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Abstract

We present a method for learning binaural sound localization
using egomotion as a supervisory signal. Over the course of
avideo, the camera’s direction to a sound source will change
as the camera moves. We train an audio model to predict
sound directions that are consistent with visual estimates of
camera motion, which we obtain using traditional methods
Sfrom multi-view geometry. This provides a weak but plentiful
form of supervision that we combine with traditional binau-
ral cues. To evaluate this method, we propose a dataset of
real-world audio-visual videos with egomotion. We show
that our model can successfully learn from real-world data
and that it performs well on sound localization tasks.

1. Introduction

Our sense of hearing allows us to perceive events that are
out of sight, such as objects that are distant, occluded, or
outside of our narrow field of view. Despite the importance
of spatial audio perception, existing methods for stereo sound
localization often struggle in real-world settings, such as by
being limited to synthetic training data [13], specific binaural
cues [12], or specific visual object categories [19].

Recent work has addressed this problem using time-delay
estimation [12] and jointly learning camera rotation with
sound sources [13]. These approaches either rely on training
with simulated data or specific hand-chosen binaural cues
and thus can only be applied to limited domains. Natural
sound recordings vary widely in ways that are difficult to
capture through simulation. For example, properties of the
equipment itself, such as the geometry of the stereo micro-
phone pair and their frequency responses, are highly varied,
and the sounds that they record are often complex mixtures
of different sources that make it difficult to extract a learning
signal from.

We address the problem of learning stereo sound local-
ization entirely from unlabeled “in the wild” videos. We
exploit the fact that real-world audio-visual signals contain
moments in which the camera moves while the sound source
remains approximately stationary, thereby providing a form
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Figure 1. Supervising sound localization using egomotion from
natural video. We use camera motion as a supervisory signal for
stereo sound localization. Our model learns to predict changes in
sound direction that correlate with changes in visually indicated
camera motion. In contrast to prior self-supervised sound localiza-
tion methods, our model is trained solely on in-the-wild natural
videos, which often contain complex camera motions and noisy
mixtures of different component sounds.

of cross-modal supervision. We use well-established multi-
view geometry methods to estimate the relative pose of the
camera, and then train a sound localization method to make
predictions that are consistent with this motion.

Our technical approach exploits the fact that, while ob-
taining ground truth information from vision is difficult,
approximate visual information (such as the direction of the
camera rotation) are straightforward to estimate and provide
constraints that can be used as part of a weakly supervised
learning framework. We show that this weak supervision
from vision can be combined together with traditional inter-
aural intensity difference cues.

Our method has a number of advantages over prior ap-
proaches. In contrast to other work that uses egomotion [13],
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Figure 2. The StereoWalks dataset. Example videos from different subsets of our dataset. We focus on in-the-wild audio-visual data
sourced from the internet. Our dataset contains YouTube videos recorded with stereo microphones and iPhones, as well as lab-collected
in-ear binaural and stereo data. We also show the estimated distribution of different sound source categories in each subset, to help visualize

the contents of each dataset.

it can be trained entirely on real videos instead of simulated
environments. It does not require joint training of visual
and audio models; instead, it obtains its learning signal from
off-the-shelf multi-view geometry methods. This allows our
method to handle diverse motions and camera translation
(Fig. 1). Moreover, our approach does not require the sound
source to be visible [20, 33], nor does it place restrictions on
the object category [19].

We also propose a dataset containing in-the-wild stereo
sound and egomotion and human-provided sound direction
labels (the first such dataset, to the best of our knowledge).
Our approach outperforms previous methods trained on sim-
ulated data for in-the-wild sound localization. Our contribu-
tions are as follows:

* We introduce a dataset, called StereoWalks, for learning
sound localization from unlabeled audio-visual signals.

* We propose a method for training sound localization meth-
ods using weak supervision from egomotion.

* We experimentally evaluate our model in a variety of
settings, finding that we obtain better performance than
previous methods on our newly proposed sound localiza-
tion dataset, and obtain performance comparable to other
methods on existing real-world benchmarks.

2. Related Work

Audio-visual spatial perception. Recent research has
explored the spatial correspondence between sight and
sound and used them for scene analysis or reasoning
[11,15,22,30, 31, 34, 39, 55-57, 61]. Morgado et al. [34]

use natural audio-visual alignment to extract representations
for practical tasks. Gao et al. [20] focus on typical field-of-
view videos and binaural audios. Zhou et al. [62] unify stereo
generation and source separation, blending audio-visual fea-
tures seamlessly. Xu et al. [54] employ spherical harmonic
decomposition and head-related impulse response [4] to con-
struct pseudo visual-stereo pairs. In recent developments
for 3D audio-visual synthesis, Liang et al. [32] implicitly
link audio generation with the 3D geometry and material
properties of visual environments, facilitating the creation of
immersive videos from various camera perspectives. Chen
et al. [13] jointly learn sound source direction and camera
pose via self-supervision from multi-view audio-visual data.
In contrast, we estimate camera motion using off-the-shelf
multi-view geometry methods, and use this as a supervision
signal to train an audio model. Consequently, our approach
is able to learn from natural video, whereas [13] required
simple, simulated scenes as training data.

Spatial audio datasets. Spatial audio provides sound di-
rection and distance cues, enriching listeners’ 3D perception.
Many researchers have studied these cues to interpret sound
in complex scenes. Many spatial audio and audio-visual
datasets have been collected to address challenges in the
Direction of Arrival (DOA) problem [1, 17, 25, 41, 42]. Shi-
mada et al. [49] collects a real audio-visual dataset of spatial
recordings of real scenes (rooms) to study sound event lo-
calization and detection tasks. Chen et al. [10] multi-modal
panoptic dataset with stereo audio for scene understanding.
Some researchers also study the sound localization task with
synthetic multichannel audio datasets with temporal activa-
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tion and ground-truth DOA labels [2, 24, 35, 36, 40, 41, 51].
Many other audio-visual datasets also contain multi-channel
audio [32-34, 52, 55, 60] and focus on different tasks. How-
ever, many of them are constrained by limited hours and
sound type [20, 33] and recorded in lab settings [20, 42, 49].
They also require labor-intensive labeling for annotations.
Chen et al. [10] employs four directional microphones to
collect audio signals, while Grauman et al. [23] use Aria
glasses to record synchronized egocentric audio-visual data.
In contrast to previous datasets, ours is collected from diverse
internet videos under an in-the-wild setup, using camera mo-
tion signals as free supervision. This approach removes
the constraints for specialized hardware like multiple micro-
phones or Aria glasses while capturing more dynamic and
chaotic scenarios with complex motion patterns.

Audio-visual learning. Besides spatial correspondence
between audio and visual signals, other researchers have ex-
plored different topics in audio-visual learning. Some study
the deep learning approaches for visual sound localization
with audio-visual semantic correspondence [5, 9, 37, 48, 63].
Some works study the temporal alignment between audio
and visual streams [8, 18, 28, 37, 50]. Owens et al. [37]
propose to use self-supervised temporal features for audio-
visual scene analysis and apply them to several downstream
tasks, e.g., action recognition. Many works use visual sig-
nals to enhance sound separation [3, 21, 58, 59]. Chen et
al. [14] explore the visual correspondence between image
and spectrogram to create visual spectrograms that that si-
multaneously look like natural images and sound like natural
audio. Differing from those works, we focus on using ego
motions from vision to supervise sound localization.

Camera motion estimation. Camera motion estimation
is an important topic in 3D vision, focusing on accurately
tracking camera movement through an environment. Sar-
lin et al. [47] proposed SuperGlue, a method that matches
two sets of local features by jointly finding correspondences
and rejecting non-matchable points, significantly improving
the accuracy of feature matching. In the domain of visual
SLAM (Simultaneous Localization and Mapping), Whelan
et al. [53] and Raposo et al. [44] have integrated multiple
camera odometry estimation techniques to achieve robust
tracking, ensuring that the system can maintain reliable per-
formance even in challenging environments. Furthermore,
Rockwell et al. [45] propose methods for estimating cam-
era pose robustly by combining correspondence-based and
learning-based methods. Our work uses estimated camera
poses as supervision for audio, providing a novel approach
to enhance audio-visual learning systems.

3. Method

When the camera is in motion, the relative movement be-
tween sound sources and the camera can provide supervision

for sound variations. Building upon this intuition, we use
the relative moving direction as supervision, which can be
interpreted as the direction of camera rotation direction and
translation. In this section, we first introduce a new spa-
tial audio-visual dataset and then demonstrate how to learn
spatial audio information from videos.

3.1. The StereoWalks dataset

Our goal is to learn from in-the-wild audio-visual signals
and motion using videos that span a variety of scenes, micro-
phone designs, and cameras. Existing datasets for studying
spatial audio are largely recorded in lab settings and primar-
ily contain stationary cameras. To address this, we collect
a dataset that we call StereoWalks. First, we acquire inter-
net video (from YouTube) with camera motions and stereo
sound (e.g., walking tours). We obtain a subset that is likely
to contain iPhones (we call the larger set Y7-Stereo and this
subset YT-Stereo-iPhone). To do this, we search for captions
and titles mentioning iPhone versions newer than "12S". We
filter the raw videos by automatic means such as excluding
those with unstable or minimal camera rotation, obtaining 20
hours of video. Human annotators label the validation and
test sets with perceived ground truth angles and categorize
the dominant sound source. Our dataset ensures audio-visual
synchronization since both signals are collected from the
same device (the camera with built-in microphones or con-
nected headphones). This synchronization is maintained
throughout the data collection and preprocessing pipeline.
For further details, please refer to Sec. 4.1 and the supple-
mentary material.

To study the influence of the recording device and addi-
tional cues from human ears, we also record two datasets
using a commodity stereo microphone (iPhone 13 Pro) and
a commodity in-ear binaural microphone (Sennheiser AM-
BEO Smart Headset). Since the latter is placed inside an
ear, the model has access to additional cues due to the influ-
ence of the ear shape on the sound. We label these subsets
Stereo-Fountain and Binaural-Fountain respectively. We
show some examples in Fig. 2 and the statistics in Tab. 1.

3.2. Learning audio localization from egomotion

We learn to localize sound sources from stereo audio. Fol-
lowing previous work [12, 13], we only estimate the sound’s
azimuth angle, since the other degrees of freedom (elevation
and distance) are challenging to perceive from audio alone.

Given an audio clip, we randomly select two short seg-
ments, s1 and s from time ¢ and time ¢’ respectively. Since
most in-the-wild videos are recorded with stereo audio rather
than binaural audio, it remains difficult to predict whether
the sound is in front or behind from audio alone if the sound
is stationary. We discuss more details in Sec. 4.5 about
front-back confusion. We assume all the sound sources
are on one side. For each audio clip, we predict an angle
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Table 1. Dataset comparison. We provide details on dataset length, the proportion of visible sound sources, camera motion types, and
sound source types, with each clip representing 5 seconds. Visibility is represented by two numbers: the first indicates the number of sound
sources visible for over 4 seconds within the 5-second clip, and the second denotes the number of sound sources visible for less than 4
seconds. IID Binaural acc denotes the accuracy of IID predictions respected by the actual left-right labels.

Dataset Scene subset Split Size VlSltyblllty Motion Type 11D bm;ural
Clips (k)  Duration (hr) (%) Camera Sound sources acc (%)
Train 14.4 20.0 20/50  Rotation&Translation Unknown -
YT-Stereo Val 0.1 0.2 10/ 60 Mainly Rotation Moving 57.5
StereoWalks Test 0.1 0.2 10/ 60 Mainly Rotation Moving 57.5
ours) 00 T T T T T T T T T T T T T T T T T T T T T T T T ST T S S ST T
(ours) Stereo-Fountain Raw 5.0 7.0 10/30 Mainly Stationary X 76.2
Binaural-Fountain Raw 1.4 2.0 10/30 Mainly Stationary X 98.0
L/R Binaural [12] Raw 1.8 3.0 - X X 75.4
Simulated HM3D-SS 2.0 (ours) Raw 21.6 30.0 - Rotation&Translation Rendered 97.4
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Figure 3. Method overview. We use a camera’s egomotion to
supervise binaural sound localization models. We obtain the rota-
tion and translation of the camera using traditional methods from
multi-view geometry. We then train an audio model to predict
sound directions that are consistent with visual camera motions,
using a dataset that includes in-the-wild walking tours.

f(s¢) : R™*2 — R™, which we represent as a distribution
over n angle categories that are uniformly sampled in a grid.
The set A; denotes all the possible angle outputs of s;, where
Va e A;,—90° <a < 90°.

Camera rotation estimation. Predicting the direction that
a camera is rotating is easier than obtaining its precise angle
(e.g., since the latter may require knowledge of camera intrin-
sics [26]). We therefore use visual information to predict a
binary label d,. that indicates whether the camera is rotating
clockwise or counter for a given audio clip. This serves as
the pseudo label for training our audio model.

Camera front-back translation estimation. If the posi-
tion of the sound source changes slowly compared to the
position of the camera, the sound source may appear to move
in the opposite direction. We estimate a binary label d; from
the visual information, indicating whether the camera is

moving forward for a given audio clip. In practice, we use a
pre-trained camera pose estimation model to obtain both the
translation and rotation labels, d; and d,.

Supervising audio localization using sight. The visually
estimated camera rotation estimates d,. restrict the pairs of
angles that s; and so can compatibly be assigned to. We
introduce a loss:

Erot - Lce Z f(sl)if(SQ)ja dr ) (1)

(.J)ER

where L. is cross entropy loss and R = {(a,8) : « €
A;, B € Aj,sin(f8 — «) - d, > 0} is the set of angle labels
that are compatible with.

Similarly, the visually estimated camera front-back trans-
lation estimates d; restrict the pairs of angles that s; and s5
can compatibly be assigned to the audio. We introduce a
loss:

‘ctrans = Lce Z f(sl)if(SZ)ja dt P (2)

(i,79)€T

where L., is cross entropy loss and T = {(a, 8) : « €
A;, B e A, (|B] — |a) - di > 0} is the set of angle labels
that are compatible with the visual prediction. To prevent the
model from collapsing into a trivial solution (for example,
predicting all angles to be zero), we exclude cases where the
two angles are equal.

Binaural cues. Interaural intensity difference (IID) cues
are commonly used in learning-based sound localization
works. We use these cues within our model to provide a
complementary form of supervision. We follow [13] and
use the difference in loudness between the left and right chan-
nels to determine which side the sound is on. We penalize
predictions that are inconsistent with these predictions:

Loin=Leo | D f(si)jbe | 3)

jEB
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where B is the set of angle labels that is consistent with the
label b;, which indicates whether the sound is on the left or
right side of the camera. We average this loss over the pair
of audio clips s; and ss.

Overall loss.
mize:

Combining these losses together, we mini-

L= )\lLrot + (1 - )\1)Ltrans + )\2Lbin7 (4)

where A\; and A, control the relative weight of the two losses.
The losses are essentially the sum of individual cross-entropy
losses between the prediction and each “allowed angle” after
applying the constraints. As shown in Fig. 3, “mask and
sum” denotes summing over only the valid labels.

4. Experiments
4.1. Datasets

Real-world dataset. To evaluate our approach with the
real-world data, we label a subset of Y7-Stereo-iPhone and
Stereo-Fountain as mentioned in Sec. 3.1 and Tab. 1. To
ensure stable sound sources for the validation and test sets,
we filter the dataset and label the audio sources through sev-
eral steps. First, we segment each video into 5-second clips
with a 3-second overlap. Then, we estimate the horizontal
movement (left/right) using the SuperGlue model and cal-
culate Interaural Intensity Difference (IID) cues. We select
videos with large changes in IID. For initial filtering, we
compute an IID score every second by calculating the IID
for the preceding 2 seconds, sorting the absolute product of
IID changes in descending order. Videos are then discarded
if the camera rotation direction differs from the IID change
direction or if the rotation angle is minimal. After filtering,
we label each clip with the location of the audio sources and
classify the audio type (such as car, male/female speech, sea,
or animals).

Simulated dataset. To study how visual cues supervise
sound localization, we created a simulated dataset to supple-
ment our in-the-wild data. This dataset contains ground truth
sound source locations and egomotion. Following Chen et al.
[13], we used the SoundSpaces 2.0 [6] platform to construct
a dataset, denoted HM3D-SS 2.0, that incorporates more di-
verse settings of camera motion (rotation and translation) and
sound source motion. Specifically, we simulate some mov-
ing audio source and include translation in the egomotion as
well. We generate the dataset with binaural Room Impulse
Responses, using 3D scenes from the Habitat-Matterport
3D [43]. We partitioned the data into train/validation/test
sets based on scenes. To create binaural audio, we convolve
Room Impulse Responses (RIRs) with mono-channel audio
from LibriSpeech [38]. To align with in-the-wild data, we
constrained the total rendered audio length to about 30 hours,
matching the in-the-wild dataset’s scale. The HM3D-SS
dataset from Chen et al. [13] is a subset of our HM3D-SS

2.0 dataset, as shown in Setting (1) of Tab. 4. Please see the
supplementary material for details.

4.2. Implementation details

For the angle prediction model, we used a ResNet-18 [27] ar-
chitecture on spectrograms. We transformed the two-channel
waveform of length L into a 256 x 256 x 4 spectrogram us-
ing a short-time Fourier transform, retaining both magnitude
and phase. We extracted features from the spectrograms
and mapped them to 1-dimensional logits for n-class clas-
sification, setting n = 32. For camera motion, we used a
pre-trained Superglue model. The training was conducted
on an 80GB A100 GPU with a batch size of 300 for 100
epochs. For Ours-full, \; was set to 0.9 and A, to 1; for
Ours-R&T, \q was 0.9 and A\ was 0. In Tab. 2, we first train
on YT-Stereo and part of YT-Stereo-iPhone, then fine-tune
for one epoch on each dataset.

To obtain the camera motion, we employ the Superglue
model [46] and utilize the perspective field [29] to predict
the horizontal field of view, resulting in the rotation matrix
and the translation vector. We sampled 5 frames per second
for a 5 sec. video and calculated the rotation matrix and
translation vector between each frame. Additionally, we
computed the rotation matrix and translation vector between
different images at intervals of 3 and 6 frames. For the
purposes of cleaning the dataset, for any two time points,
we accumulated the rotations calculated at intervals of 3
frames, proportionally adjusting if there were gaps. The
same approach was applied to translations.

4.3. Evaluation

Baselines and ablations. We evaluate the performance
of sound localization by the MAE of angle prediction and
the accuracy of 2-way classification to compare with IID-
direct and 8 classification. The accuracy of 2 classification
is denoted as “2clf” and that of 8 classification is denoted
as “8clf”. Since there exists front-back confusion for stereo
devices if given only one audio segment, we reflect all the
predictions to the front to avoid ambiguity.

We use the following baselines: 1) Chance: Baseline
performance by random guessing. 2) IID-direct: Direct
prediction using interaural intensity difference (IID) cues,
as described in Chen et al. [13]. 3) GTRot: Implementa-
tion of the method from Chen et al. [13], which uses “ora-
cle” rotation angle and pseudo binaural cues as supervision.
For real-world datasets, we implemented GTRot training
using pseudo labels of rotation angles obtained by the Su-
perGlue model [46] and Perspective Fields [29] for the Y7-
Stereo-iPhone dataset. For the Stereo-Fountain dataset, the
angles are labeled by humans for the training set and eval-
uation set. 4) Supervised: We train a supervised model
using ground-truth angles for each dataset, covering 360
degrees. 5) Supervised—RTF: We train a supervised model
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Table 2. Comparison with state-of-the-art methods and other self-supervised methods on YT-Stereo and In-the-wild dataset. Sim. denote the

simulated dataset.

Training Set Test Set In-the-wild audio [12] 2¢If (%)t
Model R . . )
YT-Stereo Sim. YT-Stereo-iPhone Stereo-Fountain Simulated Chance 50.0
MAE (°)]. 2¢lf (%) 8clf (%)t MAE (%), 2cIf (%)t 8clf (%)t MAE (°)). 2¢lf (%)1 8clf (%)t 1D — direct 75.4
Chance 553 467 127 621 520 160 394 490 150 ggg‘PHﬁT ;Z-;
11D — direct - 575 - - 97.0 - - 97.4 - "é[ 3] ’
GTRot [13] v 714 54.0 7.1 572 97.0 18.4 402 487 18.7 MonoCLR [12] 87.
7777777777777777777777777777777777777777777777777777777777777777777 StereoCRW [12] 87.2
Ours—IIDonly [13] v 373 547 280 30.1 970  46.0 88.3 487 6.8
Ours — Simulated v T34 617 13.3 28.5 857 223 9.8 983 634 Ours —IIDonly ¢ 87.7
Ours — Full v 34.0 61.7 333 293 97.3 46.0 57.2 48.7 10.7 Ours — full 87.5

Table 3. 360-Degree Sound Localization Prediction Results for YT-Stereo-iPhone and Stereo-Fountain Datasets. The YT-Stereo-iPhone
dataset includes rotations and translations with mostly moving sound sources, while the Stereo-Fountain dataset has mostly stationary

cameras and sound sources.

YT-Stereo-iPhone

Stereo-Fountain

Model
MAE (°) | 2clf (%) T 8clf (%) T MAE (°) | 2clf (%) T 8clf (%) 1

Chance 553 46.7 12.7 62.1 52.0 16.0
IID-direct - 57.5 - - 97.0 -
GTRot [13] 714 54.0 7.1 55.1 97.1 18.7
Ours — Simulated 73.4 61.7 13.3 28.5 85.7 22.3
Ours — IID only [13] 37.3 54.7 28.0 29.6 97.3 46.0
Ours — R&B 345 554 334 28.5 97.3 46.0
Ours — T&B 374 534 26.8 - - -
Ours — Full 34.0 61.7 31.7 28.5 97.3 46.0
Supervised - - - 33.8 98.0 49.5
Supervised — RTF - - - 27.1 98.0 49.5

using ground truth mapping of the sound source behind the
recording device to the front, followed by supervised learn-
ing.

For evaluating on the in-the-wild binaural audio bench-
mark [12], we use binary classification accuracy as the
metric. Apart from the baselines above, we compare our
model to a state-of-the-art self-supervised binaural predic-
tion method based on time delay prediction and contrastive
random walks trained on stereo sounds [12]. MonoCLR
denotes the model with instance discrimination trained on
mono sounds. GTRot [12] is trained on simulated data
HM3D-SS from SoundSpaces 2.0 [6]. StereoCRW and Mon-
oCLR are trained with FMA music samples [16] and FAIR-
Play [20]. The IID-direct is trained with the In-the-wild
audio of Chen et al. [12].

We investigated several model variants to determine
whether our model effectively uses visual cues. 1) Ours—full:
using L,ot, Lirans and Ly, 2) Ours-IIDonly: employing L,
only, 3) Ours—R&B: using L,,; and L without Ly,qps, 4)
Ours-T&B: using L;,qns and L, without the rotation loss,
5) Ours—R&T: using L,,; and Ly, q,s Without the pseudo
binaural loss, which is only supervised by the egomotion
labels, 5) Ours-simulated: training models solely on the
simulated dataset HM3D-SS 2.0 Dataset with three losses.

In GTRot, Supervised, Supervised—RTF, and our models,
the output has 32 classification possibilities. We calculate

the Mean Absolute Error by summing the product of each
possibility and the midpoint of its corresponding interval.

4.4. Results

As shown in Tab. 2, our proposed method, Ours-full, outper-
forms baselines across various in-the-wild datasets. Tested
on the Y7T-Stereo-iPhone dataset, our model achieved the best
results, showing advantages over other baselines. We tested
our models on both Y7-Stereo-iPhone and Stereo-Fountain
datasets, demonstrating robust performance across scenarios.
Visualizations are shown in Fig. 4. Our model outperforms
the method in [13], which uses stronger supervision.

When considering the sim2real gap, our simulated model
has not generalized well to Y7-Stereo-iPhone and Stereo-
Fountain. The model trained on real-world data does not
generalize well to the simulated dataset. This highlights
the necessity of training with ego-motion as supervision on
in-the-wild data for spatial sound localization.

As shown in Tab. 3, when training on specific datasets,
Ours-full achieves comparable best performance on Y7-
Stereo-iPhone and Stereo-Fountain, demonstrating the effec-
tiveness of our method. Evaluating on the previous dataset
In-the-wild audio, we fine-tuned our model trained on Y7-
Stereo, and it achieved comparable good results.
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Table 4. Overlapping sounds make in-the-wild sound localization challenging: Experiments on three simulated datasets where the camera
makes small translations in all settings. To better align with the real-world experiments, as in settings (1)(2)(3), the dataset is restricted to 30
hours, while in (4), the dataset is not limited. “Intermittent” refers to sound sources that are silent for half the time. “Overlap” refers to the

presence of multiple sound sources.

Model (1) One Source (2) Overlap (3) Overlap Intermittent (4) More Simulated Data of (3)
MAEC°)) 2clf(%)t 8clf(%)r MAE(°)] 2clf(%)t 8clf(%)t MAEC°)| 2clf(%)t 8clf(%)t MAE(°)] 2clf(%)t 8clf(%)t

Chance 394 49.0 15.0 39.4 49.0 15.0 39.4 49.0 15.0 39.4 49.0 15.0
1ID - 974 - - 80.1 - - 80.8 - - 80.8 -
GTRot [13] 4.3 97.5 84.7 22.5 83.5 335 26.9 81.5 325 19.7 87.2 41.0
Ours — [IDonly [13] 222 99.0 35.7 25.6 78.8 26.1 28.0 78.0 23.7 26.7 79.5 25.7
Ours — Full 9.8 98.3 63.4 232 87.2 36.2 24.1 82.1 35.7 23.7 824 41.2
Supervised 2.8 98.7 89.8 10.8 91.8 70.2 8.4 94.1 74.6 5.7 96.0 80.2

Table 5. Relationship between ego-translation and relative motion of sources. Experiments were conducted with various types of motion and
distances from the camera using the simulated dataset HMSS-3D 2.0 made by SoundSpaces 2.0 [6]. We report Mean Absolute Error in the
unit of degrees (°), and accuracy of 2clf and 8clf in the unit of percentage (%).

Model (1) Rotation Only (2) Translation Only (3) Rotation& Translation (4) Distant Rotation (5) Distant R&T (6) Overlap R&T
MAE| 2clff S8clff MAE] 2cIft S8clff MAE| 2clft  Sclft MAE| 2cIff S8clff MAE| 2clff S8clff MAE]| 2clff Sclff
Chance 394 49.0 150 394 49.0 15.0 394 49.0 15.0 39.9 49.2 157 39.8 49.1 15.8 39.0 495 152
1ID - 97.4 - - 97.4 - - 97.4 - - 95.6 - - 95.1 - - 73.5 -
GTRot [13] 43 97.5 84.7 - - - 4.4 97.5 84.5 4.5 97.1 820 4.7 96.7 869  28.1 79.6  30.1
Ours — IIDonly [13] 222 99.0 35.7 227 99.0 357 22.0 99.1 359 23.1 97.8 352 23.0 98.1 35.0 325 75.0 257
Ours — R&B 9.8 983 634 - - - 10.1 98.0 60.1 10.7 98.1 59.1 11.7 98.6 58.7 25.6 814 34.6
Ours - T&B - - - 232 96.0 357 23.0 95.7 35.0 - - - 22.7 96.7 35.1 30.1 725 223
Ours — R&T - - - - - - 14.7 96.3 48.3 - - - 22.5 95.0 457 26.7 79.0 292
Ours — Full 9.8 983 634 232 96.0 35.7 11.7 98.0 58.7 11.2 98.1 56.8 11.9 97.6 553 28.6 76.0 285
Supervised 2.8 98.7 89.6 2.6 99.1 899 2.6 98.9 89.5 2.7 98.8  90.0 2.5 99.0 904 12.1 86.0 654
4.5. Analysis for half of the time. (4) More Simulated Data of (3): We

Overlapping sound assumption. Previously, based on the
hypothesis that co-occurring audio and visual signals offer
“free” supervision capable of capturing geometry, including
camera motion and sound source direction, Chen et al. [13]
proposed jointly estimating camera rotation from images
and sound direction from binaural audio. Their approach
leverages geometric consistency and pseudo-binaural cues.
In that work, audio events are mostly singular or the main
sound source is significantly louder than secondary sources,
making the sound environment relatively ideal. However, in
real-world scenes, sounds may overlap and be intermittent,
making localization more challenging.

We assume that the overlapping and intermittent sounds
contribute to our model’s better generalization compared
to GTRot, the “oracle” method from [13], despite GTRot
having stronger supervision than our model. To test these
hypotheses, we conducted experiments in a simulated envi-
ronment based on SoundSpaces 2.0 [6]. Since most sounds
in natural video are overlapping and intermittent sounds, we
tested different models under the following settings: (1) One
Source: Only one sound source in the environment. (2) Over-
lap: A secondary sound source is added at a constant po-
sition, with a loudness of 0.7 relative to the main sound
source. (3) Overlap Intermittent: A secondary sound source
is added with 0.7 times the loudness of the intermittent main
sound source, where both sources are silent independently

generate additional data by pairing room impulse responses
with mono-channel audio for convolution, creating more data
pairs. In these settings, camera translations are controlled
within a small range, where the pose is restricted to a small
area. To better align with the real-world experiments, as in
settings (1)(2)(3), the dataset is restricted to 30 hours, while
in (4), the dataset is not limited.

As shown in Tab. 4, with limited data, our proposed
method surpasses previous methods in settings (2) Over-
lap and settings (3) Overlap Intermittent while in settings
(1) One Source GTRot has the best performance. This out-
come suggests that using egomotion direction instead of
angle as supervision can generalize better to more compli-
cated scenarios. Regarding settings (4) More Simulated Data
of (3), although GTRot has stronger supervision than Ours-
full, they show comparable performance, demonstrating our
method’s effectiveness.

Rotation and translation. In the internet walking tour
videos (the YT-Stereo subset), since most sounds are distant,
the absolute translation of the sound sources greatly affects
the relative translation between the sound source and the
camera. However, in terms of angular velocity, the rotation
speed of the camera itself is much greater than the rotational
speed of the sound source relative to the camera. Therefore,
we can disregard the relative translation. From experimental
results, it can be observed that removing the translation loss
from the model yields performance on par with models that
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Table 6. Evaluation of sound localization on the Stereo-Fountain
and Binaural-Fountain datasets, showing improved accuracy in
front/back localization with binaural recordings.

Dataset MAE | Left/Right Acc 1 Front/Back Acc 1

Stereo-Fountain 33.8 98.0% 51.0%
Binaural-Fountain 27.8 99.0% 69.3%

include translation loss on the Y7-Stereo dataset.

To study how camera rotation and translation affect sound
localization and identify which loss functions are dominant
in different scenarios, we conducted experiments in a sim-
ulated environment with the following settings as shown
in Tab. 5: (1) Rotation Only: Only camera rotation with
a single sound source. (2) Translation Only: Only cam-
era translation with front-back translation in the range of
0-2m. (3) Rotation&Translation: Both camera rotation and
front-back translation, with translation in the range of 0—2m.
(4) Distant Rotation: A sound source 5 meters away from the
camera, otherwise identical to setting (1). (5) Distant R&T:
A sound source 5 meters away from the camera and within
7 meters, otherwise identical to setting (3). (6) Overlap
R&T: Two sound sources, with the addition of a secondary
sound source with a constant position and 0.7 loudness to the
main sound source, otherwise identical to setting (3) Rota-
tion&Translation. In all settings, the dominant sound sources
have their movement within 0.5 meters.

Without relying on pseudo-binaural cues, our
method—guided solely by camera ego-motion—achieves
similar performance in setting (3) Rotation&Translation,
where the camera translates within 0-2 meters. This
suggests that for nearby sound sources, small camera
translations provide sufficient cues for sound localization.
However, in setting (5) Distant R&T, a new challenge
arises as sound sources are positioned further away, making
camera shifts less impactful on sound positions and resulting
in minimal angle changes.

Models trained with both rotation and pseudo-binaural
cues effectively capture distant sound localization cues. In
setting (6) Overlap R&T, with overlapping sound sources
and complex motion, our ego-motion-based approach contin-
ues to perform comparably to the best results. This highlights
the method’s adaptability, using camera movements to accu-
rately localize sounds across various challenging conditions.

Front-Back ambiguity. To explore how different record-
ing devices handle front-back sound localization, we con-
ducted an experiment to predict supervised 360° sound lo-
calization on Stereo-Fountain and Binaural-Fountain, both
recorded beside the same fountain using the microphones of
an iPhone 13 Pro and a Sennheiser AMBEO Smart Headset,
respectively. The recordings allowed us to compare how
well each setup managed 360° sound localization.

As shown in Tab. 6, the model obtained higher accu-

Audio: Footsteps Audio: Speech

Audio: Water Audio: Music

Timestamp1 Field of View Timestamp?2 Field of View

Timestamp1 GT Timestamp2 GT

Timestamp1 Prediction Timestamp2 Prediction

Figure 4. Visualizations of results in the internet walking tour
videos (the YT-Stereo subset). We show our predictions and ground-
truth annotations with angles and audio class labels.

racy on Binaural-Fountain than Stereo-Fountain. The lat-
ter dataset was recorded on an iPhone. Its stereo micro-
phone may have less variation in the audio captured from
behind versus in front of the device. In contrast, the in-ear
Sennheiser AMBEO Smart Headset offered a clearer distinc-
tion, which may be due to the extra cues provided by the
wearer’s ear or head.

5. Conclusion

We propose a method and dataset for in-the-wild sound local-
ization. Our method is trained without labeled data. Instead,
it obtains its supervision from visual camera motion and bin-
aural audio cues. Through our experiments on in-the-wild
and simulated data, we find that this egomotion supervision
aids sound localization.

Limitations. While our work introduces the first in-the-
wild sound localization training dataset and corresponding
evaluation sets, the challenges of low-quality stereo au-
dio and prevalent overlapping sounds complicate our data-
cleaning process. Filtering valid clips from numerous unla-
beled monocular videos captured in the wild may result in
overlooking brief sound effects.

Future work. We anticipate that future research will ad-
dress these limitations by incorporating more visual and
contextual data. We see our work as a step toward creating
sound localization methods that work in challenging real-
world conditions, and a step toward multimodal methods
that learn geometric information from unlabeled data.
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