P̂ (i) denotes the set of positive keypoints belong-
ing to the same cross-domain category as point i, and µ is
the hyperparameter. By employing additional cross-domain
guided loss (with the cross-domain estimation setting to
empty for the initial few batches in Procedure 1 as warming
up), we can increase the similarity between image patches
that are similar but originate from different keypoints in the
embedding space.

3.4. Cross-Rejective Open-Set Registration

After embedding all the keypoints, here we construct a
Cross-Rejective OSR module with two classification heads
hR(·) and hS(·), corresponding to the two different classi-
fication domains R and S.

Procedure 3. After inputting the respective points to the
corresponding classification domain, we have

pR = hR(f(ρR)) and pS = hS(f(ρS)). (12)

Here pR and pS represents the corresponding probability
predictions in Image-R and Image-S respectively. The clas-
sification losses are computed as follows:

LR = CE(pR, yR) and LS = CE(pS , yS), (13)

where yR and yS represent the one-hot ground-truth labels
in the two images respectively, yR ∈ Rm, yS ∈ Rn. CE
represents a conventional Cross-Entropy loss function.

Procedure 4. After we train hR(·) and hS(·) as shown
above, a domain-interactive open-set rejection process is
performed. First, we input all the points to their counterpart
domain to get a cross-domain estimation probability result
for each point. The estimated cross-domain result essen-
tially contains information of the matching confidence. We
apply a common-used statistical open-set rejection rule here
[37][42] to filter the possible erroneous point pairs, consid-
ering the huge amount of out-of-distribution points in reg-
istration. Specifically, for category k, ηk is the rejection
threshold for open set recognition, which is determined by
the λ-th percentile of correctly classified samples. We de-
note the cross-domain logits output for any keypoint as z
here, and ŷ as a cross-domain ground-truth label:

ŷ =

{
reject if max(z) <= ηk

k if max(z) > ηk
, (14)
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where k = argmax(z). By the cross-domain estimation re-
jection process shown in Eq.14, some keypoints with high
matching confidence are left over. These matching pairs im-
ply the cross-domain category mapping meanwhile, and we
can further reject the unreliable mapping here. For exam-
ple, a keypoint from Image-R with ground-truth label i is
given a cross-domain ground-truth label j by Eq.14. When
the matched keypoint from Image-S with ground-truth la-
bel j is given a cross-domain ground-truth label i, the i-j
mapping would be thought reliable, or it will be rejected.

Given the reliable mapping or cross-domain ground
truth, we could finally present an overall loss with an ad-
ditional cross-domain term Lcrd. The total loss is given by:

L = LR + LS + γLcrd, (15)

Lcrd = CE(ŷR, hR(f(ρS)))+CE(ŷS , hS(f(ρR))) (16)

In Eq.16, ŷR and ŷR represent the cross-domain ground-
truth label given in R and S respectively, and the keypoints
mentioned in ρR and ρS only contain the ones remaining
after open-set rejection and filter process here. Moreover,
note that these points with cross-domain ground-truth la-
bels will be fed back into Procedure 2 to further tune the
features. Generally, Procedure 2 and Procedure 4 form a
sequential and iterative manner, and the whole algorithm
will eventually converge until the mapping stabilizes. The
stabilized matching relationship would be presented as our
final registration result.

4. Experiments and Analyses
4.1. Datasets and Experiment Settings

In experiments, we use four datasets to validate the per-
formance of the proposed method, including Wuhan, Yel-
lowR1/R2, and Yama datasets, where each dataset includes
two SAR images. For multi-scale data construction, we use
SIFT [16] to pre-detect keypoints on two images. Then, we
employ five scales [17] to capture image patches of each
keypoint, meanwhile, each point’s eight nearest neighbors
are also used to capture the image patches. Finally, 45 im-
age patches are obtained for each keypoint. More details are
given in our Supplementary Material.

During the network training stage, we initiate a warm-up
training phase of 50∼500 epochs for Encoder, and then ad-
ditional 50 epochs of training are conducted with updates to
the cross-domain estimation occurring every t epochs (such
as 5, 10). In experiments, all input image patches are re-
sized to 64 × 64 and fed into the encoder. The batch size
is set as 1024, the rejection threshold λ is set as 0.95∼0.99,
and the learning rate is 0.0001. Mixed-precision training is
applied along with the Adam optimizer, and a cosine an-
nealing schedule is used to adjust the learning rate. The co-
efficient τ is set to 0.5. Furthermore, three crucial metrics

are applied to evaluate the registration performance, includ-
ing Nred, RMSall and RMSLOO, among these, RMSall is
the primary metric, representing the root mean square error
(RMSE) of the registration, and a lower value indicates a
more accurate registration. RMSLOO is the RMSall metric
calculated using the leave-one-out method. Nred represents
the number of matched-point pairs sought by one method.

4.2. Registration Performance of SAR Images

In this part, we compare the proposed method to 11 exist-
ing registration methods, including SIFT [16], SAR-SIFT
[5], DNN [39], SuperPoint [7], Sparse-NCNet [29], MSDF-
Net [17], STDT-Net [6], AdaSSIR [18], DALF [24], XFeat
[25], and DBMDF [22], where the first two are handcrafted
feature-based methods and the last nine are DL-based meth-
ods. Note that all compared methods use a post-processing
strategy to obtain more accurate matched-point pairs. The
registration results are shown in Table 1.

From Table 1, it is seen that the proposed method (CroR-
OSIR) obtains higher registration performance than 11 com-
pared methods on four datasets, meanwhile seeking out
fewer matched-point pairs (Nred). It indicates that the
matched-point pairs obtained by CroR-OSIR are more ac-
curate than others. Specifically, for YellowR1 datasets,
it is observed that the number of matched-point pairs ob-
tained by CroR-OSIR is comparable to SIFT and MSDF-
Net, with 11 matched-point pairs, whereas the registration
of our method is more accurate than them, with the im-
provements of 0.64 and 0.69 on RMSall and RMSLOO. It
illustrates that the matching relationships established by our
method have a higher confidence level. For Yama dataset,
CroR-OSIR seeks out 25 matched-points pairs more than
DNN (8), Sparse-NCNet (17), SuperPoint(19), XFeat(19),
DALF(22), and MSDF-Net (12), but our result is better than
theirs, which also illustrates that our sought matched-points
are more accurate. Furthermore, it is noticed that these
matched point pairs are reprocessed by the post-processing
strategy in the compared methods, but our results are di-
rectly obtained without any additional strategies.

In addition, we also present the changes of the obtained
matched-point pairs during the iterative process. Figure 3
shows the obtained matched-point pairs in the 5th, 10th,
15th, 25th, 30th and 50th epochs and their numbers (Nred)
for YellowR1 dataset, where all obtained matched points
are labelled in images and alphabetized, and (Alpha,Beta)
expresses a pair of two matched points. From Figure 3, it
is first seen that the number of the obtained matched-point
pairs exhibits a downward trend from the beginning to con-
vergence. According to the coordinates of matched points,
it is observed that some imprecise matched-point pairs (la-
belled by blue) are rejected in iterations, such as (BR, BS),
(ER, ES), (MR, MS), (NR, NS), (GR, GS). Specifically
for two difficult keypoints BR and BS , although the hor-
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Table 1. Performance comparisons of SAR images registration on four datasets

Datasets YellowR1 YellowR2 Yama Wuhan

Methods RMSall RMSLOO Nred RMSall RMSLOO Nred RMSall RMSLOO Nred RMSall RMSLOO Nred

SIFT [16] 0.9015 0.9436 11 1.1696 1.1711 88 1.1768 1.1806 69 1.2076 1.2139 17
SAR-SIFT [5] 1.0998 1.1424 31 1.1903 1.1973 301 1.2487 1.2948 151 1.2455 1.2491 66

DNN [39] 0.8024 0.8518 10 0.5784 0.5906 10 0.7293 0.7582 8 0.6471 0.6766 8
SuperPoint [7] 1.0801 1.1350 6 0.8950 0.8965 26 0.7947 0.8364 19 0.9199 0.9905 13

Sparse-NCNet [29] 0.6043 0.6126 17 0.6468 0.6595 67 0.6484 0.6591 17 0.6565 0.6777 44
MSDF-Net [17] 0.5923 0.6114 11 0.5051 0.5220 52 0.4645 0.4835 12 0.4345 0.4893 39
STDT-Net [6] 0.5487 0.5531 24 0.4808 0.4954 79 0.4604 0.4732 115 0.4490 0.4520 78
AdaSSIR [18] 0.5534 0.5720 20 0.5051 0.5220 52 0.4637 0.4707 71 0.4217 0.4459 47

DALF [24] 0.3779 0.4026 14 0.7385 0.8048 11 0.4264 0.4451 22 0.4588 0.4707 38
XFeat [25] 0.4516 0.4786 16 0.5819 0.6291 12 0.3295 0.3453 19 0.5039 0.5145 47

DBMDF [22] 0.8841 0.8966 17 0.9144 0.9261 32 0.4428 0.4634 59 0.8711 0.8745 71

CroR-OSIR 0.2533 0.2565 11 0.0952 0.1386 6 0.3014 0.3022 25 0.1339 0.1402 16

Table 2. Restration results on optical images

Methods DALF [24] XFeat [25] DBMDF [22] CroR-OSIR
RMSall 0.7043 0.7763 2.7918 0.6600
RMSLoo 0.7095 0.7802 2.7946 0.6605
Nred 677 670 79 213

Figure 3. The changes of numbers of matched-point pairs obtained
by CroR-OSIR in iterations on YellowR1 dataset.

izontal axis is consistent between them, there is some de-
viation (with 50 pixels) in the vertical axis, since there are
matched deviations (8/9 pixels, 49/50 pixels) among final
matched points. Moreover, although an imprecise matched-
point pair (GR and GS) is added in the 10th epoch, it is still
rejected in subsequent iterations. Meanwhile, the pair (AR

and AS) is further sought out in later iterations.
Actually, although CroR-OSIR is proposed for SAR im-

age registration to address the problem of redundant key-
points, we find that it may be regarded as a new image reg-
istration framework based cross-rejective open-set recogni-
tion, which is adaptive for other data. Based on this, we
make an experiment on the registration of optical images
from HPatches-sequences-release [2]. In this experiment,
we still used SIFT to detect keypoints from two optical
images (obtaining 1451 and 1489 keypoints), the rejection
threshold λ is set to 0.99, the learning rate is 0.00002, and
the other parameters are the same as before. From the re-
sults shown in Table 2, it is seen that our CroR-OSIR ob-

Figure 4. Visualization of the registration result given based on the
matched point pairs for YellowR2 and Yama datasets.

tains better performance than the compared methods, with
less matched-point pairs (213), which indicates our method
is also effective for optical image registration.

4.3. Visualization of Registration Results

To better visually exhibit the registration results, we draw
the connecting lines between the obtained matched-point
pairs in this part. The visualization results on the YellowR2
and Yama datasets are illustrated in Figure 4, respectively,
where the green line represents the connecting line between
two matched points sought by the proposed method.

From Figure 4, it is obvious that the matching lines on
both pairs of SAR images are parallel, demonstrating the
accuracy of the proposed method. Meanwhile, it is seen that
image patches of matched points are very similar, which il-
lustrates the registration accuracy of our method. Moreover,
we also find that there are high similarities among image
patches of some adjacent points (densely distributed match-
ing keypoints, as shown in A and B), such as those in the or-
ange, blue and purple boxes from YellowR2, in the red and
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Figure 5. The registration performances (RMSall) under different λ (0.65, 0.75, 0.85, 0.90, 0.95, 0.97, 0.99) for four datasets.

orange boxes from Yama. High similarity increases the in-
correctly matched risk, but our method can still achieve sta-
ble and precise matches in regions of high similarity, which
validates the effectiveness of the cross-domain estimation
labels in fine-tuning vectors within the feature space.

4.4. Ablation Studies

In this part, we provide an analysis on the effect of different
rejection thresholds (λ) for registration. Here, we set the
values of λ as 0.65, 0.75, 0.85, 0.90, 0.95, 0.97 and 0.99.
Figure 5 shows the registration result (RMSall) obtained
based on different values for four datasets in iterations.

From Figure 5, it is observed that the registration re-
sults become more accurate with the increase of the re-
jection threshold (λ). For λ =0.95, 0.97 and 0.99, their
final registration performance is comparable, which indi-
cates that a higher threshold is more effective for seeking
out more accurate matched points. Moreover, it is seen
that the model can converge faster when a higher thresh-
old is set. For example, the model can converge fast when
λ = 0.99, whereas the convergence may be reached at the
45th epoch for λ = 0.65. Empirically, a small λ leads to
redundant matched point pairs (e.g., one-to-many or incor-
rect matches), resulting in performance degradation, while
an excessively high λ prevents acquisition of matched-point
pairs. λ is essentially related to matching confidence, and a
higher value corresponds to a more correct matching when
the encoder is better trained. Noticeably, although a higher
threshold seems more effective, we found that it might
bring higher risks in abortively seeking matched-point pairs,
meanwhile a preeminent encoder is also crucial.

Furthermore, to demonstrate the effectiveness of our pro-
posed feature-tuning strategy for the SupCon module, we
conduct an ablation experiment with a rejection threshold
set to 0.95 and 0.90. In this experiment, we retain the orig-
inal settings but remove the cross-domain estimation tun-
ing term (L∗

crd in Section 3.3) for supervised contrastive
feature-tuning, and µ = 1. The experimental results are
presented in Tabel.3. As shown in Table 3, it is observed
that removal of the cross-domain estimation tuning term
poses a significantly negative impact, especially when the
rejection threshold λ = 0.90. The algorithm fails to ex-
clude imprecise keypoint pairs. It implies that the feature

Table 3. Ablation studies on feature-tuning strategy in SupCon

Datasets YellowR1 Yama

λ fine-tune RMSall RMSLOO Nred RMSall RMSLOO Nred

0.90 × 1.3697 1.3717 30 8.0312 8.0404 94√
0.3085 0.3120 12 0.4274 0.4442 31

0.95 × 0.9104 0.9121 27 0.9462 0.9466 63√
0.2533 0.2565 11 0.3014 0.3022 25

distribution of difficult keypoints in the combined classifi-
cation domain remains mixed, and relying solely on training
classifiers for the two individual domains is insufficient for
effective feature-tuning.

5. Conclusion

To deal with the numerous redundant keypoints in regis-
tration, we propose to solve the SAR image registration
problem from an open-set perspective. Different from tradi-
tional OSR, we propose a cross-rejective open-set registra-
tion method that identifies and excludes the redundant key-
points during the training process. Through cross-domain
open-set rejection, the proposed method successfully filters
out most redundant points during training. Additionally,
the resulting cross-domain estimates are further applied to
a supervised contrastive feature-tuning strategy, improving
feature discriminability and thus ensuring the model perfor-
mance on difficult keypoints with higher similarities. Ex-
perimental resutls on four datasets demonstrate that our
method can seek out more accurate matched-point pairs and
then obtain more precise registration than the state-of-the-
art methods, without using any post-processing. The vi-
sualization results and ablation studies also validate that
our method enhances the feature discriminability of difficult
keypoints with high similarities by feature fine-tuning with
the guidance of cross-domain estimation labels provided via
the cross-rejection open set recognition module.
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