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Abstract

Active learning (AL) is a label-efficient machine learning
paradigm that focuses on selectively annotating high-value
instances to maximize learning efficiency. Its effectiveness
can be further enhanced by incorporating weak supervi-
sion, which uses rough yet cost-effective annotations in-
stead of exact (i.e., full) but expensive annotations. We in-
troduce a novel AL framework, Instance-wise Supervision-
Level Optimization (ISO), which not only selects the in-
stances to annotate but also determines their optimal an-
notation level within a fixed annotation budget. Its opti-
mization criterion leverages the value-to-cost ratio (VCR)
of each instance while ensuring diversity among the se-
lected instances. In classification experiments, ISO consis-
tently outperforms traditional AL methods and surpasses a
state-of-the-art AL approach that combines full and weak
supervision, achieving higher accuracy at a lower overall
cost. This code is available at https://github.com/matsuo-
shinnosuke/ISOAL.

1. Introduction

Machine learning technology has achieved remarkable suc-
cess in recent years across various fields, including com-
puter vision, natural language processing, and robotics.
However, a major challenge remains: creating labeled
datasets for training models often requires significant time
and cost, especially in specialized domains.

To address this issue, active learning [1, 3, 6, 8, 11,
16, 18-21, 24] has been widely studied to improve model
performance under limited budgets. In active learning, in-
stances (data samples) for annotation are selected iteratively
from an unlabeled dataset, followed by annotation and
model retraining. This repeated cycle improves the model’s
accuracy while progressively minimizing annotation costs.
A common approach in active learning is uncertainty-based
sampling [3, 5, 8, 9, 18, 22, 24, 25], where instances with
high uncertainty, such as low confident of the model’s pre-
diction, are selected for annotation, as these are expected to
contribute most effectively to model performance.

Another approach to reduce annotation costs is weak su-
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pervision [17, 26, 27]. For classification tasks, a weak su-
pervision approach is often designed to just attach rough
class labels to individual instances. For example, instead
of attaching the exact class label “song sparrow” or “house
sparrow” to an image instance, annotators can attach a
rough class label “sparrows.” This approach drastically re-
duces annotation costs (budgets) because the fee paid to a
non-expert annotator, who can only assign rough class la-
bels rather than exact ones via a crowdsourcing service, is
lower than that of an expert annotator. Hereafter, we call
rough classes as superclasses; therefore, “sparrows” is a su-
perclass of the exact class “song sparrow.”

In general, weak supervision approaches still need in-
stances with full supervision, that is, instances with the ex-
act class labels. This is simply because it is impossible to
determine the class boundary between, “sparrows” is a su-
perclass of “song sparrow” without the instances with these
exact class labels. Consequently, we need to balance weak
supervision and full supervision under a pre-specified to-
tal annotation budget. In other words, we need to optimize
the supervision levels of individual instances. Since the to-
tal annotation budget is pre-specified as a constraint, the
number of instances with full supervision will be limited.
More formally, this supervision-level optimization task can
be seen as an optimal resource allocation problem with the
constraint on available resources.

This paper proposes a label-efficient machine learning
approach, called Instance-wise Supervision-level Optimiza-
tion (ISO) for active learning, as shown in Fig. 1. Roughly
speaking, the proposed approach is a sophisticated hybrid
of weak supervision and active learning. Different from
the state-of-the-art hybrid approach [22] (reviewed in Sec-
tion 2), our approach has a novel mechanism that automat-
ically determines the optimal supervision levels of individ-
ual instances. Specifically, as shown in Fig. 1, all unlabeled
instances at a certain round are automatically divided into
three categories: instances for full supervision (with exact
class annotation), instances for weak supervision (with su-
perclass annotation), and instances that remain unlabeled.
The instances selected in the first two categories are con-
sidered to be selected for active learning; annotators, there-
fore, attach appropriate labels to these instances according
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Figure 1. Overview of Instance-wise Supervision-level Optimization (ISO) for active learning. The proposed approach combines weak
and full supervision within an active learning framework to maximize annotation efficiency under a fixed budget. First, each instance x
in the unlabeled data pool is evaluated for its value-to-cost ratio (v¢(x) for full supervision and v (a) for weak supervision). Based on
these values and data diversity, instances are selected within the budget constraints for weak supervision (with superclass labels) or full
supervision (with exact class labels). This adaptive allocation of supervision-level enables optimal use of resources within the budget

constraints in active learning.

to their supervision levels.

In our experiments, the proposed method consistently
outperformed existing approaches across multiple datasets,
demonstrating a more efficient use of the annotation budget.
Our approach achieved the same accuracy as the compara-
tive methods while using only three-fifths of the budget by
incorporating weak labels when the cost of weak label an-
notation is half that of fully supervised annotation. Further-
more, in comparison with the state-of-the-art method that
combines active learning and multiple supervision, our ap-
proach achieved significantly better cost efficiency by lever-
aging instance-specific information.

The main contributions of this paper are summarized as
follows:

* We introduce a novel active learning framework that op-
timizes the supervision level for each instance, allowing
for dynamic allocation of weak and full annotations based
on budget constraints.

We propose an efficient algorithm that assigns the op-
timal supervision level to each instance by considering
value-to-cost ratios and data diversity, enhancing the cost-
effectiveness of the annotation process.

We validate the effectiveness of our approach on classifi-
cation tasks, using superclasses as weak supervision, and
demonstrate its superiority over conventional AL meth-
ods and the state-of-the-art AL method that incorporates
both full and weak supervision.

2. Related work

Active learning (AL) [I, 16, 20] is a technique aimed at
maximizing model performance under a limited annotation
budget by strategically selecting informative instances for
annotation. A widely adopted approach in active learning is
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uncertainty-based sampling [3, 5, 8, 9, 18, 22, 24, 25]. For
example, [18] selects instances with small margins, prior-
itizing instances for which the model has low confidence.
Another common approach focuses on maximizing diver-
sity within selected instances [0, 15, 19, 21], which aims to
cover a broad range of the data distribution. For instance,
[19] selects a representative core set of instances to maxi-
mize diversity. Moreover, there are methods that combine
uncertainty and diversity-based strategies to leverage the
advantages of both approaches [3, 11]. Additionally, some
AL methods [4, 12] address the setting where different an-
notators have varying accuracy levels. These methods aim
to jointly optimize both the selection of data for annotation
and the choice of annotators to minimize label noise. How-
ever, all of these approaches assume a single supervision-
level and do not incorporate multiple supervision-levels.

Another approach to reduce annotation costs is weakly
supervised learning (WSL) [17, 26, 27], where less detailed
or approximate labels instead of fully supervised labels are
utilized. In many real-world applications, obtaining fully
supervised labels can be expensive and time-consuming. To
address this, WSL methods use weak supervision, which is
typically easier and cheaper to obtain. For example, in clas-
sification tasks, weak supervision can be provided by su-
perclasses such as categories, and in segmentation tasks, it
can be provided by bounding boxes, allowing faster labeling
with lower costs.

A hybrid approach between AL and WSL, where the
proportion of full and weak supervision is adaptively deter-
mined, has been proposed in [22]. Although this approach
aims to optimize budget use by setting an ideal balance of
weak and full supervision, it applies random sampling af-
ter setting the proportion without instance-level considera-



Table 1. Comparison of conventional active learning methods.
“Uncertainty” (Unc.) refers to whether a method incorporates
uncertainty-based instance selection, such as selecting instances
with minimal margins. “Diversity” (Div.) indicates if the method
considers data diversity to maximize the representativeness of se-
lected instances. “Multiple supervision” (Mul.) refers to the capa-
bility to utilize multiple levels of supervision, such as both weak
and full supervision. “Instance-wise” (Ins.) represents the ability
to choose supervision for each instance adaptively.

Margin, Coreset, BADGE, APFWA | Ours
etc. etc. etc. [22]
[8, 18,24] [6,19,21] [3, 11]
Unc. v X v X v
Div. X v v X v
Mul. X X X v v
Ins. v v v X v

tions. To our knowledge, no method exists that dynamically
assigns full and weak supervision for each instance.

Table 1 summarizes a comparison between popular ac-
tive learning methods and our instance-wise supervision-
level optimization. Each method is evaluated on its abil-
ity to incorporate uncertainty, diversity, multiple levels of
supervision, and instance-wise adaptability, as defined in
the caption. Most uncertainty-based and diversity-based AL
methods do not consider multiple levels of supervision, fo-
cusing instead on selecting instances based on a single type
of annotation. Although APFWA incorporates multiple lev-
els of supervision, it lacks instance-wise optimization. In
contrast, our approach is unique in that it optimizes the su-
pervision level on an instance-wise basis, simultaneously
considering data uncertainty, diversity, and the annotation
cost associated with multiple levels of supervision.

3. Problem setting

Let D, represent the unlabeled data pool, and let T denote
the number of rounds in the active learning process, where
B is the available budget in each round. In this setting, a
set of instances is selected to be annotated with either full
supervision or weak supervision, depending on the required
level of detail and the associated cost. Specifically, we de-
fine C; as the annotation cost per instance for full super-
vision, where precise labels are assigned, and C, as the
annotation cost per instance for weak supervision, which
involves less precise, lower-cost labeling. These annotation
costs, Ct and C\,, are provided in advance.

The process of batch selection and training is repeated
for T' rounds, allowing the model to progressively improve
by iteratively selecting and annotating the most informa-
tive instances within each budget-constrained round. Once
an instance is annotated, it is moved from the unlabeled
pool Dy, to either the fully supervised data pool Dy or the
weakly supervised data pool D,,, depending on the supervi-
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Algorithm 1 ISO: Instance-wise Supervision-level Opti-
mization

1:

Inputs: Round T, budget of each round B, annotation
cost Cf, C, unlabeled data pool D, feature extractor
f, classification head ht, h,.

2: Outputs: trained f7, Al

3: forroundt =1,...,7 do

4: if ¢ is 1 then

5: Sample randomly instances from D, within
budget B to create an initial fully supervised
dataset Dy and weakly supervised dataset Dy,
with an equal number of instances.

6: else if ¢ > 1 then

7: Compute the model improvements, M/, M,
for each supervision using D and Dy, by Eq. (3)
and (4).

8: for x in D, do

9: 1. Compute the uncertainties, ut(x), ut(x),

for each supervision.
10: 2. Compute the VCRs, vf(x), vL, (z), for
each supervision by Eq. (1) and (2).

11: 3. Compute the normalized features ft(x).

12: end for

13: Select the batch D;,D{ using the VCRs,
vi(x), vl (), and the normalized features
ft(x) by Sec. 4.3.

14: end if

15: Dt <+ Dy UD;, Dy < Dy \ D

16: Dy, + Dy UD{, Dy < Dy \ DY

17: Train f!, hl, and hf, using D; and D,,.

18: end for

sion level chosen. These annotated instances are then used
to train a classifier.

The ultimate goal in this setting is to obtain the classi-
fier’s parameters to classify the exact class of input data. To
train the classification network, both fully supervised data
and weakly supervised data contribute to training the fea-
ture extractor in the network. Therefore, balancing fully
and weakly supervised data in a cost-effective manner is
crucial for optimizing the learning process within budget
constraints.

4. Proposed method: Instance-wise Supervision-
level Optimization (ISO)

4.1. Overview

We propose an efficient algorithm to address the instance-
wise supervision-level optimization problem within a fixed
budget. Our approach comprises two primary compo-
nents, as shown in Fig. 1. The first component calculates
the value-to-cost ratio (VCR) for each instance-supervision



level pair, which indicates the expected improvement in
model accuracy per unit of cost achieved through annota-
tion for each instance. The VCR for each instance is deter-
mined by both the value of the supervision level and its un-
certainty. This allows us to evaluate the cost-effectiveness
of assigning different supervision levels to each instance in-
dividually. The second component performs batch selection
within the budget B, optimizing the set of instances based
on their VCRs and diversity. This two-part approach en-
ables our approach to maximize the value of annotations
within a limited budget by balancing cost-efficiency and di-
versity.

4.2. Value-to-cost ratio (VCR) estimation

In this section, we explain the calculation of the value-to-
cost ratio (VCR) for each instance-supervision pair. An
overview of the algorithm is provided in Algorithm 1. For
an instance  in the unlabeled pool D,,, the VCRs vf () for
full supervision and v{, () for weak supervision at round ¢
are determined by the uncertainty of the instance, the value,
and cost for the two different-level labels, which are defined
as:

roy _ Miui(x) 1

vi(x) = Cr ()
t,t

ol ) = Hnl2) @

where Cf, C, represent the annotation costs, and M, M,
are the expected model improvement, where g, *,, cor-
respond to full supervision and weak supervision, respec-
tively. uk(x),ul,(x) represents the uncertainty for each in-
stance « in the unlabeled pool D,, at round ¢, calculated
based on model predictions. This formulation allows us
to evaluate the cost-effectiveness of assigning either full or
weak supervision to each instance, providing a basis for the
batch selection strategy within a fixed budget.

The expected model improvements M{ for full super-
vision and M‘fv for weak supervision (i.e., the values for
each supervision) are estimated by evaluating the improve-
ment in model performance as the training data is incremen-
tally increased. Consider the ¢-th annotation round, where
fully supervised data D} and weakly supervised data DY, are
available at that time. To evaluate accuracy improvement,
we divide the labeled data into K subsets and incrementally
add training data. For fully supervised data, the weakly su-
pervised data is kept fixed while subsets of the fully super-
vised data are added. The model performance my j repre-
sents the evaluation using the first k& subsets of fully super-
vised training data, with m¢ ; being the performance when
using just one subset. Similarly, we compute m, ; for the
weakly supervised data, where the fully supervised data is
fixed, and subsets of the weakly supervised data are incre-
mentally added. Here, model performance is evaluated us-

4942

ing a small validation set randomly sampled within the bud-
get of a single round. Then, a weighted average is applied
for the improvement at each step, mj, , ; —mj, to smooth the
sequence of improvements. The reason for the weighted ap-
proach is to focus on the latest model behavior. To obtain
the improvement per data point, each improvement value is
normalized by dividing by |D|/ K, where | D| represents the
number of instances. That is, M} and M, are expressed as
follows:

Kflk

o ke(mi g —miy) K
Mf ==t )
k=1 K |Dx|
K—1
gt Zek=t ko (my g —mi k) K @
" ek Dy

The uncertainty u}(z) and u’, (x), corresponding to full
and weak supervision, can be flexibly defined based on the
specific task and dataset. For example, in the classifica-
tion task, the entropy of the class prediction probabilities
is adopted. If different functions are used to calculate un-
certainty for full and weak supervision, there is a risk that
the scales of uf(x) and ul () may differ significantly. To
address this, we normalize each uncertainty value by con-
verting it to a percentile score. In this transformation, the
instance with the highest uncertainty is assigned a score
of 1, the instance with the lowest uncertainty receives a
score of 0, and the instance ranked at the 10th percentile in
terms of uncertainty is assigned a score of 0.9. We use per-
centiles rather than dividing by the maximum uncertainty
value because extreme outliers could result in an overly
large maximum, causing most values to be close to zero.
This percentile-based normalization ensures that the distri-
bution of uncertainty values remains well-scaled, preserv-
ing relative differences across instances without distortion
due to outliers.

4.3. Valuable and diverse batch selection using VCR

In this section, we describe the batch selection using the
value-to-cost ratio (VCR) defined in the previous section.
The most straightforward approach for batch selection is
to greedily select instances with the highest VCR values.
However, as noted in previous studies (e.g. [3, 19]), this ap-
proach can lead to selecting similar instances that have high
VCR values, resulting in a loss of data diversity within the
batch.

To address this, we propose a batch selection algorithm
to select a diverse and valuable batch. In other words, we
select a group of instances with high VCR values and di-
verse features. Specifically, we represent each instance as a
vector using its VCR and feature vector. The vector differs

depending on the type of label: v¢(x)f(x) for full labels



and vy, () f(z) for weak labels. Here, f(z) is a normal-
ized feature vector (with a magnitude of 1) output by the
feature extractor f. The optimal set of instances is selected
based on the vectors.

We aim to select a set of instances that maximizes the
area enclosed by the vertices of the selected vectors, as
shown in the center of Figure 1. Here, the optimization
parameter is which vectors (instances) to select and their
label types. When the selected instances have high diver-
sity and value, the area enclosed by the selected vectors
becomes larger. We solve this optimization problem sub-
ject to budget constraints (i.e., the sum of the costs of the
optimized supervision levels for instances is less than B).
The optimization problem of selecting vectors and deter-
mining their supervision levels can be reformulated as a se-
lection problem, where the goal is to choose the optimal set
of vectors from all possible vectors, including both those
with weak labels {vy, () f(z)|x € D,} and those with full
labels {v¢(zx)f(x)|z € D,}. This allows the problem of
choosing the type of label to be integrated into the vector
selection process. This optimization problem can be solved
by maximizing the determinant of a set of vectors subject to
budget constraints.

To perform the batch selection that maximizes the de-
terminant of a matrix, one approach is to sample from a
k-Determinantal Point Process (k-DPP) [13]. This method
selects a batch containing k& vectors with a probability pro-
portional to the determinant of their Gram matrix. How-
ever, this differs from the batch selection in our approach
in that we choose a set of vectors within a budget B rather
than choosing k vectors. Therefore, we propose a new se-
lection method, which is inspired by the work [3] using the
k-means++ seeding algorithm [2] as an approximation al-
gorithm for k-DPP.

In our batch selection method, the vector of the batch is
sampled sequentially with a probability proportional to the
square of the distance to the vector closest to the one se-
lected so far until the budget B is exhausted. Specifically,
if the selected vector corresponds to full supervision (i.e.,
a vector in the set {v¢(x)f(x)|x € D}, the cost Ct is
deducted from the budget, and it is added to the fully su-
pervised data. If it corresponds to weak supervision (i.e.,
a vector in the set {vy, (@) f(z)|x € Dy,}), the cost Cy, is
deducted from the budget, and it is added to the weakly su-
pervised data. This process is repeated until the budget B
is exhausted. By doing this, we can obtain a diverse and
valuable batch.

5. Experiments
5.1. Dataset

To demonstrate the effectiveness of the proposed method,
we utilized two datasets: CIFAR100 and Caltech-UCSD
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Birds-200-2011 (CUB200). The task is a multi-class clas-
sification problem, where each class (full label) belongs to
a superclass, and the superclass label is provided as a weak
label.

CIFAR-100 is a dataset of natural images containing 100
classes that span a wide range of everyday objects and an-
imals. Each class in CIFAR-100 is associated with a pre-
defined superclass, grouping similar classes together under
broader categories, resulting in 20 superclasses in total. The
dataset consists of 60, 000 images in total, with 50, 000 im-
ages for training and 10, 000 images for testing

CUB200 [23] consists of 200 classes of bird species,
with each class representing a specific bird. Following pre-
vious study [14], we defined superclasses based on the suf-
fixes in the class names, resulting in 70 unique superclasses.
The dataset contains 11,788 images, with 5,994 images
designated for training and 5, 794 images for testing.

5.2. Comparison methods

We compared our approach with eight conventional AL
methods, ranging from standard single-supervision AL
methods to the state-of-the-art AL method incorporating
multiple supervision, as follows:

Random: The simplest baseline that samples instances
randomly from the unlabeled pool.

Margin [18]: A method that selects instances in as-
cending order of the difference between the highest and
second-highest predicted class probabilities, prioritizing
instances with minimal margins.

MaxConf [24]: An approach that selects instances in or-
der of the lowest maximum predicted class probability,
focusing on instances with the least confidence.

Entropy [24]: A method that selects instances according
to the highest entropy in the predicted class probabilities,
targeting instances with the greatest uncertainty.

Coreset [19]: A diversity-based sampling method that
selects instances farthest from the labeled data using a
greedy algorithm to enhance diversity.

ALBL (Active Learning by Learning) [9]: A multi-
armed bandit approach that selects between AL methods
at each round. In this experiment, we utilized MaxConf
and Coreset.

BADGE (Batch Active learning by Diverse Gradient
Embeddings) [3]: A method that considers both pre-
dictive uncertainty and diversity by selecting instances
with diverse and high-magnitude gradients in the gradi-
ent space.

APFWA (Adaptive Proportion of Full and Weak An-
notations) [22]: A state-of-the-art AL method that incor-
porates both full and weak supervision, which dynami-
cally determines the proportion of full and weak annota-
tions within each batch.



Since AL with both full and weak label annotation is a
novel task, there is only one existing method for this task.
Instead, we compare our approach with standard single-
supervision AL methods as well as the state-of-the-art AL
method. This comparison highlights the effectiveness of
AL using weak labels. Additionally, a comparison with
APFWA demonstrates the advantages of our approach for
AL with both fully and weakly supervised labels. Further-
more, in Sec. 6.3, we also compare our approach with a
simple combination of weak supervision and conventional
AL methods to ensure a fair evaluation.

These methods offer a range of approaches, from simple
random sampling to advanced techniques that balance un-
certainty and diversity, as well as methods leveraging weak
supervision, enabling a comprehensive evaluation of our
proposed approach.

5.3. Implementation details

The network consists of a shared feature extractor f and two
classification heads, h¢ for full supervision and h., for weak
supervision. The encoder of ResNet18 [7] is used for the
feature extractor f, and a single linear layer is used for each
classification head. For the network trained using both fully
and weakly labeled data, we employ a two-stage training
approach in which the feature extractor and each classifica-
tion head are trained first with weakly supervised data and
then with fully supervised data. Since both fully supervised
and weakly supervised learning are classification tasks in
this experiment, we used the cross-entropy loss. The learn-
ing rate was set to 0.001, and the optimizer was Adam [10].

The settings for active learning were as follows. The
number of rounds 7" was set to 5. The budget B of each
round was set to 1,000 for CIFAR100 and to 500 for
CUB200 since CUB200 had approximately 5, 000 in train-
ing data, which was less than that of CIFAR100. The valida-
tion data with full supervision were prepared from training
data, 1,000 for CIFAR1000 and 500 for CUB200, which
are the same number and small amount as in budget B. The
cost of full supervision Ct was set to 1, and the cost of weak
supervision was set to % In addition, in Sec. 6.2, we con-
ducted the experiments when changing C\, to % and é to
investigate the impact of the difference on the cost of weak
supervision.

The number of partitions K for estimating the expected
model improvements M{ and M, was set to 5. As the per-
formance metric of mf ;,m? ,, we used the classification
accuracy. To enhance stability, we repeated the estima-
tion process three times with different random seeds and
calculated the average. For uncertainty measurement, we
adopted the simplest approach, Margin [18], to evaluate in-

stance uncertainty.
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6. Experimental results

6.1. Comparison with conventional active learning
methods

The comparison results with conventional AL methods on
CIFAR100 and CUB200 are shown in Fig. 2(a), (b), respec-
tively. The graphs show the classification accuracy [%] for
each round ¢.

In Figure 2(a), the results on the CIFAR100 dataset
demonstrate that our approach archives higher accuracy
across all rounds compared to conventional methods, in-
cluding random sampling, uncertainty-based AL method
(Margin, MaxConf, Entropy), diversity-based AL method
(Coreset), and other AL methods (ALBL, BADGE), which
use only full supervision. This demonstrates that our ap-
proach effectively leverages weak supervision, achieving
higher performance within the same budget constraints. For
example, at round ¢ = 5, our approach achieved over 10%
higher accuracy compared to conventional AL methods that
use only full supervision. Furthermore, while these meth-
ods require five rounds (with a budget of 5000) to reach an
accuracy of approximately 30%, our approach achieved the
same or even higher accuracy in just three rounds, using
only three-fifths of the budget.

Our approach also surpasses APFWA, another AL ap-
proach that incorporates weak supervision by optimizing
the proportions of weak and full supervision within the
batch but does not focus on selecting instances. This result
suggests that our approach more effectively selects cost-
effective instances by dynamically considering instance-
wise uncertainty and diversity, thereby maximizing the
learning impact of weak supervision.

Similarly, Figure 2(b) presents the results on the
CUB200 dataset, where our approach also outperforms
other AL methods across all rounds. The consistent im-
provement observed across both datasets indicates that our
approach can dynamically optimize annotation strategies
according to the dataset characteristics, achieving high
adaptability.

6.2. Analysis for weak supervision costs

To demonstrate that our approach works at any cost of weak
supervision and that the cheaper the cost of weak supervi-
sion, the greater the effect, we conducted experiments when
changing the cost of weak supervision. Figure 3 shows the
classification accuracy [%] on CIFAR100 and CUB200 at
different costs of weak supervision. In this experiment, the
cost of full supervision Cf is fixed at 1, meaning that Cf,
represents the relative cost to full supervision. It is impor-
tant to note that the cost C}, is defined before active learning
begins and is not a hyperparameter of the proposed method.
Imagine a scenario where the fee paid to a non-expert an-
notator, who can only assign rough class labels (weak la-
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Figure 2. Comparison of our approach with the conventional ac-
tive learning methods. The figures show the classification accuracy
[%] (1) for each round ¢ on CIFAR100 and CUB200. The cost of
full supervision Ct is 1, and that of weak supervision is %
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Figure 3. Classification accuracy [%] (1) of the proposed method
on CIFAR100 and CUB200 when the cost of weak supervision,
Cy is %, i, and é. Note that the cost C', is a value set by the
user before active learning begins and is not a hyperparameter of
the proposed method. This figure illustrates the effect of different
weak supervision costs. For reference, we also include the results
of conventional active learning methods (gray lines).

bels), is lower than that of an expert annotator. The cost C\,
varies for each task or dataset, corresponding to the rewards
offered by crowdsourcing, etc.

In previous sections, we set the cost of weak supervision
to Cy = % Here, we investigate the effects of our approach
when further reducing Cy, to % and é. As shown in Figure 3,
for both datasets, the classification accuracy improves as
the cost of weak supervision decreases. This improvement
is due to the fact that the lower cost of weak supervision
allows more data to be annotated within the same budget,
thereby enhancing the training process. In other words, the
cheaper the cost of weak supervision, the more impactful
weak supervision and our approach become.
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6.3. Comparison with combined active learning and
multiple supervision baseline

In addition to comparing our approach with conventional
active learning approaches, we conduct experiments to eval-
uate our approach against a straightforward combination
of weak supervision and conventional active learning tech-
niques. This baseline approach applies a fixed proportion of
weak supervision within the budget, utilizing conventional
active learning strategies within each supervision type. '

Specifically, in this combined method, weak supervi-
sion is allocated at a constant rate—20%, 40%, 60%, and
80% in the batch. Within each full and weak supervision,
conventional AL methods are employed to select data. In
this experiment, the active learning method for each full or
weak supervision employed was sampling based on margin,
which is used for the uncertainty of the proposed method.

Figure 4 shows the comparison between our approach
and baseline methods that combine active learning with
weak supervision on the CIFAR100 dataset under differ-
ent costs for weak supervision (Cy, %,i, and %). In
each case, the baseline methods use fixed proportions of
full and weak supervision within each batch, denoted as
F(x%)+W(y%), where = and y represent the percentages
of full and weak supervision, respectively.

Across all weak supervision costs, our approach consis-
tently achieves high accuracy. An important point to note
is that the optimal proportion of full and weak supervision
is unknown beforehand and varies depending on the cost of
weak supervision. For example, when the cost of weak su-
pervision C\, is %, the configuration with 60% full supervi-
sion and 40% weak supervision achieves the best accuracy
among the baseline methods. However, when the cost C, is
reduced to %, a configuration with 20% full supervision and
80% weak supervision performs best. In contrast, our ap-
proach dynamically constructs optimal batches by optimiz-
ing both the supervision level and instance selection based
on the cost-effectiveness obtained from the trained model at
each round.

6.4. Ablation study

We conducted ablation studies to demonstrate the effec-
tiveness of instance-wise value (i.e., uncertainty) and the
batch selection with diversity on CIFAR100 and CUB200,
as shown in Fig. 5.

The first ablation variant, referred to as “Ours w/o un-
certainty,” removes the instance-wise uncertainty compo-
nent from the VCR calculation. In this variant, the VCR
is determined solely based on the annotation cost and ex-
pected model improvement without taking into account the

TAPFWA [22] is a method that dynamically determines the proportion
of full and weak annotations. It must use random instance sampling to
estimate the optimal proportion, and as a result, it cannot be combined with
the conventional instance-wise AL methods (e.g., margin-based sampling).
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Figure 4. Comparison with combined active learning and multiple supervision baseline. The classification accuracy [%] (1) on CIFAR100
with fixed proportions of full and weak supervision within each batch. Each batch was sampled with fixed proportions, and conventional
active learning methods were applied separately for full and weak supervision.
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Figure 5. Ablation study comparing the proposed method without
instance-wise uncertainty us(€), uw () (Ours w/o uncertainty)
and without batch selection considering diversity (Ours w/o di-
versity). The figures show the classification accuracy [%] (1) for
each round ¢ on CIFAR100 and CUB200.

uncertainty of each instance. Consequently, the supervision
level is not optimized for each instance individually. The
results show that our approach outperforms this variant on
both datasets. This effect is particularly prominent in the
CUB200 dataset, demonstrating the benefit of optimizing
“instance-wise” supervision-level.

The second ablation variant, called ‘Ours w/o diversity,”
involves a greedy approach to batch selection, where in-
stances are selected in descending order of VCR without
considering data diversity. Our approach, which incorpo-
rates diversity into the batch selection process, consistently
outperforms this variant on both datasets. The impact of
diversity-aware selection is especially evident in the CI-
FAR100 dataset, demonstrating that considering diversity in
batch selection significantly enhances model performance.
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7. Conclusion, limitation, and future work

In this paper, we proposed a novel active learning (AL)
approach, called Instance-wise Supervision-level Optimiza-
tion (ISO), which optimizes the supervision level (either full
or weak annotation) for each instance to maximize annota-
tion efficiency within a budget. By evaluating the uncer-
tainty, diversity, and value-to-cost ratio (VCR) of each in-
stance for full and weak supervision, our approach automat-
ically determines the instances to be annotated and their op-
timal annotation level. Experiments on classification tasks
demonstrated that ISO outperforms not only standard AL
methods but also state-of-the-art AL methods with weak
supervision, while effectively leveraging instance-specific
information to improve both accuracy and cost-efficiency.

A current limitation of this study is that the effectiveness
of our ISO has been validated only in classification exper-
iments. The concept of ISO is applicable to various tasks
beyond classification. For example, ISO can be applied to
object segmentation tasks, where precise yet costly object
boundaries are assumed for full supervision, while simpler
rectangular bounding boxes are used for weak supervision.
Another current limitation is the assumption that supervi-
sion levels are only two. We can expand to deal with more
supervision levels by introducing class levels other than ex-
act classes and superclasses. In future work, we aim to
demonstrate the full versatility of our approach by explor-
ing these extensions across a broader range of tasks, rein-
forcing its potential as a scalable, cost-effective solution for
real-world applications.
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