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Figure 1. Humans and Structure from Motion (HSfM). We propose a method for the joint reconstruction of humans, scene point
clouds, and cameras from an uncalibrated, sparse set of images depicting people. By explicitly incorporating humans into the traditional
Structure from Motion (SfM) framework through 2D human keypoint correspondences and leveraging robust initialization from an off-the-
shelf model for scene and camera reconstruction, our approach demonstrates that integrating these three elements—people, scenes, and
cameras—synergistically improves the reconstruction accuracy of each component. Unlike prior work in SfM and human pose estimation,
our method reconstructs metric-scale scene point clouds and camera parameters, informed by human mesh predictions, while situating
human meshes in coherent world coordinates consistent with the surrounding environment without any explicit contact constraints.

Abstract

We present “Humans and Structure from Motion” (HSfM),
a method for jointly reconstructing multiple human meshes,
scene point clouds, and camera parameters in a met-
ric world coordinate system from a sparse set of uncali-
brated multi-view images featuring people. Our approach
combines data-driven scene reconstruction with the tradi-
tional Structure-from-Motion (SfM) framework to achieve
more accurate scene reconstruction and camera estimation
while simultaneously recovering human meshes. In con-

trast to existing scene reconstruction and SfM methods that
lack metric scale information, our method estimates ap-
proximate metric scale by leveraging the human statisti-
cal model. Furthermore, our method reconstructs multi-
ple human meshes within the same world coordinate sys-
tem with the scene point cloud, effectively capturing spatial
relationships among individuals and their positions in the
environment. We initialize the reconstruction of humans,
scenes, and cameras using robust foundational models and
jointly optimize these elements. This joint optimization syn-
ergistically improves the accuracy of each component. We
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compare our method with existing methods on two chal-
lenging benchmarks, EgoHumans and EgoExo4D, demon-
strating significant improvements in human localization ac-
curacy within the world coordinate frame (reducing error
from 3.59m to 1.04m in EgoHumans and from 3.01m to
0.50m in EgoExo4D). Notably, our results show that incor-
porating human data into the SfM pipeline improves cam-
era pose estimation (e.g., increasing RRA@15 by 20.3% on
EgoHumans). Additionally, qualitative results show that
our approach improves scene reconstruction quality. Our
code is available at muelea.github.io/hsfm.

1. Introduction
In recent years, combining deep learning with multi-view
geometry has led to significant advances in two key ar-
eas: 3D human reconstruction [16, 23] and scene recon-
struction [48, 53]. However, progress in these domains has
largely evolved independently. Human reconstructions of-
ten lack anchoring within their surrounding scenes, while
scene reconstructions typically exclude people and fail to
recover metric scale. In this paper, we propose a unified
framework that bridges these two elements.

We introduce Humans and Structure from Motion
(HSfM), a new method that enables the joint reconstruction
of multiple human meshes, scene point clouds, and camera
parameters within the same metric world coordinate sys-
tem as shown in Figure 1. From a sparse set of uncali-
brated multi-view images featuring people, our approach
combines data-driven scene reconstruction with the tradi-
tional Structure-from-Motion (SfM) framework to enhance
the accuracy of scene and camera reconstruction while si-
multaneously estimating human meshes. The reconstruc-
tion process is initialized using robust foundational models
for scene reconstruction [53] and human reconstruction [16]
and further refined through joint optimization. This op-
timization incorporates a global alignment loss on scene
pointmaps and bundle adjustment based on 2D human key-
point predictions [59], significantly enhancing the accuracy
of the three components of world reconstruction—humans,
scenes, and cameras. Our overall pipeline is depicted in
Figure 2.

Unlike existing approaches to multi-view scene recon-
struction [41, 42, 53, 60] and human pose estimation [8, 23,
55], HSfM recovers the metric scale of scene point clouds
and camera poses while situating human meshes within a
unified world coordinate system. The comprehensive out-
put of HSfM facilitates the capture and evaluation of spatial
relationships among individuals, ensuring consistency with
the surrounding environment. Furthermore, unlike prior
multi-view human pose estimation methods that depend on
precise camera calibration [12, 20, 64], our approach oper-
ates with minimal constraints on the capture setup and does

not require prior knowledge of the environment.
Our approach is founded on two key insights. The first

insight is that deep learning-based human mesh estimation
inherently contains metric scale information, as the predic-
tions reflect the statistical human size present in the training
datasets, thereby constraining the scale of the scene. The
second insight is that robust 2D human keypoint predictions
and 3D human mesh estimations provide precise correspon-
dences and reliable initial 3D structures for bundle adjust-
ment. Note that for the purpose of this work, we assume
known re-identification of people across camera views.

We evaluate our approach on two challenging bench-
marks, EgoHumans [24] and EgoExo4D [17], which fea-
ture individuals participating in a variety of indoor and
outdoor activities across diverse environments. We as-
sess the accuracy of human mesh reconstruction by com-
paring our method to other approaches that estimate hu-
man poses in a world coordinate frame [56]. Additionally,
we compare camera pose accuracy against learning-based
dense scene reconstruction methods, such as DUSt3R [53]
and MASt3R [26]. Our approach demonstrates substan-
tial improvements in camera pose estimation compared to
existing methods while accurately positioning individuals
within the scene. Specifically, it achieves approximately a
3.5-fold improvement in human metrics, reducing the hu-
man world location error from 3.51m to 1.04m on Ego-
Humans, and delivers camera metric improvements of ap-
proximately 2.5 times compared to the most relevant base-
line [55]. These results underscore the effectiveness of our
method, which leverages the joint reconstruction of multi-
ple human meshes, scene point clouds, and cameras, sup-
ported by robust initialization for humans [16] and cam-
eras [53]. We further validate our design through ablations
which show the synergy between humans, scenes, and cam-
eras. Our qualitative results highlight that the joint opti-
mization of people (multiple humans), places (scenes), and
cameras not only enhances human localization but also im-
proves scene reconstruction and camera pose estimation.

In summary, we present Humans and Structure from Mo-
tion (HSfM), which provides a comprehensive representa-
tion of the world—encompassing people, places, and cam-
eras—marking a step forward in understanding complex
real world environments.

2. Related Work
Research in multi-person mesh reconstruction and Structure
from Motion has seen substantial progress showing remark-
able domain-specific results (see Tab. 1). Building on these
foundational works, our approach unifies these areas.

Structure from Motion. Structure from Motion
(SfM) [5, 15, 19] aims to reconstruct camera poses and
3D scene geometry from a set of images by establishing
pixel correspondences across views. Traditional SfM Meth-
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Figure 2. Pipeline of Humans and Structure from Motion. Our method processes synchronized images from an uncalibrated multi-
view camera setup with known person correspondences across views. We utilize pretrained networks to estimate 2D human keypoints per
image [59], 3D human mesh [16], scene point clouds in a pointmap representation, and camera intrinsic and extrinsic parameters [53]. We
first initialize these estimates in a common world coordinate system by recovering the scene scale ↵ and human locations (global translation
in the world coordinate) �, as described in Section 4.1. We then jointly optimize humans, the scene, and cameras using bundle adjustment
based on 2D human keypoints, 3D human meshes, and a global alignment loss that merges per-view pointmaps into the same world space.

Local Pose Multi-Person Stat. Scale Camera Places
HMR2 [16, 23] 3 7 7 7 7
Multi-HMR [2] 3 3 3 7 7
SLAHMR [61] 3 3 3 3 7
UnCaliPose [55] 3 3 3 3 7
DUSt3R [53] 7 7 7 3 3
MASt3R [26] 7 7 3 3 3

HSfM 3 3 3 3 3

Table 1. Comparison of methods across different features. Pre-
vious works in human pose estimation like HMR2, SLAHMR,
Multi-HMR, and UnCaliPose has made great progress in recon-
structing body poses in single- and multi-person setups from im-
ages. Recent methods like DUSt3R and MASt3R are able to
recover accurate camera poses and scene points clouds (places).
This includes reconstructions with statistically correct scale (Stat.
Scale) which can be obtained from human body models, e.g. in
SLAHMR, or, as in MASt3R, from world knowledge. Our ap-
proach, HSfM, is the first to jointly reconstruct multiple people,
scene, and cameras from sparse uncalibrated multi-view images.

ods [1, 9, 10], such as COLMAP [41, 42] employs key-
point detection, matching based on locally invariant de-
scriptors [4, 30, 40], and incremental bundle adjustment
to estimate camera poses and sparse 3D points. However,
these traditional approaches are highly sensitive to noise
at each stage of their sequential pipeline and require spe-
cific conditions for input, such as a large number of camera
views with substantial overlapping image areas.

Learning-based SfM methods replace one or more com-
ponents of the traditional SfM pipeline with data-driven ap-
proaches [3, 11, 28, 39, 62]. Recently, dense matching-
based SfM [7, 21, 45, 50, 51, 70] has shifted from sparse
keypoints to dense, data-driven approaches. DUSt3R [53]
and more recent works [13, 26] exemplify this by predicting
dense 3D pointmaps without requiring camera calibration.

However, as these methods primarily focus on scene struc-
ture, they do not estimate human poses and face challenges
in reconstructing pixels corresponding to people. In con-
trast, our approach robustly recovers both human poses and
scene structure simultaneously.

SfM with Humans. Several recent works have lever-
aged humans in the scene as cues to overcome the limita-
tions of traditional Structure from Motion (SfM) methods in
challenging scenarios with minimal overlap or wide base-
lines. Ma et al. [32, 36] introduce the concept of Virtual
Correspondences (VCs), which are pairs of pixels from dif-
ferent images whose camera rays intersect in 3D space, even
if the points are not co-visible. Similarly, Xu et al. [58] ad-
dressed wide-baseline multi-camera calibration by employ-
ing 2D keypoint associations from people across different
cameras, obtained by person re-identification methods. Xu
and Kitani [56] extended this work by sequentially solving
for person re-identification, camera pose estimation, and 3D
human pose estimation using multi-view geometry and bun-
dle adjustment in an optimization pipeline. While our ap-
proach aligns with this line of research, it differs by jointly
optimizing people, places (scene pointmaps), and cameras.

Multi-view human reconstruction. In controlled en-
vironments with known camera parameters, multi-view re-
construction leverages geometric consistency for accurate
3D pose estimation, reducing single- and multi-person tasks
to a triangulation problem [49] with a long history of re-
search. Recent works explore setups with unknown cam-
era poses by employing end-to-end learning methods that
jointly estimate camera parameters and 3D poses [18, 63].
However, these methods are often limited to single-person
scenarios [63] or do not incorporate scene context [18]. Ex-
isting multi-person methods focus on re-identification [6,
12, 22] or, for video, on re-identification and tracking [20].
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In contrast to previous work, our approach does not require
camera calibration. Instead, we leverage the human body
structure and data-driven SfM methods to achieve accurate
human pose and camera estimates.

3. Preliminaries and Notation
Setup. Our method takes as input an uncalibrated, sparse
set of C images capturing people in a scene at a single mo-
ment in time. We denote each image as I

c, c = {1 . . . C},
corresponding to each camera, with resolution H

c ⇥ W
c.

We assume humans have been associated across views.
Given this input, our method jointly reconstructs humans,
scene, and cameras in a metric 3D world.
Human. For all of the following, we represent humans in
the scene via a human body model, SMPL-X [35]. SMPL-
X is a differentiable function that maps pose, ✓ 2 SO(3)

J ,
and shape, � 2 RB to a triangulated mesh with J joints.
This mesh can be placed in the world via two additional
parameters, orientation, � 2 SO(3), and translation, � 2
R3. We model multiple people, i.e. h 2 {1 . . . H} humans.
In summary, a human, h, in the world is defined via

H
h
= {�h

, ✓
h
, �

h
, �

h}. (1)

Cameras. To project 3D points onto an image, I 2
RH⇥W⇥3, we use a perspective camera model with intrin-
sics, K 2 R3⇥3 with focal lengths (fx, fy) and princi-
pal point (W/2, H/2), and extrinsics with rotation, R 2
SO(3), and translation, t 2 R3. Existing methods produce
camera estimates that are not necessarily scaled to real-
world size. To address this, we introduce a scaling param-
eter, ↵, which adjusts the distance between cameras while
preserving their relative directions. With these parameters a
3D point, x

3D can be projected to 2D via

x2D = K(Rx3D + ↵t). (2)

The pixel coordinates, (u0
, v

0
) = (

u

w
,
v

w
) are obtained from

x2D = [u, v, w]
>. K

c and R
c
/t

c denote the in- and extrin-
sics of camera c 2 {1, . . . C}.
Scene. We represent the scene via per-view pointmaps [53],
S 2 RW⇥H⇥3, a dense pixel-aligned 3D location for its
corresponding image I in the world coordinate frame. S

c

denotes the pointmap of an image c. A nice property of
pointmap formulations is that we can express them through
camera estimates and depth maps. For an image pixel (i, j) ,
its corresponding pointmap’s world coordinate can be writ-
ten as

Si,j = ↵(R
>
[K

�1
Di,j [i, j, 1]

>
]� R

>
t). (3)

This formulation unprojects a pixel (i, j) using its depth
value Di,j and K, and maps it to the world coordinate sys-
tem through R

>, �R
>

t, i.e. the camera-to-world transfor-
mation defined by R and t, and scaling.

4. Humans and Structure from Motion
Our method takes as input an uncalibrated, sparse set of im-
ages capturing people in a scene at a single moment in time.
Given this input, our goal is to jointly estimate each person’s
human parameters, the scene, and the camera parameters.
Our key insight is that jointly reasoning about people, scene
structure, and cameras improves all three aspects of recon-
struction. To achieve this, we integrate global scene opti-
mization from recent scene reconstruction methods with the
traditional Structure-from-Motion (SfM) formulation. This
integration leverages 2D human keypoints as reliable corre-
spondences and 3D human meshes as robust 3D structures
for bundle adjustment. Please also refer to Figure 2.

Our joint optimization approach has several advantages.
By incorporating human mesh predictions, the method in-
troduces metric scale into the reconstruction process, lever-
aging statistical information about human body dimensions.
The cameras and 2D human keypoints enable precise posi-
tioning of individuals within the world coordinate system,
allowing for the recovery of their heights and relative dis-
tances. Additionally, correspondences of 2D human key-
points enhance camera calibration, which in turn improves
scene reconstruction. The scene structure further stabilizes
the camera pose registration, creating a feedback loop that
refines the overall system. The result is a globally consistent
reconstruction of humans, scenes, and cameras, providing
a comprehensive understanding of the environment. Since
this is an under-determined problem, we take advantage of
data-driven 3D human [16] and scene [53] reconstruction
methods to provide initializations. Note that our method
can easily integrate other mesh regressors tailored towards
estimating non-standard body size such as BEV [46].

4.1. Initialization of World
The initial estimates of humans, scene structure, and cam-
eras are derived from different networks and therefore ex-
ist in separate coordinate systems. Our objective is to align
these components within a unified world coordinate system,
a process we refer to as the initialization of the world. To
achieve this, we estimate the metric scale that aligns the
scene pointmaps and cameras with the humans.

One may simply start the optimization by setting the
scale ↵ = 1. However, since SfM reconstructions are up-
to-scale, the magnitude of t may vary significantly in ev-
ery reconstruction. If the SfM scene is too small relative to
people, cameras may be in-front of the humans, e.g. when
the scene is placed inside the human mesh, leading to de-
generate solutions. Setting alpha to arbitrary big value can
prevent this, but makes the problem prone to local minima.

We propose an analytical method to approximate a con-
sistent reconstruction using data-driven outputs of 2D/3D
human keypoints and camera parameters. Initially, we
roughly position individuals within the scene by estimat-
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ing �, based on the predicted 2D/3D human keypoints and
the focal length from K̃, following a similar approach to
Ye et al. [61]. Next, we calculate the initial scale ↵ of
the data-driven SfM-predicted world by aligning the data-
driven with human-centric camera positions.

Specifically, we first obtain each camera’s rotation, R̂
c,

using the estimated 3D human body orientation, �̃. This
leverages the fact that the human’s orientation should re-
main consistent in the world coordinate frame across differ-
ent views. Assuming a reference camera, c1, and an anchor
person, �̃

h, we recover each camera’s rotation by solving

(R̂
c
)
>
= (R

c1)
>

�̃
hc1(�̃

hc
)
>

. (4)

We pick the anchor person h based on the best view cover-
age w.r.t. to the 2D joint confidence scores.

We estimate the camera translation by first estimating the
location of the person � in the world using the data-driven
focal length prediction from K̃ and the size of the predicted
human following the similar triangle ratio using the average
2D and 3D bone lengths as done in Ye et al. [61]. Because
the human position in the world coordinate frame should re-
main consistent when viewed from any camera, we recover
camera position T

c in the world coordinate frame via

T̂
c
= �̃

c1 � (R̂
c
)
>

�̃
c
. (5)

Finally, given the camera positions T̂ derived from the hu-
mans and the data-driven camera position predictions T̃ , we
solve a least-squares problem to compute ↵̂, which aligns
the scene pointmap S and the camera translation t with the
metric-scale world defined by the humans H̃ . The scaling
factor ↵̂ provides a reasonable approximation of the metric
scale. For the initial estimates of H̃ , we rely on an estimate
from a reference camera in practice. Please see the project
page supplementary video for an animated illustration.

4.2. Reconstructing People, Places, and Cameras
After initializing the world, we jointly optimize the humans,
depth maps, and cameras using a global scene optimization
loss and bundle adjustment guided by 2D human keypoint
predictions. The objective function is defined as follows:

min
{↵,�,�,�,✓,R,t,K,D}

LHumans + �LPlaces. (6)

To gradually guide the optimization towards the global
minimum, we first optimize {↵, �, �} with � = 0. Then,
we set � and optimize {�, �, �, ✓, R, t, K, D}. The result
of this optimization is a metric-scale world with consistent
humans, scene, and cameras.
Bundle adjustment based on human keypoints: We de-
fine the bundle adjustment objective as follows:

LHumans =
1

HC

CX

c=1

HX

h=1

L
ch

J
+

1

H

HX

h=1

L
h

�
. (7)

The term LJ denotes the re-projection error between the 3D
joints of the current estimate with the estimated camera and
detected 2D keypoints by ViTPose [59]:

L
ch

J
=

1

b
ch

2D
||cch2D(J

ch

2D � K
c
(R

c
J
h

3D + ↵t
c
))||2 (8)

The keypoint loss for each person, h, and camera, c, is
normalized by the bounding box height b

ch

2D of the 2D hu-
man detection and detected keypoints weighted by their es-
timated confidence scores c

ch

2D. We further regularize human
body shape, �̃, to stay close to the average shape of the hu-
man body model:

L
h

�
= ||�h||2. (9)

The output of this optimization is people in plausible size
and locations in the world coordinate frame. Please refer to
the supplementary material for implementation details.
Global scene optimization: We adapt the global alignment
loss from DUSt3R [53], which originally optimizes camera
and world pointmaps. Intuitively, this loss takes pairs of
cameras, say A and B (ci and cj), with the predicted content
of ci in B’s view. The alignment loss transforms this “A’s-
content-in-B’s-view” to the world coordinate frame where
it’s compared against the optimized global scene pointmap,
which is A’s content in the world.

More formally, the global alignment loss aligns per-view
pointmaps into a joint world space, i.e. {Sc 2 RH⇥W⇥3}
for c = 1 . . . C. To achieve this, the alignment loss takes
cross-view pointmaps X

ci,cj for two cameras (ci, cj) 2 E ,
with i, j = 1 . . . C and E being the set of all pairs of cam-
eras with i 6= j. The notation, X

ci,cj , describes cross-view
pointmaps, meaning that the pointmap X

ci of camera ci is
expressed in the coordinate frame of camera cj . Pairwise
transformation matrices P

ci,cj!w 2 R3⇥4, i.e. the transfor-
mation matrix for camera pair ci, cj that brings cj’s content
to the world coordinate frame. The global alignment loss
term is defined as

LPlaces =
X

(ci,cj)2E

HWX

i=1

Q
ci,cj
i

||Sci
i
��ci,cj!wP ci,cj!wX

ci,cj
i

||,

(10)
where Q

ci,cj

i
are predicted per-pixel confidence maps.

�
ci,cj!w is a scaling factor associated to the pair (ci, cj).

Note that different from DUSt3R [53], we don’t regularize
it to avoid a trivial optimum, since the scale is constrained
by humans. We omit � and P in Eq. 6 for clarity, but they
are still optimized together following DUSt3R.

5. Experiments
We evaluate HSfM’s effectiveness in terms of human pose
estimation within the world coordinate system and camera
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(a) EgoHumans - Initial state (b) EgoHumans - After optimization

(c) EgoExo Scene 1 - Initial (d) EgoExo Scene 1 - Optimized (e) EgoExo Scene 2 - Initial (f) EgoExo Scene 2 - Optimized

Figure 3. Qualitative results from HSfM. We show our optimized result on sequences from EgoHumans (top) and EgoExo4D (bottom).
Note how in the Initial state (left) people are floating in the air (a), how the scene and human scale is not aligned (e), and how noisy the scene
appears (c). Our method resolves these problems by grounding people in the scene (b), recovering plausible metric scale (f), and better
camera estimates (d). We achieve this without scene contact constraints, which often require assumptions about the environment—such
as flat terrain—or about motion, such as the assumption that humans are always in contact with the ground (i.e., no jumping). For more
qualitative results, including a demo on images taken in the wild with a minimal capturing setup, please see our supplementary material.

accuracy, and show qualitative results of our joint optimiza-
tion on humans, scene pointmaps, and cameras.
Evaluation Datasets: We evaluate on EgoHumans [24]
and EgoExo4D [17]. EgoHumans is a multi-view, multi-
human benchmark for human pose estimation, featuring
videos of 2-4 people in real-world activities. EgoExo4D is a
large-scale dataset of people performing tasks like dancing,
playing music, or bike repair; see Sup. Mat. for details.
Evaluation Metrics: We report metrics for humans and
cameras. For people, we use the Mean Per-Joint Posi-
tion Error (MPJPE). We report W-MPJPE, the metric mea-
sured in the world coordinate system, and PA-MPJPE, its
Procrustes-Aligned version, measuring the local pose accu-
racy. We introduce Group-Aligned MPJPE, (GA-MPJPE),
which evaluates the relative distance after Sim(3) alignment

between people. All metrics are reported in meters.

For cameras, we report average camera translation er-
ror TE, i.e. the mean euclidean distance in meters between
predicted and ground truth camera translations after SE(3)
alignment. TE evaluates accuracy in the metric predic-
tion. We also report the Sim(3) aligned version, s-TE. AE
measures the camera Angle Error, i.e. the mean Euclidean
distance between predicted and ground truth camera rota-
tion. RRA [52] evaluates the Relative Rotation Accuracy
by comparing the relative rotation between two predicted
cameras with the corresponding ground truth. CCA [27]
assesses the Camera Center Accuracy by directly compar-
ing the predicted and ground truth camera poses. While
Lin et al. [27] reported CCA only after optimal Sim(3)
alignment, we provide results for two variants: the default
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Method Human Metrics Camera Metrics
W-MPJPE# GA-MPJPE# PA-MPJPE# TE# s-TE# AE# RRA@10" RRA@15" CCA@10" CCA@15" s-CCA@10" s-CCA@15"

Eg
oH

um
an

s UnCaliPose* [55] 3.51 0.67 0.13 2.63 2.63 60.90 0.28 0.39 - - 0.33 0.44
DUSt3R [53] - - - - 1.15 11.00 0.61 0.74 - - 0.49 0.74
MASt3R [26] - - - 4.97 0.92 10.42 0.61 0.74 0.06 0.07 0.65 0.86
HSfM (init.) 4.28 0.51 0.06 2.37 1.15 11.00 0.52 0.79 0.26 0.38 0.49 0.74
HSfM (Ours) 1.04 0.21 0.05 2.09 0.75 9.35 0.72 0.89 0.32 0.46 0.75 0.91

Eg
oE

xo
4D

UnCaliPose* [55] 3.59 - 1.19 2.21 0.98 63.98 0.20 0.31 - - 0.26 0.37
DUSt3R [53] - - - - 0.34 10.06 0.81 0.88 - - 0.64 0.84
MASt3R [26] - - - 1.03 0.36 9.11 0.81 0.90 0.09 0.17 0.70 0.81
HSfM (init.) 5.80 - 0.08 1.27 0.34 10.06 0.81 0.88 0.05 0.10 0.64 0.84
HSfM (Ours) 0.50 - 0.07 1.01 0.34 10.39 0.80 0.89 0.05 0.14 0.70 0.84

Table 2. Evaluation on EgoHumans and EgoExo4D. HSfM outperforms existing human and scene reconstruction methods, delivering
metric-scale reconstructions for humans, the scene, and cameras within the same world coordinate system. Our approach shows major
improvement over the initial estimates HSfM (init.), obtained from DUSt3R [53] and HMR2 [16] (Section 4.1), particularly when multiple
humans are present in the scene, as seen in EgoHumans, compared to a single individual in EgoExo4D. Additionally, HSfM surpasses
MASt3R in metric-scale camera metrics, demonstrating the benefit of human size for recovering scene scale. All baselines and our method
use four cameras on EgoHumans and up to six cameras on EgoExo4D. Human and camera translation metrics are reported in meters.

Method Human Metrics Camera Metrics
W-MPJPE# GA-MPJPE# PA-MPJPE# TE# s-TE# AE# RRA@10" RRA@15" CCA@10" CCA@15" s-CCA@10" s-CCA@15"

M0: HSfM (init.) 4.28 0.51 0.06 2.37 1.15 11.00 0.52 0.79 0.26 0.38 0.49 0.74
M1: S & C w/o LHumans 3.94 0.57 0.10 2.13 1.1 10.93 0.52 0.79 0.27 0.40 0.48 0.77
M2: w/o LPlaces 1.29 0.24 0.05 2.82 0.87 13.02 0.50 0.73 0.16 0.24 0.72 0.88
M3: HSfM (Ours) 1.04 0.21 0.05 2.09 0.75 9.35 0.72 0.89 0.32 0.46 0.75 0.91

HSfM (init.) 3.87 0.70 0.06 1.88 1.15 11.34 0.47 0.77 0.23 0.37 0.38 0.69
1 Human 1.69 0.58 0.06 1.91 1.21 10.31 0.52 0.82 0.27 0.44 0.44 0.68
2 Humans 1.66 0.49 0.06 1.84 1.10 9.41 0.62 0.87 0.33 0.45 0.53 0.75
3 Humans 1.41 0.38 0.06 1.69 0.93 8.21 0.74 0.92 0.32 0.46 0.58 0.78
4 Humans 1.28 0.39 0.06 1.52 0.77 8.11 0.74 0.90 0.34 0.53 0.73 0.90

Table 3. Ablation study. We demonstrate the advantages of our joint optimization by removing each terms on the EgoHumans dataset.
The results indicate that joint optimization is crucial for achieving a coherent reconstruction of cameras and humans. We also perform an
ablation study to investigate how the number of humans included affects both camera and human pose estimation in the world coordinates
by varying the number of people to include in the optimization using a subset of EgoHumans containing scenes with four people. The
results reveal that the effect scales with the number of humans, highlighting the importance of leveraging multiple individuals.

metric computed after SE(3) alignment, and s-CCA, com-
puted after Sim(3) alignment. RRA, CCA, and s-CCA are
reported for a threshold ⌧ following the previous litera-
ture [13, 27, 52, 53]. Note that W-MPJPE, TE, and CCA
evaluate absolute Euclidean error, while GA-MPJPE, PA-
MPJPE, s-TE, and s-CCA evaluate errors up to scale. For
further details, please refer to the supplementary material.

5.1. Results
We compare human and camera estimation baselines on
EgoHumans and EgoExo4D (Tab. 2), including UnCali-
Pose [55], DUSt3R [53], and MASt3R [26]. UnCaliPose
jointly reconstructs humans and cameras using SfM but
does not reconstruct the scene and relies on ground truth
bone lengths during testing. For a fair comparison, we as-
sume known re-identification across views, use ViTPose for
UnCaliPose and HSfM, and apply DUSt3R’s focal length to
UnCaliPose. Since no existing approach jointly estimates

people, places, and cameras at metric scale from sparse
multi-view images, we also report HSfM (init.), the state
after our initialization in Sec. 4.1.

On EgoHumans, HSfM (init.) outperforms UnCaliPose
in scale-normalized human metrics, reducing GA-MPJPE
by approximately 24% and PA-MPJPE by over 50%. It
nearly doubles relative rotation accuracy compared to Un-
CaliPose with RRA@10 and RRA@15 improvements of
86% and 100%, respectively. These gains show the strength
of leveraging HMR2 and DUSt3R for initialization.

Our optimization further improves results: W-MPJPE
drops from 4.28m in HSfM (init.) to 1.04m in HSfM,
demonstrating the effectiveness of our approach in resolv-
ing scale ambiguity and accurately positioning humans
within the world. The camera metrics also improve sub-
stantially, surpassing DUSt3R’s initial outputs and outper-
forming MASt3R, reducing TE from 4.97m to 2.09m and
achieving about seven times better CCA@15. These results
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highlight the advantages of incorporating humans into the
reconstruction process to achieve a consistent metric-scale
world, consistent with the findings of Zhao et al. [68].

Similar trends observed in EgoExo4D further validate
the effectiveness of our method. HSfM achieves substan-
tially better human metrics compared to UnCaliPose, re-
ducing W-MPJPE from 3.59m to 0.50m and PA-MPJPE
from 0.13m to 0.07m. For metric-scale camera metrics,
HSfM outperforms HSfM (init.), improving CCA@15 by
33%. The improvements in scale-invariant camera metrics
are smaller than on EgoHumans, likely due to heavy indoor
occlusions affecting 2D keypoint predictions and the use
of only one person in EgoExo4D. Similarly, MASt3R esti-
mates slightly more accurate camera centers (CCA@10/15)
on EgoExo4D while HSfM is on-par and slightly better on
the scale-invariant version (s-CCA@10/15). This is likely
due to a single person being less effective for estimating
scene scale; an effect we ablate in Tab. 3 on EgoHumans
where we also observe a single person to be less efficient for
estimating scene scale compared to more people. In con-
trast, EgoHumans benefits from multiple individuals, pro-
viding more 2D keypoint correspondences and strengthen-
ing optimization. Our ablation study confirms this trend.
Ablations: We validate the importance of jointly optimiz-
ing humans, scenes, and cameras in Table 3. The first vari-
ant, M1, detaches the gradients from the human loss to the
scene and camera parameters while still optimizing all pa-
rameters. Essentially, the cameras and scene do not adjust to
minimize the human losses. This leads to minor W-MPJPE
improvement (4.28m to 3.94m) and slightly higher GA-
MPJPE (0.51m to 0.57m). Camera metrics nearly stagnate
(RRA@15, CCA@15) since human losses do not influence
the optimization of camera and scene. The second variant,
M2, optimizes cameras and humans solely based on the hu-
man loss, excluding the scene loss. Interestingly, this sig-
nificantly improves W-MPJPE (4.28m to 1.29m) and GA-
MPJPE (0.57m to 0.24m), indicating accurate recovery of
human world locations and relative distances. However, the
camera metrics degrade considerably: CCA@15 by 36.8%,
and RRA@15 by 7.6%. Without scene losses, the struc-
ture fails to anchor the cameras and overfits to human key-
points. This behavior is similar to the limitations observed
in UnCaliPose, which relies solely on human keypoints for
SfM. In contrast, our full method (M3) achieves the best
metrics, reducing W-MPJPE and GA-MPJPE to 1.04m and
0.21m, respectively, and increasing RRA@15 by 22% and
CCA@15 by 21%. This highlights the importance of jointly
optimizing humans, scenes, and cameras to achieve a coher-
ent and accurate metric-scale reconstruction.

We conduct an ablation study to investigate the impact
of the number of humans on camera estimation and its sub-
sequent effect on human metrics in the world coordinate
system. As shown in the table, adding more humans consis-

tently improves camera pose estimation, particularly by re-
ducing camera translation error. This improvement directly
contributes to achieving the lowest W-MPJPE, accurately
reconstructing human locations in the world.

The results highlight that increasing the number of hu-
mans, i.e. introducing more correspondences for Structure-
from-Motion (SfM), strengthens the bundle adjustment pro-
cess. This validates our strategy of integrating global scene
optimization techniques from recent scene reconstruction
methods with the traditional SfM formulation. Our ap-
proach effectively leverages 2D human keypoints as reliable
correspondences and 3D human meshes as robust struc-
tures to enhance bundle adjustment and produce coherent,
metric-scale reconstructions.

Please refer to the supplementary material for an ablation
study on camera/scene scale initialization and the impact of
the number of cameras.
Qualitative Results: See Figs. 1 and 3 for qualitative re-
sults on EgoHumans and EgoExo4D and our Sup. Mat. for
an in-the-wild demo with images we captured using a min-
imal setup of just two cell phones. Figure 3 shows interme-
diate optimization steps, where in the beginning, people are
floating around in mid air. After joint optimization, their
feet are consistent with the environment, without any ex-
plicit contact constraints. The structure also improves as
pointmaps are more coherent around the ground. Please
note that the human point cloud is not used as prior for hu-
man reconstruction, i.e. noisy point clouds or gaps do not
directly affect the human reconstruction accuracy. Despite
clear improvements in human localization, we sometimes
observe scenes with slightly uneven ground planes indicat-
ing that scene reconstruction remains a challenging prob-
lem. Nonetheless, our approach improves camera metrics
and scene reconstruction qualitatively (see Fig. S.3).

6. Conclusion

In this work, we propose Humans and Structure from Mo-
tion, HSfM, which optimizes humans, cameras, and scenes
in a joint framework. We build on the success of data-driven
learning in two parallel domains – 2D/3D human recon-
struction [16, 59] and scene reconstruction [53]. However,
neither of these approaches is able to reconstruct humans,
scenes, and cameras coherently. Our experiments verify
the synergy between these three elements — integrating hu-
man reconstruction into the classic SfM task not only prop-
erly places people in the world, but also significantly im-
proves camera pose accuracy. Despite promising results, as
optimization-based framework our approach can be sensi-
tive to hyper-parameters. In future work, it would be in-
teresting to explore this synergy in a feed-forward frame-
work with integrated re-ID or leverage recent work like
MONSt3R [66] to extend our insights to videos.
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