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Figure 1. Using only 3-5 images of a novel concept/subject, we personalize Large Multimodal Models (e.g., Chameleon [1]) so that they
retain their original capabilities while enabling tailored language and vision generation for the novel concept.

Abstract

Large Multimodal Models (e.g., GPT-4, Gemini,
Chameleon) have evolved into powerful tools with millions
of users. However, they remain generic models and lack
personalized knowledge of specific user concepts. Previous
work has explored personalization for text generation, yet it
remains unclear how these methods can be adapted to new
modalities, such as image generation. In this paper, we intro-
duce Yo’Chameleon, the first attempt to study personaliza-
tion for large multimodal models. Given 3-5 images of a par-
ticular concept, Yo’Chameleon leverages soft-prompt tuning
to embed subject-specific information to (i) answer questions
about the subject and (ii) recreate pixel-level details to pro-
duce images of the subject in new contexts. Yo’Chameleon is
trained with (i) a self-prompting optimization mechanism to
balance performance across multiple modalities, and (ii) a

“soft-positive” image generation approach to enhance image
quality in a few-shot setting. Our qualitative and quantita-
tive analyses reveal that Yo’Chameleon can learn concepts
more efficiently using fewer tokens and effectively encode
visual attributes, outperforming prompting baselines.

¶ denotes equal advising

1. Introduction

Recent advances in Large Multimodal Models (LMMs) have
transformed them into versatile, general-purpose AI assis-
tants [1–6]. These models are increasingly being integrated
into everyday applications, offering enhanced performance,
improved efficiency, and support for multiple modes of com-
munication. The ability to process both visual and textual
information within a single system—as demonstrated by
models like GPT-4o [2] and Gemini [4]—has streamlined
user interactions and improved query comprehension.

Modern LMMs enable seamless two-way communica-
tion through both text and images. Users can input queries
combining natural language and visual elements, and the
models can respond with both textual descriptions and gener-
ated images. For instance, when asked to “Describe a Shiba
Inu dog and generate a photo of it”, these AI assistants can
now provide comprehensive responses that combine detailed
descriptions with visual representations.

While LMMs excel at general tasks, they face limitations
when handling personalized queries. For example, if asked
“Can you describe <bo> and generate a photo of <bo> read-
ing books in library?” these models cannot provide accurate
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responses without prior knowledge of the specific pet (e.g., a
dog named <bo>). This highlights a crucial gap in their ca-
pabilities, as human interaction with the world is inherently
personal — we engage with our own devices, pets, friends,
and environments. To create more meaningful AI interac-
tions, LMMs need mechanisms to learn, understand, and gen-
erate user-specific concepts, enabling them to evolve from
general-purpose tools into personalized assistants (Fig. 1).

Personalization techniques have been extensively stud-
ied for LLMs [7–11] and image generation models [12–18],
demonstrating significant progress in these individual do-
mains. Recent works [19–21] have begun exploring person-
alization for vision-language models like LLaVA, which can
take both image and text as inputs but only generate textual
outputs. Despite this progress, the challenge of personaliz-
ing LMMs — which require both personalized text/image
understanding and generation capabilities remains largely
unexplored. In this paper, we identify two key challenges
in extending personalization to these more comprehensive
multimodal systems. To be specific, we focus on Large Mul-
timodal Models that capable of understanding and generating
images and text (e.g., Chameleon [1]).

The first challenge is catastrophic forgetting. Image gen-
eration tasks require granular information of new concepts,
typically necessitating part/full model fine-tuning to achieve
satisfactory results (e.g., [12]). However, LMMs store both
visual and textual information, and our empirical studies
show that fine-tuning for image generation (e.g., similar
to [12]) causes the model to rapidly lose its world knowl-
edge, compromising its functionality as a general-purpose AI
assistant. Conversely, soft prompt learning [22, 23], which
introduce learnable tokens to encode new concepts while
keeping the model frozen, is effective for personalized im-
age understanding tasks [19]. Although, our experiments
reveal that soft prompt learning with only 3-5 user images
fails to produce high-quality image generation results.

To address this challenge, we first identify that the lim-
ited number of training images is a key factor preventing
soft prompt learning from matching full model fine-tuning’s
performance. Our study demonstrates that with ∼300 real
images of a concept, soft prompt learning can achieve compa-
rable performance to full-model fine-tuning while preserving
the LMM’s pretrained knowledge. However, since users typ-
ically only provide 3-5 images for a new concept (positive
images), this is not a practical solution. Drawing from this
analysis, we propose leveraging “soft-positive” images that
share significant visual similarities with positive samples to
enrich the training data. To effectively utilize these “soft
positive”, we implement an adaptive prompt length strategy
where the prompt length varies based on the visual similarity
between “soft-positive” and positive samples. For instance,
when training the model to recognize a user’s Shiba Inu, we
utilize images of similar-looking Shiba Inu with adaptive

prompt lengths to augment the limited training data. The
more similar the “soft-positive” image is to the real positive
images, we will use longer soft prompt to describe it.

The second challenge is the incompatibility between im-
age generation and understanding capabilities within LMMs.
Our experiments reveal that soft prompt optimized for one
task cannot effectively transfer to the other. Specifically,
when soft prompt trained for image understanding (text gen-
eration) are used to for image generation, the LMM produces
irrelevant visual content. This phenomenon aligns with prior
work [23–25] suggesting that optimized textual representa-
tions for one task might not be interpretable. Jointly training
the soft prompt on both tasks might seem like an intuitive
solution, however, our empirical results show this approach
leads to suboptimal performance for both tasks (Fig. 4).

To enable effective personalization across both tasks, we
propose using dual soft prompts — one specialized for text
generation and another for image generation. This approach
demonstrates superior performance compared to using a
single set of prompts. Additionally, we introduce a self-
prompting mechanism where the model first determines the
task type (i.e., understanding or generation) before respond-
ing to queries, allowing it to better utilize the appropriate set
of prefix tokens for each task.

In summary, our contributions are:
• We introduce the first attempt of personalization with

Large Multimodal Models (i.e., models that capable of
understanding and generating images and text).

• We present a novel “soft-positive” concept with dynamic
prompt length to enhance the image generation quality.

• We propose a novel approach, in which use two set of soft
prompts and self-prompting optimization techniques to
balance the performance across the modality.

2. Related Work
Personalization for Large Multimodal Models. Large
Language Models (LLMs) [26–29] and text-to-image mod-
els [30–34] have made tremendous progress recently, demon-
strating extensive knowledge and excelling at text and image
generation, respectively. Vision-language models [35–40]
have emerged as a bridge between these modalities, capable
of processing image-text inputs and generating textual out-
puts. Building upon this, researchers have developed unified
Large Multimodal Models (LMMs) [1–5] that capable of
understanding and generating both images and text.

However, these foundational models typically possess
generic knowledge, making personalization a crucial and ac-
tive research area. For LLMs, personalization often involves
storing descriptions of personalized subjects as prompts in
databases for reference during user interactions [7, 9, 41]. In
image generation, researchers typically fine-tune either the
entire model or specific components to incorporate visual
knowledge [12, 14–16, 24, 42, 43]. Recent work by [19, 20]
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proposes personalizing vision-language models through soft
prompts to enable recognition and discussion of user-specific
objects. Despite these advances, personalization of unified
image/text generation models remains unexplored. Our work
addresses this gap by investigating the challenges and poten-
tial solutions in this emerging area.

Parameter-Efficient Fine-Tuning (PEFT). Fine-tuning
large pretrained models is often suboptimal due to compu-
tational costs and the risk of catastrophic forgetting. Conse-
quently, numerous PEFT methods have been introduced to
optimize a small subset of parameters (or introduce extra pa-
rameters) for downstream tasks [22, 44, 45]. In the domain
of LLMs, prompt tuning (or soft-prompts) has emerged as
an effective approach to adapt pretrained language models
for various tasks, such as tool utilization [23] and text classi-
fication [22]. This approach has recently been extended to
personalize vision-language models [19]. However, existing
vision-language model approaches (e.g., [19]) primarily fo-
cus on text generation objectives. Our experiments reveal
that naively extending their soft-prompting approach to en-
compass both text and image generation yields suboptimal
results, as these tasks are not naturally complementary. To
this end, we propose a self-prompting technique where the
model first predicts the task type before generating the re-
sponse. This approach effectively resolves the challenges of
personalizing models with multi-modal outputs.

Hard negative image mining. Negative images have been
widely used in the computer vision community [46–49]. In
vision-language model personalization, [19] employs this
technique to enhance personal object recognition. For image
generation personalization, [12, 18] utilize negative exam-
ples as regularization to prevent model forgetting of class-
level information. SuTI [50] and COTI [51] leverage nega-
tive images that are visually similar to personalized objects
to establish a better initialization that facilitates easier adap-
tation to the target personalized object. However, unlike
them which treats all negative images equally, we pursue a
more nuanced approach. We propose an adaptive soft prompt
length mechanism based on the visual similarity between
negative images and positive examples. Specifically, we treat
these negative images as “soft-positive” examples, allocate
more prompt length to “soft-positive” images that exhibit
higher visual similarity to the positive examples, allowing
for more fine-grained representation learning.

3. Yo’Chameleon

Given a handful of images of a concept that we want to learn
I1, I2, ..., In (typically 3-5 images), our goal is to enable
LMMs (i.e., Chameleon [1]) to embed the concept into a
special token (e.g., <sks>) and to perform: (1) Personalized
language generation (e.g., “Describe <sks>”; or given an

Figure 2. Image Reconstruction. The generated image, conditioned
on a personalized prompt, is compared with the ground truth image
to calculate the image reconstruction loss.

image, “Where is <sks> in this image?”); and (2) Personal-
ized vision generation (e.g., “Generate a photo of <sks>”).

We first present how to present novel concept for as learn-
able prompt for LMMs (Sec. 3.1). Subsequently, we outline
how to achieve personalized image generation (Sec. 3.2).
Finally, we discuss how to unify both image generation and
understanding capabilities within a single model (Sec. 3.3).
As we chose Chameleon [1] as our base model, we named
our method Yo’Chameleon, with Yo (short for Your) adopted
from Yo’LLaVA’s [19] personalization of LLaVA [37].

3.1. Representing a Concept as a Learnable Prompt
In image generation, prior work demonstrated that prompt
tuning can effectively encode visual concepts for personal-
ization [13, 24, 25]. This success has extended to vision-
language models, where studies like [19, 23] show that
prompt tuning can effectively encode novel visual attributes
for text-only generation and image understanding. Build-
ing on this paradigm, we propose to represent personalized
subjects as learnable prompts for LMMs:

“<sks> is <token1><token2>. . .<tokenk>.”

where <sks> is a learnable unique identifier for this new
concept, and <tokeni> are the learnable tokens which
should encode visual information of that concept. This ap-
proach offers computational efficiency by only requiring
updates to a small subset of parameters (i.e., tokens) while
preserving the original core model weights.

In the context of Chameleon [1], a model that we choose
to build upon in this work, an image is broken down into
a series of image tokens, wrapped by special tokens which
indicate the start-of-image <soi> and the end-of-image
<eoi>. The training objective for both image and text
remains consistent with standard autoregressive modeling,
where the model learns to predict the next token in the se-
quence conditioned on the previous tokens. Thus, training
for personalization follows an instruction-tuning paradigm,
where the loss computation is specifically focused on the
response portion of the instruction-response pairs. Given
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Figure 3. “Soft positive” images. Retrieved images are ranked
according to their similarity to positive images using CLIP image
similarity scores. Images that are more similar to the actual positive
images are described with more latent tokens (i.e., more details).

the conversation pair (Xi
q,X

i
a), where Xi

q is the question,
and Xi

a is the corresponding answer, the masked language
modeling loss for each conversation of length L by:

p(Xa) =

L∏
j=1

pθ(xj |Xa,<j), (1)

where Xa,<j are the instruction and answer tokens in all
turns before the current prediction token xj . θ is the train-
able parameters, in this case, including the concept identifier
<sks>, k latent tokens, and the final classifier head matrix
W of the language model that associated with these tokens.

3.2. Personalizing Image Generation
A straightforward approach to personalization would be to
directly train soft prompt on a limited set of n positive im-
ages. However, optimization with such limited data often
yields suboptimal results. To this end, researchers have
explored two primary approaches to expand the training sam-
ples: (1) data augmentation (e.g., background inpainting) to
treat augmented images as additional positive training sam-
ples [17, 52, 53], and (2) leveraging hard-negative samples
as an initialization, in which we first train on these negative
images, then add an additional step to fine-tune the results
with a limited number of positive examples to enhance per-
sonalization [50, 51, 54]. Empirical evidence suggests that
utilizing real negative examples produces superior results
compared to synthetic data augmentation approaches.

Motivated by this, in our approach, we retrieve hard-
negative images, but unlike prior work [50, 51], we use
them as “soft positive” images. The key insight is that hard
negative images can share varying degrees of similar charac-
teristics with the positive samples, and thus should contribute
differently to the learning process. Taking the same example
of an user’s pet (a Shiba Inu) again, in this scenario, each
negative image can function as a “soft positive” to varying
extents. The similarity ranges from less to more similar neg-
ative images: for example, “A dog” (least similar), followed
by “A dog with a yellow coat” (more similar), and so on.

Figure 4. Optimized tokens for one task cannot effectively perform
another, and simply training on a mixture of data yields suboptimal
performance across tasks. We propose a self-prompting approach,
where the model predicts which task to perform first, achieving the
best of both worlds. (Input images are given in Fig. 1).

Specifically, given N retrieved negative images, we rank
them from most to least similar to the average feature
of the positive samples (based on CLIP image similarity
score [55]); Then, we divide them into k − 1 groups, each
containing roughly N/(k − 1) images, according to their
ranking. During training, we implement an adaptive token
allocation strategy: negative images with higher similarity
scores are assigned more learnable tokens, allowing for more
detailed representation of relevant features. The complete set
of tokens is reserved exclusively for the true positive images
<sks>, ensuring that the model maintains the ability to dis-
tinguish the target concept while leveraging relevant features
from similar soft positive examples. Fig. 3 illustrates this
hierarchical token allocation strategy.

3.3. Personalizing Image and Language Generation
For text generation and image understanding tasks, we fol-
low the approach in [19] to create a training dataset, which
comprises two primary components: recognition data and
question-answering data. For recognition data, we construct
a balanced dataset containing the handful of positive exam-
ples alongside both 100 easy negative examples and 100 hard
negative examples. For question-answering, we adopt the
template in [19], which includes 10 questions (e.g., “What
type of object is <sks>?”). We use GPT-4o [2] to generate
answers for these questions using the positive images.

To achieve our goal of personalizing LMMs for both
text and image generation capabilities, a straightforward
approach would be to simultaneously train soft prompt us-
ing both the understanding data (recognition and question-
answering) with image generation data (mentioned in the
Sec. 3.2). However, our experiments reveal that naive joint
training with mixed data leads to degraded performance
compared to task-specific training.

As shown in Fig. 4, when tokens are trained exclusively
for language generation, their application to image gener-
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Figure 5. Self-prompting mechanism. When multiple tasks are
presented, the model first predicts which information (latent tokens)
should be used for this task first, and then performs the task.

ation tasks results in outputs that fail to capture the target
concepts (1st column). Conversely, tokens optimized solely
for image generation prove inadequate for text generation
tasks (2nd column). Furthermore, we find that joint train-
ing yields a compromised solution that underperforms in
both domains, suggesting that the model struggles to learn
representations that effectively serve both objectives simulta-
neously (3rd column). This observation aligns with previous
work [23–25] which suggests that tokens optimized for one
specific task may lack semantic relevance for other tasks.

To overcome this limitation, we propose using two se-
ries of learnable tokens, each dedicated to a specific task.
Specifically, the personalized concepts are represented as:

“<sks> is <g-tokens><u-tokens>.”

where <g-tokens> and <u-tokens> represent k and
h learnable tokens for image generation and understanding.

During training, to force the model to learn the dis-
tinct roles of the two sets of tokens, we create the training
data such that the model first predicts which set of tokens
(<g-tokens> vs. <u-tokens>) will be used for the
task. We refer to this as “self-prompting” as the model needs
to prompt itself first; Fig. 5 shows examples. For instance,
for text understanding tasks (e.g., “What kind of object is
<sks>?”), the target output first includes <u-tokens>,
followed by the actual answer. The same technique is ap-
plied for image generation tasks. By requiring the model to
first predict the appropriate token set, we force it to align the
corresponding tokens with each task.

This is partially inspired by [23], where multiple tokens
are used for calling different tools/tasks (e.g., mathematics,
robot actions, etc). However, the key difference is that the
task token in [23] is solely used for tool calling. In our
approach, these tokens not only serve as task-mode calling
tokens (i.e., for image or text generation) but also function
as latent tokens, which contain the information needed to
perform the task. This approach is flexible and could be
adopted to other modalities as well (e.g., audio), and self-
prompt tokens could be designed in a different way. We
leave these possibilities for future work.

4. Experiments
Training. Unless otherwise stated, we use n = 4 input im-
ages per concept and k = h = 16 tokens to form a learnable

prompt for each task, resulting in a total of 32 latent tokens
for personalized concepts. For optimization, we employ
AdamW [56] with a learning rate of 1× 10−4. Each concept
is trained for 15 epochs, with the best checkpoint selected
based on a composite score averaging recognition accuracy
and generation quality (measured by CLIP image similarity
with training examples). All experiments are conducted on
an A100 GPUs with a batch size of 4.

We choose Chameleon [1] as our base model due to its
simplicity in objective function (autoregressive for both text
and image generation) and its unified LMM architecture. It
is worth noting that our method generalizes to other LMMs,
as it relies solely on token-level optimizations rather than
model-specific architectures. While Chameleon was not orig-
inally published with image generation capabilities, we use
the checkpoint from Anole [57], which recovered these capa-
bilities through fine-tuning on an image generation dataset.

Baselines. The most straightforward baseline is using
the base model (Chameleon [1]) with personalized text and
image prompting. For personalized text prompting, we first
obtain detailed captions of each concept by providing refer-
ence images to GPT-4o [2]. These captions are then human-
audited, and appended to Chameleon’s system prompt (e.g.,
“<sks> is a cinnamon-colored Shiba Inu with...”). For per-
sonalized image prompting, we append the reference im-
age(s) (e.g., “This is a photo of <sks><image>”). Ad-
ditionally, we compare our approach with GPT-4o [2], a
proprietary multimodal chatbot, using the same two types of
personalized text and image prompts.

Dataset. We utilize the Yo’LLaVA dataset [19], which
consists of 40 subjects (10 humans and 30 non-human con-
cepts). For negative images, we retrieve them from LAION-
5B [58] based on the average CLIP Image Similarity [55]
score between retrieved images and the mean feature repre-
sentation of positive examples. After filtering NSFW content,
we obtain approximately 1,000 negative images per concept.
These images serve as “soft-positive” examples, with the top
100 most similar images designated as hard-examples for
recognition. Additionally, we randomly sample 100 easy-
negative examples from LAION-5B [58], which remain con-
sistent across all concepts. In total, approximately 1,100
negative images are used for training each concept.

Metrics. To evaluate image understanding and text gen-
eration, we assess the model’s recognition accuracy and
question-answering ability. In total, there are 333 positive
and 13,000 negative images for recognition. During testing,
we present a photo and ask the model “Is <sks> in this
photo?” The ground-truth answer is either “Yes” or “No”.
We use a weighted accuracy metric to balance the positive
and negative classes, following the protocol in [19]. For
question-answering, we provide multiple-choice questions
(A or B) with 100 visual and 400 text-based questions.

For image generation, we produce 100 images per concept
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Figure 6. Qualitative comparison with Chameleon [1] and GPT-4o [2] on image prompting. Yo’Chameleon (Ours) demonstrates more
precise and personalized image generation.

using the prompt “A photo of <sks>” and compute the CLIP
Image Similarity Score [55] between the generated images
and positive examples. Additionally, in ablation studies, we
further extend our analysis by reporting the Facial Similarity
Score between the generated and positive images for 10
human faces (where applicable) using the off-the-shelf facial
feature extractor ArcFace [49].

4.1. Personalized Language Generation
Tab. 1 shows the recognition and question-answering abili-
ties of the evaluated models. The vanilla Chameleon model,
lacking personalized concept information, performs essen-

tially at random (0.474–0.500) on both tasks. With the addi-
tion of personalized text prompts, Chameleon’s performance
improves (0.523–0.727). Image prompting shows mixed
results. When given a single example (∼1k column), it
improves question-answering but does not enhance recog-
nition accuracy. Providing multiple images (∼4k column)
generally leads to a drop in performance on both tasks.

Notably, our approach outperforms Chameleon across
all language generation tasks, with the recognition accuracy
increases significantly (0.727 to 0.845). We achieve these im-
provements using fewer tokens (32) compared to the detailed
text (∼64) or image (∼1k) prompting of Chameleon.
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Ours Chameleon Chameleon [1] + Prompt GPT-4o [2] + Prompt

Type Learnable ∅ Text Image Text Image

# tokens 32 0 ∼64 ∼1k ∼4k ∼64 ∼1k ∼4k

Recognition Accuracy 0.845 0.500 0.727 0.361 0.327 0.841 0.902 0.915

Question Answering
Visual 0.604 0.474 0.523 0.580 0.547 0.923 0.867 0.887
Text 0.721 0.405 0.716 0.573 0.231 0.798 0.982 0.978

Image Generation
CLIP-I 0.783 0.425 0.566 0.487 0.589 0.636 0.657⋆ 0.680⋆

Facial Sim 0.212 0.009 0.012 0.013 0.059 0.028 0.036⋆ 0.063⋆

Table 1. Comparisons with Chameleon [1] and GPT-4o [2] using personalized
image/text prompts. Our approach achieves significantly improved personalized
image generation capabilities.
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Figure 7. Number of Prompting Tokens vs. Personal-
ized Image Generation Quality.

We also present GPT-4o’s results for reference. GPT-
4o performs well with both text and image prompts. For
recognition tasks, our approach achieves comparable results
(0.845 vs. 0.902) while requiring significantly fewer tokens
(32 vs. ∼1k). For question answering, GPT-4o demonstrates
better performance. This discrepancy can be attributed to
two factors: (1) our use of a less powerful base model (i.e.,
Chameleon), and (2) the question data from [19] being rel-
atively simple and generic (e.g., “What is the color of this
subject?”, “What material is this subject made of?”), where
text descriptions as prompt are often sufficient. This ex-
plains why we achieve comparable results in recognition
tasks, which require more fine-grained visual details. There-
fore, we believe our approach offers value in terms of token
efficiency while maintaining competitive performance.

4.2. Personalized Image Generation

Personalized image generation is generally a more challeng-
ing task than language generation. This is because recreating
novel concepts with pixel-level detail is much more complex
than simply answering questions based on existing refer-
ences. In these cases, our learnable prompts with Chameleon
clearly show advantages, outperforming all other methods
by a significant margin. Specifically, Tab. 1 clearly shows
that Yo’Chameleon achieves the highest CLIP Image Simi-
larity Score (0.783), significantly surpassing the scores for
Chameleon with either Image/Text Prompts (0.566–0.487).

When compared with GPT-4o [2], we find that GPT-4o
generally captures high-level semantic details of personal-
ized concepts reasonably well with both image and text
prompts (i.e., 0.636–0.657). However, it struggles to capture
the nuanced details of personalized subjects (see Fig. 6). This
limitation is evident in the Facial Similarity Score, where we
compare generated images to real images of 10 human faces.
GPT-4o’s generated images show low similarity to the actual
person (e.g., 0.028–0.036), while Yo’Chameleon generated
images more accurately capture facial details, making it far
more suitable for personalization.

5. Ablation Studies

In all subsequent studies, we use 10 human faces from the
Yo’LLaVA [19] dataset, and evaluate the Facial Similar-
ity Score between the generated and positive images using
ArcFace [49], which is specifically trained to distinguish nu-
anced differences between faces, providing a reliable metric
for personalization generation. We ablate the: (1) impor-
tance of “soft positive” images, (2) number of “soft positive”
images, (3) number of learnable tokens for the image genera-
tion task, and (4) different training strategies. As the focus of
the first three experiments is on image generation, we train
only with image generation data for these experiments, while
the last one is trained with a mixture of data. The number of
trainable tokens for each task are set to k = 16.

Importance of “soft positive” images. We compare our
gradually added negative images with three main baselines:
(1) Positive only (2–3 images), (2) Data augmentation via in-
painting (1000 images), and (3) Soft Positive Images (Ours).
For data augmentation, we first use SAM [59] to extract the
foreground of the subjects, then randomly resize the sub-
ject to 30–70% of the 512x512 image size, and inpaint the
background using Stable Diffusion-XL [60]. We generate
100 background captions with GPT-4o [2], which are then
human-audited. Results are presented in Fig. 8 (first plot).
As shown, while data augmentation improves the results
compared to training with positive images only, it still falls
short of the performance achieved by “soft positive” images.

Number of augmented/ “soft-positive” images. We
next investigate the impact of varying the number of soft
positive images (including both hard-negative and inpainting-
augmented samples) used during training. Results demon-
strate that using soft positive images consistently outper-
forms augmented images (Fig. 8, second plot). This superior-
ity likely stems from the inherent limitations of segmentation
and inpainting models for augmented data.

Number of learnable tokens. With the number of “soft-
positive” images fixed at 1,000, we vary the number of train-
able tokens k from 0 to 64. k = 0 means no latent tokens are
trained for this task. Overall, increasing the number of train-
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Figure 8. Ablation studies for image generation tasks. Overall, using “soft positive” and increasing the latent tokens boost performance.

able tokens improves the quality of image generation (Fig. 8,
third plot). Quantitatively and qualitatively, we find that 16
tokens achieve reasonable results for most concepts, mak-
ing it an effective and compact choice. For higher-quality
image generation, one may increase the number of latent
tokens. Empirically, we also note that, although the gener-
ated subjects appear visually similar, there is still room for
improvement in the accuracy of generated human faces (e.g.,
current facial similarity is 0.212, while the threshold for a
good human facial similarity would be 0.4 or higher).

Different training strategies. Our approach employs
separate tokens for each task (understanding and generation)
with self-prompting prior to prediction. We next validate this
design. We begin by training the same set of tokens for two
different tasks (Shared learnable prompt, in Table 2). Results
indicate that using a single set of tokens and training them
specifically for each task achieves optimal performance for
that particular task. For example, (1) Language data only:
achieves the best recognition accuracy but fails to generate
images. For (2) Image generation data only, we explore three
variations: (2.1) Positive only: training exclusively with pos-
itive images; (2.2) Negative + Finetune: treating all negative
samples equally during training across all tokens, followed
by fine-tuning with positive images; and (3) Soft-positive
(Ours): gradually incorporating more tokens as soft-positive
images become more similar to true positives. Our results
demonstrate that the soft-positive strategy achieves the best
results. (3) Training on mixture data yields intermediate
scores across both tasks, suggesting that generation and un-
derstanding tasks may not trivially be complementary.

The above findings suggest two key insights: (1) our pro-
posed approach of adaptively setting soft-positive images
with varying token lengths is more effective for generation
tasks, and (2) shared learnable prompts are suboptimal when
handling multiple tasks simultaneously, necessitating sepa-
rate token sets for different tasks.

For the separate learnable prompts approach, we also ab-
late different strategies: (1) Concatenate: training two sets of
tokens independently for each task and concatenating them

Acc. (↑) CLIP-I (↑) Face Sim (↑)

Shared learnable prompt (16 tokens in total)
Language data only 0.784 0.120 0.032
Image generation data only

Positive only 0.104 0.678 0.188
Negative + Finetune 0.004 0.711 0.193
Soft positive 0.108 0.742 0.225

Mixture data 0.564 0.687 0.193
Mixture data (32 tokens) 0.562 0.684 0.194

Separated learnable prompt (32 tokens in total)
Concatenate 0.502 0.615 0.156
Concatenate + Finetune 0.251 0.648 0.189
Self-Prompting (Ours) 0.747 0.761 0.224

Table 2. Ablation studies on different training strategy. We use
recognition accuracy to evaluate understanding capability, and
CLIP and Face similarities for image generation quality.

at test time; (2) Concatenate + Fine-tune: extending strategy
(1) with an additional fine-tuning step post-concatenation;
and (3) Self-prompting (Ours): our proposed mechanism that
first predicts prompt tokens before making the actual predic-
tion. Results demonstrate that our self-prompting approach
achieves optimal performance, matching the effectiveness of
task-specific token training.

6. Conclusion

We presented the first attempt to personalize Large Multi-
modal Models (LMMs) for both vision and language under-
standing and generation tasks. We introduced a dual prefix
prompt architecture with a self-prompting mechanism to
achieve strong performance in both understanding and gen-
eration capabilities. We also proposed a novel soft-positive
training strategy that leverages hard-negative samples to en-
hance generation quality in spite of limited user data. Exper-
imental results demonstrated that our approach successfully
maintains the model’s general knowledge while enabling
effective personalization across both tasks, representing a
significant step toward making LMMs more personally rele-
vant for real-world applications.
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