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Abstract

Contrastively-trained Vision-Language Models (VLMs) like
CLIP have become the de facto approach for discriminative
vision-language representation learning. However, these
models have limited language understanding, often exhibit-
ing a “bag of words” behavior. At the same time, Large
Vision-Language Models (LVLMs), which combine vision
encoders with LLMs, have been shown to be capable of de-
tailed vision-language reasoning, yet their autoregressive
nature renders them less suitable for discriminative tasks.

In this work, we propose to combine “the best of both
worlds”: a new training approach for discriminative fine-
tuning of LVLMs that results in strong discriminative and
compositional capabilities. Essentially, our approach con-
verts a generative LVLM into a discriminative one, unlock-
ing its capability for powerful image-text discrimination
combined with enhanced language understanding.

Our contributions include (1) A carefully designed train-
ing/optimization framework that utilizes image-text pairs of
variable length and granularity for training the model with
both contrastive and next-token prediction losses. This is
accompanied by ablation studies that justify the necessity
of our framework’s components. (2) A parameter-efficient
adaptation method using a combination of soft prompting
and LoRA adapters. (3) Significant improvements over
state-of-the-art CLIP-like models of similar size, includ-
ing standard image-text retrieval benchmarks and notable
gains in compositionality.

1. Introduction
Contrastively-trained Vision Language Models (VLMs)
(e.g. CLIP [40]) have become the predominant direction
for vision-language representation learning, exhibiting re-
markable zero-shot abilities [20, 29, 32, 40, 53]. However,
the great success of these models in many vision-language
and vision tasks, even in a zero-shot manner, “sweeps under
the rug” some of their important limitations. Specifically,
such models struggle to exhibit advanced language under-
standing capabilities, suffer from a limited understanding

of compositionality, and manifest a bag of words behav-
ior [26, 52]. For example, even with bag of words behavior,
VLMs have shown remarkable zero-shot retrieval accuracy
on the Flickr [51] and COCO [34] datasets. Still, they per-
form poorly on a simple word order permutation task on the
same datasets [52]. Unfortunately, these issues persist even
when the model and the dataset size increase [18].

Concomitantly, inspired by the success of LLMs [5, 48]
in acting as generalist assistants [14], a series of works
combine pretrained vision encoders and LLMs [27, 28, 55]
to construct Large Vision-Language Models (LVLMs) ca-
pable of performing interactive multi-modal conversations.
Among others, these models have been shown capable
of exhibiting strong reasoning and vision-language under-
standing capabilities, offering fine-grained and detailed re-
sponses [10, 12, 27, 28]. However, they are trained with
a next-token prediction loss in an autoregressive manner,
which appears less suitable for direct utilization in discrim-
inative image-text tasks (e.g. image-text retrieval).

To our knowledge, the very recent (concurrent) work
[22] is the first one to show that, with appropriate prompt-
ing, LVLMs can serve as zero-shot discriminative models.
Importantly, [22] advocates for a text-text optimization ap-
proach, stating that contrastive image-text fine-tuning has a
detrimental effect on the model’s performance. In contrast
to [22], we propose a new training framework for discrimi-
native image-text fine-tuning of LVLMs, aiming to convert
the original generative LVLM into a discriminative one,
thereby significantly enhancing its capability for image-text
discrimination while preserving the compositional strengths
of the original model.

In our approach, following the (independent) two-towers
paradigm, the vision embeddings are produced by passing
the image through the entire LVLM, and the text embed-
dings by passing the text through the LLM of the LVLM.
Intuitively, for the vision embedding, the LLM acts as an
information processor that refines the visual information
while simultaneously aligning it with the textual represen-
tations. We coin our approach VladVA: Vision-Language
Adaptation for Discriminative Visual Assistant. Our main
contributions are:
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• We devise a carefully designed optimization framework
that utilizes image-text pairs of variable length and gran-
ularity for model training (i.e. both short and long cap-
tions). Using this data, the model is trained with both
contrastive and next-token prediction losses, which are
both shown to be necessary for unlocking strong dis-
crimination and compositionality capabilities. Our design
choices are accompanied by ablation studies, which jus-
tify the necessity of our framework’s components.

• To facilitate efficient training, we show how the model
can be fine-tuned using a parameter-efficient adaptation
method based on a combination of soft prompting [31]
and LoRA adapters [19]. We show the positive impact of
both components.

• We report significant improvements over state-of-the-art
two-tower models (e.g. CLIP-like models) of similar size
on standard image-text retrieval benchmarks (+4.7-7.0%
gains in absolute terms). Moreover, we report notable
gains on several vision-language understanding and com-
positionality benchmarks (up to +15%).

2. Related work

2.1. Large Vision Language Models (LVLMs)

Inspired by breakthrough research in language modeling [5,
21, 46, 48], a series of methods seek to combine pretrained
LLMs and vision encoders to construct Large Vision Lan-
guage Models (LVLMs) capable of processing image-text
data jointly [3, 12, 33, 35, 36, 49, 50, 55]. The prevalent
strategy consists in aligning the features produced by a pre-
trained vision encoder to the textual space assumed by a pre-
trained LLM using a projection module, e.g. LLaVA [36],
following a two-stage alignment procedure. Follow-up
works expand this to interleaved image-text data [1, 28]
and multiple input crops [1] while seeking to improve the
model’s efficiency [11].

Despite their strong generative and comprehension abil-
ities [35], current LVLMs are primarily restricted to gen-
erative tasks. Only very recently, Jiang et al. [22], in-
spired by the recent progress in NLP [4, 25] adapted a
LLaVA-NeXT [27] model to discriminative tasks using a
contrastive-like loss and text data only. We note that un-
like [22], we introduce a training framework that learns
from multi-turn image-text pairs (as opposed to text only)
using a novel formulation that jointly combines a con-
trastive loss with a next-token prediction, reflecting the
data characteristics and inducing a gradual representation
buildup. Concurrently, VLM2Vec [23] adapts an LVLM for
multi-modal retrieval. However, it uses a different loss and
training strategy (no generative loss, no short-long captions
training, no soft prompting). We compare our approach
with both E5-V and VLM2Vec, significantly improving
upon their results despite using smaller/lighter models.

2.2. Discriminative Vision-Language Models
The prevalent approach for training Discriminative VLMs
follows the two-tower contrastive approach pioneered by
CLIP [40], whereby an image and text encoder are trained
on web-collected image-text pairs to learn a joint multi-
modal (i.e. vision and language) space. Subsequent works
build upon CLIP by scaling the data [7, 42, 53], improving
the architecture using late/early interactions [30] or improv-
ing the training loss [8, 53]. Despite their remarkable zero-
shot and representation learning abilities [40] such models
were shown to have significant shortcomings related to lim-
ited language understanding capabilities, including: lack
of compositionality understanding [26], manifesting bag of
words behavior [52], struggling with spatial relations [26],
being susceptible to typographical attacks [16], etc. Recent
works aim to address these shortcomings by constructing
synthetic hard negatives [52] or performing cross-modality
attention [30]. However, the former does not inherently
change the model’s behaviors and has been shown to poten-
tially learn a series of shortcuts/artifacts [18]. Meanwhile,
the latter is impractical for deployment at scale, as, due to
the interactions between the encoders, each new query in-
curs an additional inference for every image within the set.

To alleviate these shortcomings and improve the overall
capabilities of such models, we depart from the prevalent
approach of training VLMs using a contrastive loss and, in-
stead, propose a new approach that seeks to convert gener-
ative LVLMs into discriminative models by adapting them
using a newly proposed framework that combines genera-
tive and discriminative objectives.

3. Method

Herein, we present VladVA (Vision-Language Adaptation
for Discriminative Visual Assistant), our novel approach for
discriminative fine-tuning of LVLMs that results in strong
discriminative and compositional capabilities. This section
is structured as follows: Sec. 3.1 briefly introduces the ar-
chitecture, detailing how LVLMs can be used as discrimi-
nators in a zero-shot manner. Sec. 3.2 details the core com-
ponent of our approach: a carefully designed optimization
framework that utilizes image-text pairs of variable length
and granularity for training the model with both contrastive
(Sec. 3.2.1) and next-token prediction (Sec. 3.2.2) losses,
showcasing that contrastive is best with short captions and
autoregressive with long captions. In Sec. 3.3, we present
our parameter-efficient adaptation, while Sec. 3.4 analyzes
how the model’s behavior changes after training.

3.1. LVLMs as zero-shot discriminative models
LVLMs consist of an LLM Φt, a vision encoder Φv , and

a module g that projects the vision features into the LLM’s
textual space. Once fine-tuned, such models can produce
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Figure 1. Overall VladVA framework: a generative LVLM is adapted into a discriminative model with the help of (1) a contrastive
training loss (Sec. 3.2.1), and (2) an autoregressive loss (Sec. 3.2.2). The first one is applied on image-text pairs with short(er) captions,
encouraging the last token produced by both modalities to be discriminative. The second one, jointly optimized with the first one, is applied
only on longer captions and allows the model to learn fine-grained details.

a textual answer xa = Φt(g(Φv(xv)),xq) when presented
with an input image xv and a text query (or prompt) xq .

Despite being solely trained with an autoregressive next-
token prediction loss on limited amounts of data (< 5M),
such models can act as multi-modal discriminative models
in a zero-shot manner [22]. To elicit this capability, the im-
age embedding fv = Φt(g(Φv(xv),x

v
p))[eos] is obtained

by passing the image alongside a handcrafted image prompt
xv
p (e.g., “in one word, describe the image”) through the

LVLM and taking the output representation of the last to-
ken. Analogously, the text embedding ft = Φt(x

t
p,xq)[eos]

is produced by passing the handcrafted text prompt xt
p (e.g.,

“in one word, describe the text”) and input query xq through
the LLM (of the LVLM) and taking again the output repre-
sentation of the last token. We will refer to these particular
tokens as “summary tokens” (summarizing image and text
information, respectively). Note that, typically, the respec-
tive handcrafted prompts for the image (xv

p) and text (xt
p)

modalities are different. Finally, the similarity between an
image and a text query can be computed by taking the co-
sine similarity between the two: s = cos sim(fv, ft).

Image Text

Figure 2. Entropy of the output probability distribution at the
next-to-be-predicted token location using a LLaVA-1.5-7B for a
set of 50 prompts for both images and captions.

What makes a good prompt? Zero-shot adaptation by
prompting already provides decent results despite the task
changing from generation to discrimination. To shed some
light, herein, we study (a) what makes a good prompt and
(b) how we can identify it.

To answer these questions, we construct a testbed con-

Image Text

Figure 3. Cumulative variance of the image and text embed-
ding matrices over a set of 50 prompts on Flickr30k. Embeddings
that capture more information about the input translate into a cu-
mulative variance that requires more principal components to be
explained, i.e. a higher-rank embedding matrix.

sisting of 1,000 image-caption pairs from Flickr30k [51],
which we then use to evaluate the quality of various
prompts. The prompts (50 image-text pairs in total) are con-
structed using ChatGPT. Each prompt pair is fed, alongside
an image and its respective caption, through the LLaVA-
1.5-7B model. For each image-prompt pair and caption-
prompt pair, we extract the token embedding at the out-
put position and the corresponding output probability dis-
tribution over the vocabulary. These are then used to com-
pute two metrics for each prompt: the average entropy of
its output distributions and the cumulative variance of its
embeddings. As Figs. 2 and 4 show, when the model is
prompted with sentences consisting of specific keywords,
such as in a few words or in one word, the model
is pushed to condense the information of the image or text in
the next token, resulting in an output distribution with high
entropy. More importantly, when investigating the gener-
ated embeddings, we observe that higher entropy prompts
result in embeddings with more spread-out cumulative vari-
ance, i.e. requiring more principal components to capture
the same amount of variance, indicating an embedding ma-
trix with a high rank (see Fig. 3). This translates into dis-
criminative embeddings that can capture more information
about the inputs, making them suitable for embedding tasks.
The benefit of this behavior is illustrated in Fig. 5, which
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Figure 4. Top-k next-to-be-predicted tokens before and after VladVA fine-tuning (our approach). On the right, we show the output
probability distribution for each case. When using the best prompt (“Summarize the provided image in one word”), the representations of
the next token can encode diverse and more discriminative information, making potentially better-quality embeddings. This behavior is
further improved after VladVA fine-tuning.

Figure 5. Image and text retrieval score on Flickr30k over a set
of 50 image-text prompts ordered by their entropy scores (Fig. 2).
We can observe that prompts with high average entropy scores cor-
relate positively with the zero-shot retrieval performance.

shows a positive correlation between prompts with high
entropy scores and the model’s zero-shot retrieval perfor-
mance. Hence, our approach should seek to produce em-
beddings with a) spread-out variance and b) probability dis-
tributions over the vocabulary with increased entropy.

3.2. Discriminative fine-tuning of LVLMs: from
generation to discrimination

Despite exhibiting surprising innate zero-shot abilities,
LVLM’s direct discriminative performance lags behind that
of state-of-the-art contrastively trained VLMs. Hence, care-
fully designed frameworks are needed to unlock the full po-
tential of such models. This is the very goal of our work:
to introduce a well-grounded adaptation/training framework
that surfaces the discriminative image-text capabilities of a
generative LVLM.

Notably, our findings contradict those of the very re-
cent work of [22], which found that contrastive image-text
fine-tuning is detrimental and limits training to text-text
contrastive learning alone. This highlights the importance
of our proposed approach, which overcomes such imped-
iments and significantly boosts the discriminative perfor-
mance of the model.

Having established the architecture in the previous sec-
tion, the two other pillars are the data and training strategy.
Data strategy: We argue for the importance of data diver-
sity in terms of granularity and group captions according
to their length: short captions (< 30 tokens) and long cap-

tions (30 − 500 tokens). The short captions capture coarse
details and summarize image content teaching the model to
discriminate with regard to high-level image information.
Longer captions capture finer image details and promote a
better understanding of language concepts such as spatial
relationships and compositionality. For a strong discrim-
inative model, both are necessary. Therefore, for images
missing either caption type, we use a BLIP2 [30] captioner
to generate short captions and ShareGPT-4V [9] to generate
long captions. This allows us to leverage both supervisory
signals for training.
Training strategy: As we demonstrate in this work, the
variable length of the training data poses its own challenges:
unlike the case of short captions, where training using the
well-studied contrastive loss performs well, it collapses for
longer captions. This brings us to the proposed training
strategy, whereby, to address this challenge, we propose a
hybrid training approach that combines a contrastive loss
(see Sec. 3.2.1) and a next-token prediction loss for discrim-
inative adaptation (see Sec. 3.2.2). Finally, as full model
fine-tuning is computationally expensive, in Sec. 3.3, we de-
tail a fine-tuning strategy that combines adapters with soft
prompting.

3.2.1. Image-text contrastive alignment

Under a multi-modal contrastive formulation, the image
and text representations, fv and ft respectively, must be
close if they are semantically similar and far apart other-
wise, under a specified distance metric. At train time, this
is enforced using a symmetric image-text and text-image
contrastive loss, which, for a given mini-batch containing b
randomly selected samples, can be described as:

Lc =
1

b

b∑
k=1

(− log
exp(sk,kv )∑
j exp(s

k,j
v )

− log
exp(sk,kt )∑
j exp(s

j,k
t )

),

(1)
where sk,jv = cos sim(fkv , f

j
t ) denotes the cosine similar-

ity between the k-th image and the j-th caption (image-to-
text), and similarity, sk,jt the text-to-image similarity.
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During training, the contrastive loss is applied to the
very same tokens used for the zero-shot evaluation, as they
represent the optimal starting point for further fine-tuning
(Sec. 3.1). We note that the contrastive loss is mostly suit-
able for training using short captions xshort

q (i.e. < 30 to-
kens), like the ones typically used for CLIP pre-training.
We found that training the model using a contrastive loss
on longer captions proves challenging. Hence, to address
this, in the following section, we study and propose a new
formulation that enables discriminative training on variable-
length data.

3.2.2. Autoregressive training for learning discriminative
LVLM representations

Until now, the modality-specific embeddings are obtained
by taking the last token, prior to any generation, while the
training is largely focused on short (i.e. < 30 tokens) cap-
tions, mimicking the CLIP-style data used for contrastive
training. This contrasts with the LLaVA-style autoregres-
sive training, where long and highly descriptive captions
(typically 200–500 tokens) are used to help the LVLM learn
strong links between the vision and text domains, pay atten-
tion to fine-grained details, and develop strong reasoning
and compositionality capabilities.

As noted earlier, directly using the long captions with
the contrastive loss is ineffective, as, due to the high speci-
ficity of the long captions, the task is easy and nearly trivial
to solve, with the loss going to 0 in just a few hundred it-
erations. To address this, we propose to instead apply the
next-token prediction loss over the long captions:

LCE =

L∑
i=1

log pθ(ui|xv, xvp, xlongq,<i), (2)

where L is the length of the long caption xlong
q , xv the in-

put image, and xv
p the prompt which prompts the model to

describe the image in detail (e.g., “Describe the image in de-
tail”), and pθ the next-token probability distribution learned
by the model.

Intuitively, this formulation possesses multiple advan-
tages: (1) It allows the model to learn from long captions,
as predicting each and every token correctly is a challeng-
ing task (as opposed to applying the contrastive loss to long
captions); (2) The decoding process encourages the con-
densation of information into the starting token used as a
feature embedding; (3) It offers an avenue for retaining the
generative capabilities of the model while strengthening its
discriminative abilities.

3.2.3. Overall training loss
As depicted in Fig. 1, we apply the next-token prediction
loss over the long captions and the contrastive loss over the
short ones in a unified manner. During training, the tem-
plates presented to the LVLM for the image and text modal-
ity take the following form:

Template for the image modality:
USER: [Image Prompt] <image>
ASSISTANT: <out token>
USER: Describe the image in detail.
ASSISTANT: <long caption>

Template for the text modality:
USER: [Text Prompt] <short caption>
ASSISTANT: <out token>

with the contrastive loss applied on the output represen-
tations <out token> for the image modality and
<out token> for the text modality. Concomitantly, the
next-token prediction loss is applied on the tokens of the
<long caption>. Generally, the short caption must
be sufficiently different from the long caption to prevent
shortcuts during training, a property that naturally emerges
in our case due to the difference in length and annotation
procedure. Note that the distinction between long and
short captions is made only during training. At test time,
the model is used in discriminative mode as detailed in
Sec. 3.1.

3.3. Parameter-efficient adaptation
As direct fine-tuning of the LVLM is costly, especially when
maintaining a reasonably large batch size for contrastive
learning, herein, we adopt parameter-efficient training with
soft-prompting combined with LoRA adapters, both trained
under the same loss formulation of Sec. 3.2.
Soft prompting was recently proposed as an efficient task-
adaptation approach for both LLM [31] and CLIP [6, 54]
models, representing a direct departure from the prompt
hand-crafting solution. Specifically, for a given input
modality, i.e. image and text, we define a set of n
modality(m)-specific learnable vectors [vm

1 ,vm
2 , · · · ,vm

n ],
vm
i ∈ RC with C denoting the model’s vocabulary embed-

ding size. These vectors can be inserted across the input
sequence to adjust the model’s behavior. In practice, we opt
to replace the tokens belonging to the hard prompts (i.e. xv

p

and xt
p; see Sec. 3.1) with the learnable vectors, initializing

their values with the embeddings of the handcrafted ones.
Adapter fine-tuning: While efficient, the representation
power of the soft prompts is somewhat limited. Hence, fol-
lowing best practices, we also attach LoRA [19] adapters
to the linear layers located inside Φt. Such adapters offer a
multifold advantage: lower memory requirements, reduced
potential of overfitting during training, and no additional
compute requirements during inference.

The model is fine-tuned using these components. Impor-
tantly, both have a positive impact on overall accuracy.

3.4. How does the model’s behavior change?
Building upon the analysis from Sec. 3.1, we show that our
training approach elicits the following behavioral changes:
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Input Image

Fine-tuned model Image-Token Attention

Base model Image-Token Attention

Head 8 Head 12 Head 25 Head 27 Head 28 Head 32

Figure 6. Attention map between the summary and vision tokens shown for a set of heads. Notice that post-training, the attention
maps densify. This behavioral change can be interpreted as follows: For generative tasks, at every step in the generation process, the
model has the chance to look back at the vision tokens, selectively attending to the regions of interest at the current step. In contrast, in a
discriminative setting, the model must compress all information present in the image within the summary token.

Table 1. Zero-shot text-image retrieval accuracy on Flickr30K, COCO and nocaps.

image retrieval text retrieval

Method Flickr30K COCO nocaps Flickr30K COCO nocaps

R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

CLIP (ViT-L) [40] 67.3 93.3 37.0 71.5 48.6 85.7 87.2 99.4 58.1 87.8 70.0 96.2
BLIP (ViT-L) [29] 70.0 95.2 48.4 83.2 62.3 93.4 75.5 97.7 63.5 92.5 72.1 97.7
BLIP2 (ViT-L) [30] 74.5 97.2 50.0 86.1 63.0 93.8 86.1 99.4 63.0 93.1 74.4 98.3
OpenCLIP (ViT-G/14) [42] 77.8 96.9 48.8 81.5 63.7 93.2 91.5 99.6 66.3 91.8 81.0 98.7
OpenCLIP (ViT-BigG/14) [42] 79.5 97.1 51.3 83.0 65.1 93.5 92.9 97.1 67.3 92.6 82.3 98.8
EVA-02-CLIP (ViT-E/14+) [44] 78.8 96.8 51.1 82.7 64.5 92.9 93.9 99.8 68.8 92.8 83.0 98.9
EVA-CLIP (8B) [45] 80.3 97.2 52.0 82.9 65.3 93.2 94.5 99.7 70.1 93.1 83.5 98.6
EVA-CLIP (18B) [45] 83.3 97.9 55.6 85.2 69.3 94.8 95.3 99.8 72.8 94.2 85.6 99.2

LLaVA-1.5-7B [35] 59.6 89.3 34.4 69.6 46.9 83.3 65.6 92.3 35.6 70.5 52.1 88.1
VLM2Vec (Mistral-7B) [23] 80.1 97.3 52.0 85.6 65.9 94.5 90.3 99.6 68.2 93.2 79.2 98.5
E5-V (LLaVA-Next-8B) [22] 79.5 97.6 52.0 84.7 65.9 94.3 88.2 99.4 62.0 89.7 74.9 98.3
E5-V (LLaVA-1.5-7B) [22] 76.7 96.9 48.2 82.1 62.0 93.0 86.6 99.0 57.4 88.4 71.9 97.0
VladVA (Ours) (LLaVA-1.5-7B) 85.0 98.5 59.0 88.6 72.3 96.5 94.3 99.9 72.9 94.4 85.7 99.5

(1) The attention map between the summary and vision to-
kens increases in density. (2) Both the entropy of the output
distribution of the summary token and the spread of the cu-
mulative variance of the embeddings increase.
The attention map densification, as exemplified in Fig. 6,
shows that, for discriminative tasks, the model gathers ev-
idence from all parts of the image in order to correctly en-
code the information therein. This is not needed for genera-
tion, as at every generation step, the model can “peak back”
at the vision tokens and select the required information.
Entropy and cumulative variance: As shown in Fig. 3,
our approach results in models where the cumulative vari-
ance of the image and text embeddings is significantly more
spread out, which translates into richer and better-aligned
embeddings, capable of more accurately capturing fine-
grained details. Additionally, the model maintains the di-
versity of output distribution at the summary token, i.e. high
entropy, as illustrated in Fig. 4.

4. Experiments
We compare our approach with the current state-of-the-art
on two tasks of interest in a zero-shot manner: image-text
retrieval and compositionality/language understanding.

Models compared: We compare with state-of-the-art mod-
els based on the two-towers (independent) approach, which
is practical for retrieval purposes and also followed by
our method. We cover a wide variety of settings: differ-
ent models and model sizes, training data, training losses,
etc.: CLIP (ViT-L) [40] − the original CLIP trained
with a contrastive loss on 400M image-text pairs; BLIP
(ViT-L) [29] − trained on over 120M samples using con-
trastive, captioning and image-text matching losses; BLIP2
(T5-XXL) − improved and scaled-up version of BLIP;
OpenCLIP (ViT-G/14) [42] − scaled-up version of [40]
trained on 2B samples; OpenCLIP (ViT-BigG/14) [42],
EVA-02-CLIP (ViT-E/14+) [44], EVA-CLIP (8B) [45]
and EVA-CLIP (18B) [45] − large contrastively trained
models, with up to 18B parameters, fine-tuned from vi-
sion encoders trained with Masked Image Modeling (MIM);
E5-V (LLaVA-Next-8B) and E5-V (LLaVA-1.5-7B)
− LVLMs finetuned using a text-text contrastive loss. De-
pending on the task, we also include additional specialized
baselines (e.g. NegCLIP [52] for compositionality).

Training details: We use a LLaVA-1.5 (7B) [36] model due
to its popularity and simplicity (for other models, see supp.
material). For LoRA adapters, we set the rank and α to 16.
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Table 2. Comparison with state-of-the-art on the SugarCrepe compositionality benchmark.

Method
Params Replace Swap Add

(B) Object Attribute Relation Object Attribute Object Attribute

Human – 100 99 97 99 100 99 99

CLIP (ViT-L) [40] 0.43 94.1 79.2 65.2 60.2 62.3 78.3 71.5
BLIP (ViT-L) [29] 0.23 96.5 81.7 69.1 66.6 76.8 92.0 85.1
BLIP2 (ViT-L) [30] 1.17 97.6 81.7 77.8 62.1 65.5 92.4 87.4
OpenCLIP (ViT-G/14) [42] 1.37 95.8 85.0 72.4 63.0 71.2 91.5 82.1
OpenCLIP (ViT-BigG/14) [42] 2.54 96.6 87.9 74.9 62.5 75.2 92.2 84.5
EVA-02-CLIP (ViT-E/14+) [44] 5.04 97.1 88.5 74.2 67.3 74.1 91.8 83.9
EVA-CLIP (8B) [45] 8.22 96.4 86.6 74.8 66.1 74.6 91.3 82.0
EVA-CLIP ((18B) [45] 18.3 97.5 88.8 76.1 65.3 76.0 92.4 85.0

NegCLIP [52] 0.15 92.7 85.9 76.5 75.2 75.4 88.8 82.8

LLaVA-1.5-7B [35] 7.06 88.0 81.6 76.1 60.9 58.8 67.0 62.4
VLM2Vec (Mistral-7B) [23] 7.30 97.2 89.0 81.7 62.9 72.5 94.7 88.6
E5-V (LLaVA-Next-8B) [22] 8.36 96.7 89.5 85.3 75.0 70.1 89.2 83.5
E5-V (LLaVA-1.5-7B) [22] 7.06 95.8 86.6 81.6 62.9 64.0 93.5 88.0
VladVA (Ours) (LLaVA-1.5-7B) 7.06 98.1 92.1 86.8 79.0 82.9 95.2 95.8

The number of soft prompts is aligned to the length of the
tokenized hand-crafted prompt. Unless otherwise stated, we
train the models for 7 epochs, using a batch size of 1024, a
learning rate of 1e − 4, no weight decay, and AdamW [37]
optimizer with default values for β1 and β2. During train-
ing, the learning rate is decayed according to a cosine sched-
uler [38]. Depending on the data configuration, we use up
to 32 A100 GPUs. All our models and training procedures
were implemented using PyTorch [39] and DeepSpeed [41].

We used the following training data: a 4M random sub-
set of OpenImages [24], CC3M (∼2.8M images) [43], and
ShareGPT-4V [9]. As no captions are available for Open-
Images, we automatically label them with 5 captions using
BLIP2 [30]. During training, only one caption is sampled at
a time. For longer captions, we directly use the ShareGPT-
4V [9] data, which we extend with synthetic short captions
produced by BLIP2 in order to enable the training procedure
proposed in Sec. 3.2.3. Similarly, CC3M is automatically
annotated with long captions using ShareGPT4-V [9].

4.1. Zero-shot image-text retrieval

We test our approach on the standard Flickr30k [51], MS-
COCO [34] and nocaps [2] datasets, containing 1,000,
5,000 and 15,100 test samples respectively. For the latter,
we simply average the results on the three partitions.

As shown in Tab. 1, across all three datasets, our ap-
proach significantly surpasses the current state-of-the-art
including models of similar size. It even outperforms the
much bigger EVA-CLIP (18B) model (85.0% vs. 83.3%)
on Flickr30k, (59.0% vs. 55.6%) on MS-COCO and (72.3%
vs. 69.3%) on nocaps in terms of @R1 for image retrieval.
Similarly, we outperform the LVLM-based E5-V model by
5.5% on Flickr30k, 7% on MS-COCO, and 6.4% on nocaps.

4.2. Image-text compositionality

Herein, we focus our comparison on the currently
most challenging test sets, SugarCrepe [18] and Sugar-
Crepe++ [15] (for Winoground [47] please see supp. ma-
terial). For SugarCrepe++, we are mostly interested in the
Image-to-Text (ITT) setting since the Text-to-Text (TOT)
one evaluates the language component of the methods only.

As Tabs. 2 and 3 show, our approach is the best in both
SugarCrepe and SugarCrepe++ (ITT). On SugarCrepe, we
outperform the 18B EVA-CLIP model on all categories,
with particularly large gains on relation replacement (76.1
vs. 86.8), attribution adding (85.0 vs. 95.8), and object
swap (65.3 vs. 79.0). The last case is particularly interesting
as it directly measures the bag-of-words behavior, showcas-
ing significant improvements offered by our method. Addi-
tionally, we outperform the E5-V variant based on the same
LLaVA-1.5-7B model that we used, and the one based on
the heavier LLaVA-Next-8B. A similar trend is observed on
SugarCreppe++ where we outperform EVA-CLIP (18B) by
up to 10.9% (on object swap) and E5-V (ITT) in all but re-
lation replacement. Thanks to its text-text training, E5-V
surpasses our method for the TOT setting, but we note that
their loss can be readily incorporated into our framework,
leaving this for future work.

5. Ablation studies

5.1. Impact of method’s components

We quantify the impact of the proposed method’s compo-
nents by training on a smaller 1M subset, reporting re-
sults on SugarCrepe (averaged over each category) and on
Flickr30k (R@1 for T2I and I2T).
Impact of adaptation components: We start by measur-
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Table 3. Comparison with state-of-the-art on the SugarCrepe++ compositionality benchmark.

Method Params Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

(B) ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

Human – 100.00 96.7 96.7 93.3 100.00 97.00 100.00 98.3 100.00 96.7

CLIP (ViT-L) [40] 0.43 46.0 14.5 44.5 28.7 92.0 81.3 68.8 56.3 53.4 39.1
BLIP (ViT-L) [29] 0.23 46.8 29.8 60.1 52.5 92.6 89.1 71.7 75.0 56.8 57.7
BLIP2 (ViT-L) [30] 1.17 37.9 39.5 51.9 55.4 94.8 96.9 73.2 86.5 65.1 69.6
OpenCLIP (ViT-G/14) [42] 1.37 40.7 27.4 54.2 49.6 93.1 89.4 72.5 73.1 57.6 51.4
OpenCLIP (ViT-BigG/14) [42] 2.54 48.8 28.2 57.7 52.4 94.2 90.5 76.4 72.6 59.4 53.6
EVA-02-CLIP (ViT-E/14+) [44] 5.04 48.4 28.2 56.3 49.4 94.5 88.9 76.3 70.6 59.4 49.4
EVA-CLIP (8B) [45] 8.22 43.6 25.4 55.2 46.9 93.7 85.8 73.4 67.9 59.7 49.2
EVA-CLIP (18B) [45] 18.3 45.2 25.4 55.5 47.6 94.1 85.1 77.0 69.8 60.4 47.8

NegCLIP [52] 0.15 55.3 34.7 58.0 56.5 89.5 94.5 69.4 76.3 52.3 51.6
CLIP-SVLC [13] 0.15 43.0 18.9 48.4 34.6 80.9 91.6 57.0 66.9 47.3 51.3
BLIP-SGVL [17] 0.15 13.2 – 38.8 – 53.8 – 34.4 – 30.7 –

LLaVA-1.5-7B [35] 7.06 23.8 30.7 28.0 29.5 58.1 63.0 46.8 58.1 52.3 63.4
VLM2Vec (Mistral-7B) [23] 7.30 40.7 39.9 48.1 50.0 94.6 96.9 77.0 85.6 67.9 70.7
E5-V (LLaVA-Next-8B) [22] 8.36 50.8 48.4 49.7 56.9 93.1 97.6 76.1 87.1 74.7 84.4
E5-V (LLaVA-1.5-7B) [22] 7.06 39.5 42.3 40.7 48.5 89.7 94.6 71.7 86.4 72.0 81.5
VladVA (Ours) (LLaVA-1.5-7B) 7.06 56.1 36.7 63.0 62.5 95.0 93.0 78.2 82.3 71.1 66.3

ing the impact of the efficient adaptation strategy based on
soft prompting and adapter-finetuning. For simplicity, we
ablate this by training using only the contrastive loss. As
the results from Tab. 4 show, both components, individu-
ally and jointly, provide notable gains on top of the original
LLaVA-1.5-7B model (i.e. the case of no adaptation).

While LoRA fine-tuning performs better than soft-
prompting (due to its bigger capacity), the latter alone
performs surprisingly well. To understand why, we analyze
the changes the soft prompts undergo by finding the closest
embedding in the LLM’s vocabulary. This results in the
following decoded sentences: “</s> ’<Summarize
the provided image in one word:/ $[” and,
“ ωaSummarize the provided text in one
word:−”. The two sentences remain unchanged seman-
tically, with the only characters changed being the ones at
the start and the end of the prompt. Intuitively, this allows
the model to mark/specialize the token that should gather
the visual or textual evidence for discriminative tasks.
Impact of AR loss: We measure the impact of the pro-
posed autoregressive loss on long captions from Sec. 3.2.2.
As Tab. 4 shows, the AR loss adds a notable performance
boost across all datasets tested. Finally, we note that using
the long captions in isolation, without the proposed training
strategy and loss, does not result in measurable gains.

5.2. Impact of training dataset size
Although at a relatively small scale (training is expensive
due to the LVLM), herein, we aim to examine whether
scaling the dataset size benefits the proposed discriminative
adaptation of LVLMs. Specifically, we scale our dataset
size from 1M to 8.1M samples. As Tab. 5 shows, we obtain
steady gains across all metrics, with no signs of immedi-
ate saturation. This suggests that some potential is still left

Table 4. Impact of adaptation components and AR loss. All mod-
els are trained on 1M samples.

Method
AR SugarCrepe Flickr30k

loss Replace Swap Add T2I I2T

LLaVA-1.5-7B ✗ 81.9 59.8 64.7 59.6 65.6

+ soft-prom. ✗ 86.4 66.9 89.3 76.7 91.7
+ adapter-ft. ✗ 87.0 69.8 88.8 79.1 91.4
+ adapter-ft. + soft-prom. ✗ 87.1 72.0 88.6 79.6 92.9
+ adapter-ft. + soft-prom. ✓ 89.5 75.5 89.5 80.6 91.8

Table 5. Impact of training data size.

Training data
SugarCrepe Flickr30k

Replace Swap Add T2I I2T

LLava-1.5-7B (0M) 81.9 59.8 64.7 59.6 65.6

OpenImages (1M) 87.1 72.0 88.6 79.6 92.9
OpenImages (4M) 88.2 79.6 89.1 82.3 93.1
+ ShareGPT-4V (1.3M) 91.0 80.3 92.4 83.1 94.0
+ CC3M (2.8M) 92.3 80.9 95.5 85.0 94.3

untapped, and further scaling could result in extra gains.

6. Conclusions
We introduced a new framework for adapting a generative
LVLM into a discriminative model, unlocking its innate
capability for powerful image-text discrimination and en-
hanced language understanding. Our framework uses both
short and long captions for training the LVLM with con-
trastive and next-token prediction losses respectively. We
also presented a parameter-efficient adaptation method us-
ing a combination of soft prompting and LoRA adapters.
Finally, we showed that our approach results in significant
improvements over state-of-the-art models of similar size
for image-text retrieval and compositionality benchmarks.
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