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Abstract

Reasoning over visual relationships—spatial, functional, in-

teractional, social, etc.—is considered to be a fundamen-

tal component of human cognition. Yet, despite the ma-

jor advances in visual comprehension in multimodal lan-

guage models (MLMs), precise reasoning over relationships

and their generations remains a challenge. We introduce

ROBIN: an MLM instruction-tuned with densely annotated

relationships capable of constructing high-quality dense

scene graphs at scale. To train ROBIN, we curate SVG1
,

a synthetic scene graph dataset by completing the missing

relations of selected objects in existing scene graphs using

a teacher MLM and a carefully designed filtering process

to ensure high-quality. To generate more accurate and rich

scene graphs at scale for any image, we introduce SG-EDIT:

a self-distillation framework where GPT-4o further refines

ROBIN’s predicted scene graphs by removing unlikely rela-

tions and/or suggesting relevant ones. In total, our dataset

contains 146K images and 5.6M relationships for 2.6M
objects. Results show that our ROBIN-3B model, despite

being trained on less than 3 million instances, outperforms

similar-size models trained on over 300 million instances on

relationship understanding benchmarks, and even surpasses

larger models up to 13B parameters. Notably, it achieves

state-of-the-art performance in referring expression com-

prehension with a score of 88.2, surpassing the previous

best of 87.4. Our results suggest that training on the refined

scene graph data is crucial to maintaining high performance

across diverse visual reasoning tasks
2
.

1. Introduction
Scholars have argued for decades that visual relationship
reasoning is a fundamental characteristic of human intelli-
gence [4, 5]. By reasoning over relationships, people can

1Synthetic Visual Genome
2The SVG data, model checkpoints, and code are available at https:

//synthetic-visual-genome.github.io/

Figure 1. Example outputs of the Synthetic Visual Genome (SVG)
dataset, the first automatically generated large-scale scene graph
dataset, featuring diverse, open-set categories, and dense relation-
ship annotations. On average, SVG has four times as many relations
per object compared to Visual Genome [37], offering substantially
richer relationship density than existing human annotations.

make sense of new scenes by stitching together individual
objects and their pairwise relationships [6, 14, 26, 28]. For
instance, relationships allow people to describe the photo
in Figure 2 using a set of spatial (woman-above-raft), so-
cial (child-cared by-woman), functional (man-using-paddle),
interactional (woman-holding-baby) and emotional (man-

sharing an experience with-family) relationships. For a
while now, multimodal language model (MLM) research
has sought to develop models that can similarly compre-
hend such relationships [20, 29, 37, 51]. Yet despite all the
progress, frontier MLMs still struggle to accurately express
relationships; open-source MLMs perform even worse [75].

Instruction-tuning has been established as a success-
ful mechanism to instill specific reasoning capabilities in
MLMs [15]. However, instruction tuning an open-sourced
MLM to understand diverse relationships is not possible
today due to the lack of large-scale datasets focused on rela-
tionship understanding; existing efforts are limited to spatial
reasoning derived from synthetic data [8]. Scene graphs
could serve as potential sources for instruction tuning be-
cause they provide direct annotations of objects and their re-
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Figure 2. We build SVG dataset by leveraging GPT4V to complete missing relationships for selected objects spanning five categories: spatial,
interactional, emotional, functional, and social. We then distill our ROBIN on these newly enriched annotations and use the trained model to
generate complete, dense scene graphs.

lationships within scenes. Nevertheless, existing scene graph
datasets have limitations in image coverage and relationship
diversity. Visual Genome [37], for instance, contains a large
number of spatial relationships but is limited in interactional,
emotional, or functional relationships (Figure 1) and pro-
vides annotations for only 100K images. Additionally, its
annotations are rather sparse, with only 1.5 relations anno-
tated on average for every subject, and fails to enumerate all
possible relationships in the scene, including some spatial
ones like woman, in front of, baby. This is because even
for humans, annotating every relationships for all objects is
a cumbersome process, and scaling such detailed labeling
efforts to address these issues will be impractical due to the
immense time and cost required.

To overcome this bottleneck, we propose automating the
process of generating densely annotated scene graphs. One
option is to prompt frontier models like GPT-4V to generate
instruction-tuning data, which has shown promise for many
language and reasoning tasks [79]. However, such methods
have found limited utility in computer vision as even current
frontier models struggle to understand 3D structure and in-
teractions between objects [17]. As a result, when prompted
to generate scene graph data from scratch, they hallucinate
and produce low-quality data [78].

In this work, we introduce a more reliable dataset boot-
strapping framework, that allows us to build high quality
scene-graph dataset at scale using limited amount of seed
supervision data and frontier models. In particular, 1) we
start out by leveraging a frontier model, GPT-4V, to enrich
existing scene-graph datasets by completing the missing re-
lationships based on the initial human annotations available
instead of completely from scratch. This leads to a synthetic
yet high-quality and dense scene graph dataset SVG, with
146K images annotated with 5.6M relationships for 2.6M
objects. 2) Using SVG, we then train Robin-3B, a dedicated

MLM that is able to generate dense scene graphs with en-
hanced relationship understanding and grounded reasoning.
3) Finally, we show how Robin-3B can facilitate a scalable
synthetic scene-graph data generation pipeline, SG-EDIT,
which uses Robin-3B to efficiently generate dense scene-
graph data from scratch coupled with GPT-4V for further
refinement.

Our experiments validate our contributions in three-fold.
First, we validate the quality of SVG, by showing that train-
ing with SVG leads to an effective MLM capable of high-
quality dense scene-graph generation. Second, we validate
that SG-EDIT is an effective scene-graph dataset scaling
solution, wherein the resultant enhanced Robin-3B, despite
being trained on less than 3M instances, demonstrates supe-
rior performances than similar-size models trained on over
300 million instances and even larger models (up to 13B
parameters) on various benchmarks in relationship under-
standing and grounded reasoning. Finally, we show that
Robin-3B is capable of generating high-quality dense scene
graphs, achieving the state of the art in open-ended scene
graph generation.

2. Synthetic Visual Genome Data Pipeline

As existing scene graph datasets lack dense and diverse rela-
tionship annotations, we build a data pipeline that generates
dense scene graphs at scale. Here, we make use of powerful
visual reasoning capabilities from proprietary multimodal
models (e.g., GPT-4) to systematically infer missing object
relationships. The data curation involves two stages: 1)
filling unannotated relationships for selected objects from
existing image annotations (Sec 2.1), and 2) refining auto-
matically generated dense scene graphs with GPT-4 editing
(Sec 2.2). Comparison of Synthetic Visual Genome to exist-
ing scene graph dataset is shown in Table 1.
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2.1. Relationship Completion on Seed Images
While it is tempting to rely on proprietary multimodal models
to generate scene graphs from scratch, their limited ground-
ing capabilities frequently yield hallucinations, making them
unsuitable for accurate dataset curation (see Appendix A.2).
Instead, we incorporate existing annotations to ensure cor-
rectness. Figure 2 illustrates the pipeline’s first stage, where
we construct scene graphs from seed images with dense,
high-quality annotation. Specifically, we select a subset
of COCO [44] images that include: a) object detection la-
bels from COCO [44] and LVIS [21], b) region descriptions
from RefCOCO [90] and Visual Genome (VG) [37], c) scene
graphs from VG and GQA [25], and d) depth maps generated
by the Depth-Anything model [86]. This yields 33K seed
images with comprehensive annotations for each region.

Dataset Images Annotator Region Objects Triplets Predicates
per image per image per region

VG [37] 108K Human Box 35.2 21.4 0.6
GQA [25] 85K Human Box 16.4 50.6 3.1
Open Images [] 568K Human Box 8.4 5.6 0.7
PSG [84] 49K Human Seg + Box 11.2 5.7 0.6

SVG-RELATIONS 33K GPT-4V Seg + Box 13.2 25.5 1.9
SVG-FULL 113K ROBIN + GPT-4o Seg + Box 19.8 42.3 2.4

Table 1. Comparison among existing scene graph datasets and Synthetic
Visual Genome.

Selecting semantically significant objects Next, we filter
out object regions of low semantic significance to retain visu-
ally distinct and meaningful elements. Specifically, we use
the Segment Anything Model (SAM) [36] and Semantic-
SAM [40] to generate segmentation masks representing
prominent objects and regions in each image. For each
annotated region in our seed dataset, we compute the In-
tersection over Union (IoU) score between our annotated
regions and the segmentation masks produced by SAM and
Semantic-SAM. We then keep annotated regions with an IoU
score greater than 0.5 with any of the segmentation masks.

Generating relationships with GPT-4V Building on the
dense region annotations, we prompt GPT4-V to identify
at lest K = 5 subjects in each scene. For each subject, we
request 1) its description, and 2) a comprehensive list of its
relationships with other objects, categorized into five types:
spatial, interactional, functional, social, and emotional (see
appendix Table 12 for prompt).

Filtering irrelevant relationships Despite using human an-
notations for object regions, GPT4-V is prone to generating
relationships with errors. To enhance data reliability, we
must implement a robust filtering strategy to remove such
inconsistencies. Inspired by prior works [16, 60], we em-
ploy both rule-based and model-based approaches for data
filtering. Specifically, we apply rule-based filtering to spatial
relationships and model-based VQA filtering to the rest. In
Appendix E.2, we elaborate on these filters and their impact
on relationship distribution. We refer to this final filtered
dataset with dense relationships as SVG-RELATIONS.

2.2. Dense Scene Graphs with GPT-4 Refinement
Having curated SVG-Stage1, we train a student model, re-
ferred to as ROBIN3, to produce dense relationships for each
object of interest. This way, we can now call ROBIN per
object to produce relationships grounded in all provided re-
gions, and thus generate complete, dense scene graphs for ev-
ery image. Although densely annotated, SVG-RELATIONS
is limited in coverage as it is solely curated from COCO [44].
As a result, the student model is likely to produce noisy
scene graphs for images in the wild.

To address these challenges, we introduce a distillation
pipeline, SG-EDIT, inspired by the iterative data improve-
ment approach of Segment Anything [36]. Note GPT-4 still
offers strong visual reasoning skills across images in the
wild, making it an ideal automated editor for noisy object
annotations. Rather than relying on costly human correc-
tions that are difficult to scale, we thus use GPT-44 to edit
Robin ’s generated scene graphs by removing noisy relations,
adding relevant ones, and specifying more precise object at-
tributes. This yields a more accurate, refined set of dense
scene graphs, on which we then retrain our model to further
improve its performance. As shown in Figure 3, GPT4 can
effectively refine scene graphs: for instance, removing an
irrelevant “wearing” relation with a chair, expanding the
person’s description to “wearing maroon sweater,” and intro-
ducing relational tags such as “posing for [13]” or “sitting
on [1].”

[0] curtain → behind [2] right of [13]


[1] chair → sat on by [14]


[2] person is sitting →  filler filler filler 
has [3,7,8,9,10],  in front of [0,11,12], 
wearing [1] filler


[3] head → part of [2], in front of [13] 
filling this empty line


[10] left hand → part of [2]


[11] wall → behind [13]


[12] wall spotlight is on → 
illuminating [13]


[13] drawing → being drawn on [14]


[14] person → touching [13]

Generated Scene Graph Edited Scene Graph

[0] blue backdrop → behind [1,2]


[1] black chair → supporting [2]


[2] person in maroon sweater sitting →   
has [3,7,8,9,10], in front of [0,11,12], fillerfill 
posing for [13], sitting on [1]


[3] head of seated person → part of [2], fil 
looking at [13]


[10] left hand → part of [2]


[11] upper wall


[12] spotlight on wall → filererererer 
illuminating [2, 13]


[13] sketch of person → drawn by [14]


[14] artist’s hand drawing → holding [13]

…

GPT4 
Editing

1. More precise object labels

2. Remove incorrect relations

3. Add relevant relations

03

2

1

9
7

10
8

13

14

11 12

…

Figure 3. Using our SG-EDIT, GPT-4 can effectively provide more precise
object descriptions with attributes (bolded), remove incorrect relations
(highlighted in red), and add relevant (underlined).

We extend this pipeline to broaden the diversity of train-
ing data. Specifically, we bootstrap from available region,
object, and relationship annotations, and have ROBIN gener-
ate dense relationships for each objet. GPT-4 then edits these
scene graphs to ensure high quality. We apply this procedure
to the ADE20K [101], PSG [84], and VG [37] datasets, gen-
erating 113K new synthetic scene graphs in total (25K/ 35K
/53K respectively), which we refer as SVG-FULL.5

3Relation-Object Instruction Tuned Model
4gpt-4o-2024-08-06
5While we generate 93K scene graphs here, the procedure is scalable.

Further exploration of scaling laws is left for future work.”
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3. ROBIN-3B
Using the SVG dataset, we present ROBIN-3B, an MLM
trained to accurately reason about regions and produce dense
scene graphs for any objects of interest. Specifically, ROBIN
refers each region by its pixel-level segmentation masks [92]
and bounding box coordinates in text [11, 52, 78].

3.1. Model architecture
The model architecture is similar to Osprey-7B [92], which
consists of 1) a vision encoder that encodes the entire image
to image tokens, 2) a pixel-level mask-aware extractor that
embeds each segmentation to mask tokens, and 3) a language
model (LM) that takes in image, mask, and text tokens to
support any visual instruction and grounding tasks in the
text space. We use ConvNext-Large [27] as visual and mask
encoder, and Qwen2.5-3B as our LM [83]. Vision and mask
projection layers are added to project the vision and mask
tokens into text embeddings that will be passed to the LM
(see appendix Figure 10 for model architecture and details).

3.2. Training stages
We now describe three training stages that progressively
distill scene-graph reasoning into the model.

Stage 0: Image-segmentation-text alignment In this ini-
tial stage, we adapt the Qwen2.5-3B LM to process both
image and mask tokens, following the three phases in [92].
The vision encoders are kept frozen, whereas the mask en-
coders, projection layers and the language model are trained.
We use LLaVA-Pretrain-558K image-text pairs [95], and
Osprey-724K instruction dataset [92], totaling 1.28M in-
stances.

Stage 1: Instruction tuning with scene graphs Next, we
unfreeze the visual encoder and train ROBIN-3B on three
core data categories: (1) Visual Instructions, (2) Ground-
ing, and (3) Scene Graphs. The scene graph data includes
PSG [84], Visual Genome (VG)[37], and our own SVG-
Stage1, yielding 1.98M total examples. A complete break-
down of these datasets, along with data formatting and dis-
tribution details, is presented in Appendix C and Table 7.
We refer to the resulting model trained with this mixture as
Robin-3B (Stage 1).

Stage 2: Distillation with GPT4 edited scene graphs Fi-
nally, as described in Sec 2.2, we use Robin (Stage 1) to gen-
erate complete scene graphs and apply our SG-EDIT pipeline
with GPT-4 to build SVG-FULL. We then replace SVG-
RELATIONS with SVG-FULL, remove the OCR-focused
portion of the visual-instruction data, and continue train-
ing Robin on these updated inputs, resulting in our final
Robin-3B. Details of this data mixture are shown in Table 8.

4. Experiments
In our experiments, we compare ROBIN-3B with the state-
of-the-art (SoTA) open-source MLMs across a set of visual
reasoning tasks focused on relationship understanding. To
see the performance gain from SG-EDIT, we separately eval-
uate ROBIN-3B trained with Stage 1 and compare it against
our ROBIN-3B model with Stage 2 training. Additionally,
we assess whether incorporating scene graph training en-
hances the model’s capabilities in grounding and region
understanding. Lastly, we directly evaluate ROBIN-3B on
scene graph generation to show its ability to produce accu-
rate scene graphs. Prompts used for each task and dataset
are provided in Appendix D.

4.1. Relationship understanding benchmarks
We first run evaluations on visual question answering bench-
marks that focus on relationship understanding such as:
GQA [25] that was originally designed for relational under-
standing using image scene graphs, MMBench [50], Seed-
Bench [38], Visual Spatial Reasoning (VSR) [46], CRPE
[53], SugarCrepe [24], and What’s Up [31]. MMBench and
SeedBench are included for their coverage of spatial rela-
tionship and object interaction understanding. The CPRE
dataset focuses on relation comprehension that also includes
abnormal relations generated with synthetic images. We eval-
uate on the subject-predicate-object split targeted for relation
comprehension, and report the overall average, denoted as
Relation. In SugarCrepe, we use the “replace-relation” split
that and follow their approach of framing the evaluation as
a binary multiple choice problem suitable for MLMs. In
What’s Up, we evaluate on the 820 images consisting of
unambiguous object-relationships capture in controlled envi-
ronments (denoted as “Controlled”).

We present the results in Table 2. Among the models
of similar size (4B parameters) [1, 7, 43, 82, 87, 96], we
observe that Robin-3B shows the strongest performance on
MMBench, SugarCrepe, and Whats Up benchmarks, and
competitive performance on others. Notably, despite being
trained on fewer than 3M instances, Robin-3B surpasses
Phi-3-Vision and BLIP-3 on the What’s Up dataset by a sig-
nificant margin (80.1% vs. 78.7% and 78.2%, respectively).
This is particularly impressive given that Phi-3-Vision and
BLIP-3 have undergone extensive pre-training on up to 300
million instances. In VSR, while Robin-3B seems to fall
behind the BLIP-3 models, this is mostly because the dataset
was seen in training stages of BLIP-3; on the other hand, our
model greatly exceeds Phi-3-Vision (70.5% vs. 67.8%) when
evaluated in a zero-shot manner, showcasing our model’s
strengths in understanding spatial relations in general6.

6This explains the differing results between Phi-3-Vision and BLIP-3,
which despite using the same LMs, show conflicting performance on VSR
and What’s Up – both of which assess spatial relation understanding.
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Model LLM GQA [25] MMBench [50] SEED [38] VSR [46] CRPE [78] SugarCrepe [24] What’s Up? [32]
Dev-EN Image ZS-test Relation Relation Controlled

 4B Models

VILA1.5-3B [43] ShearedLLaMA-2.7B 61.5* 63.4 67.9 61.0 67.8 86.3 50.6
MiniCPM-V2.0-3B [87] Mini-CPM-2.4B 69.7 67.1 68.2 68.1 86.6 54.8
InternVL2-2B [7] InternLM-2B 61.0* 73.2 70.9 69.0* 65.8 85.5 74.4
Phi-3-Vision [1] Phi-3-mini-4B - 74.2 71.0 67.8 71.6 88.7 78.7
BLIP-3-single-image [82] Phi-3-mini-4B - 76.0 71.8 72.5* 72.4 89.0 78.2
BLIP-3-interleave [82] Phi-3-mini-4B - 76.8 72.2 72.6* 72.5 88.3 76.3
MM1-3B [58] MM1-3B - 67.8 68.8 - - - -
MM1.5-3B [96] MM1-3B - - 72.4 - - - -

Robin-3B (Stage 1) Qwen2.5-3B 60.8* 77.1 69.4 69.7 64.8 87.9 76.7
Robin-3B Qwen2.5-3B 61.6* 77.0 70.6 70.5 68.0 89.4 80.1

7B - 13B Models

InstructBLIP [15] Vicuna-7B 49.2 36.0 - 54.3 - - -
Shikra [11] Vicuna-7B - 58.8 - 63.3 - - -
QwenVL-7B [3] Qwen-7B 59.3* 38.2 62.3 63.8 38.5 77.9 35.5
Mini-GPT-v2 [10] LLaMA-2-7B 60.3* - - 62.9 - - -
LLaVA-1.5-7B [95] Vicuna1.5-7B 62.0* 65.2 66.1 63.4 55.6 84.6 39.5
LLaVA-1.5-13B [95] Vicuna1.5-13B 64.2* 67.4 70.2 65.3 66.9 87.1 49.5
ShareGPT4V-7B [12] Vicuna1.5-7B - 68.8 69.7 63.1 60.6 83.5 52.1
ShareGPT4V-13B [12] Vicuna1.5-13B - - 70.8 67.5 55.0 85.1 55.7
LLaVA-1.6-Next-7B [48] Vicuna1.5-7B 64.2* 67.4 70.2 68.6 69.6 85.7 43.3
LLaVA-1.6-Next-13B [48] Vicuna1.5-13B 65.4* 70.0 71.9 65.8 69.9 87.8 56.8
VisionLLM v2-Chat [80] Vicuna1.5-7B 65.1* 77.1 71.7 - - - -
ASMv2-13B [78] Vicuna1.5-13B 63.9* 74.4 65.0 69.5 64.5 87.5 54.0

Table 2. Relationship understanding performance comparison between Robin-3B and state of the art multimodal language models, grouped
by parameter size ( 4B and 7B–13B). Bold numbers indicate the best performance across the models. (*): data was included in training.

Next, we compare between the Stage 1 and Stage 2 trained
models. While there is a negligible performance decrease
on MMBench, our Stage 2 model shows improvements over
Stage 1 model in almost every benchmark. Notably, we see
substantial gains in CRPE (68.0% vs 64.8%), SugarCrepe
(89.4% vs 87.9%), and Whats Up (80.1% vs 76.7%).

When compared with larger models, ROBIN demonstrates
superior performance in in VSR, SugarCrepe, and What’s
Up This reveals a lack of relationship understanding in cur-
rent visual instruction frameworks and shows the benefits of
incorporating scene graphs into the instruction tuning dataset
to enhance performance in relationship understanding tasks.
Additionally, we outperform ASMv2-13B [78] which is an-
other MLLM specialized for object-relation understanding
on all benchmarks except GQA. Notably, on their proposed
CREPE benchmark, ROBIN surpasses them by a significant
margin (68.0% vs. 64.5%), highlighting the effectiveness of
our relationship training framework over theirs.

4.2. Referring expression comprehension
We next assess the grounded reasoning capabilities of our
model on referring expression comprehension tasks using
the RefCOCO, RefCOCO+, and RefCOCOg datasets [54,
90]. We prompt our models to provide a bounding box for
each description, and report Recall@1 (IoU > 0.5). As
shown in Table 3, Robin-3B achieves the highest average
accuracy overall, with an average of 88.2% in the test split,
surpassing larger models such as ASM-V2-13B (87.3%). We
significantly outperform MM1.5-3B, the previous state of the
art among the 3B models (85.6%) that has been trained with

more than 1M instances for grounding. The improvements
from Stage 1 to Stage 2 (86.0% ! 88.2%) again highlight the
effectiveness of our self-distillation approach in enhancing
grounded reasoning abilities. These results demonstrate that
incorporating scene graph training enhances the grounding
capabilities, even outperforming models with much larger
parameter counts and pre-training data.

4.3. Region recognition

We evaluate our model on open-vocabulary region recogni-
tion tasks, namely semantic segmentation on the ADE20k
dataset [101] and region classification on the LVIS and
PACO datasets [21, 65]. For each task, the model gener-
ates a description or category label for the region specified
by a segmentation mask and bounding box; we then con-
vert text outputs to class labels using SentenceBERT [68]
similarity, following [92].

Table 4 shows that ROBIN-3B outperforms 7B-scale mod-
els across all metrics. Against Osprey-7B, it achieves gains
of +2.3% PQ, +4.0% mAP, and +2.3% mIoU on ADE20K,
and exceeds Osprey-7B by +7.4% SS and +11.7% S-IOU on
LVIS. Moreover, compared to VisionLLMv2-7B, our model
improves LVIS scores by +5.3% SS and +7.2% S-IOU and
PACO scores by +9.9% SS and +16.6% S-IOU. Finally, pro-
gressing from Stage1 to Stage2 yields an additional +2.6%
SS and +3.8% S-IOU on PACO, pushing ROBIN-3B beyond
Osprey-7B.
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Model RefCOCO [90] RefCOCO+ [90] RefCOCOg [54] Avg AvgtestVal Test-A Test-B Val Test-A Test-B Val Test

Shikra-7B [11] 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2 82.9 82.5
MiniGPT-v2-7B [10] 88.1 91.3 84.3 79.6 85.5 73.3 84.2 84.3 83.8 83.7
QwenVL-7B [3] 88.6 92.3 84.5 82.8 88.6 76.8 86.0 86.3 85.7 85.7
Ferret-7B [89] 87.5 91.3 82.4 80.8 87.4 73.1 83.9 84.8 83.9 83.8
Groma-7B [52] 89.5 92.1 86.3 83.9 88.9 78.1 86.4 87.0 86.5 86.5
VisionLLMv2-Chat [80] 90.0 93.1 87.1 81.1 87.3 74.5 85.0 86.4 85.6 85.7
Ferret-13B [89] 89.5 92.4 84.4 82.8 88.1 75.2 85.8 86.3 85.6 85.3
ASM-V2-13B [78] 90.6 94.2 86.2 84.8 90.8 76.9 87.5 88.3 87.4 87.3

InternVL2-2B [7] 82.3 88.2 75.9 73.5 82.8 63.3 77.6 78.3 77.8 77.7
Phi-3-Vision-4B [1] - 46.3 36.1 - 42.0 28.8 - 37.6 - 38.1
MM1.5-3B [96] - 92.0 86.1 - 87.7 75.9 - 86.4 - 85.6

Robin-3B (Stage 1) 89.4 92.9 85.5 83.5 89.4 76.0 86.0 85.8 86.1 86.0
Robin-3B 91.1 93.9 87.7 86.1 91.4 79.8 88.3 88.4 88.3 88.2

Table 3. Comparison with SoTA models up to 13B parameters on Referring Expression Comprehension. The results are reported based on
Recall@1 with IoU > 0.5.

Model
Open-Vocab. Segmentation Region Classification

ADE [101] LVIS [21] PACO [65]
PQ mAP mIoU SS S-IOU SS S-IOU

LLaVA-1.5-7B [95] - - - 48.9 19.8 42.2 14.6
Kosmos-2 [61] 6.5 4.3 5.4 38.9 8.7 32.1 4.8
Shikra-7B [11] 27.5 20.3 18.2 49.6 19.8 43.6 11.4
GPT4RoI-7B [97] 36.3 26.1 25.8 51.3 12.0 48.0 12.1
Ferret-7B [89] 39.5 29.9 31.8 63.8 36.6 58.7 26.0
Osprey-7B [92] 41.9 41.2 29.6 65.2 38.2 73.1 52.7
VisionLLMv2-Chat [80] - - - 67.3 42.7 63.8 36.3

Robin-3B [Stage 1] 41.1 40.3 30.2 70.9 47.7 71.1 49.1
Robin-3B 44.2 45.2 33.9 72.6 49.9 73.7 52.9

Table 4. Results on Region Recognition. Following[92], we report panoptic
segmentation (PQ), instance segmentation (mAP), and semantic segmenta-
tion (mIoU) on the ADE20K validation set. For region classification, we
measure referring object classification on object-level LVIS and part-level
PACO, reporting Semantic Similarity (SS) and Semantic Intersection over
Union (S-IOU).

4.4. Scene graph generation
Lastly, we evaluate ROBIN on the task of scene graph de-
tection using the Panoptic Scene Graph (PSG) dataset [84].
Here, the model must generate bounding boxes for object re-
gions of interest and provide subject-predicate-object triplets
for these detected regions. We prompt ROBIN to produce a
complete scene graph, including bounding boxes, parse the
output to extract object regions and predicates, and assign
the text outputs to the closest object and predicate labels in
the dataset via semantic similarity. We report Recall@20
(R@20) and mean Recall@20 (mR@20), which measure
whether the ground-truth triplets appear in the top K = 20
predictions and match in bounding box (IoU > 0.5) and class
labels.

We compare against MLMs that generate scene graphs as
open-ended text [78, 99], as well as existing PSG detection-
based models [45, 73, 81, 84, 93], which have been single-
task fined-tuned on the PSG dataset to classify the relation
triplets from a pre-defined closed set of class labels. Table 5
shows that our Robin-3B (Stage 1) model already outper-
forms previous open-ended generation models like ASM-

Method # Relations R@20 mR@20

Open-Ended Generation Models

TextPSG [99] 50.0 4.8 -
ASM-V2-13B [78] 9.2 14.2 10.3
Robin-3B (Stage1) 5.6 18.2 10.9
Robin-3B 6.1 20.6 13.2

Closed-Set Detection Models

IMP [81] 20.0 16.5 6.5
MOTIFS [93] 20.0 20.0 9.1
VC Tree [73] 20.0 20.6 9.7
GPSNet [45] 20.0 17.8 7.0
PSGFormer [84] 20.0 18.6 16.7
HiLO [102] 20.0 40.6 29.7
DSGG [22] 20.0 36.2 34.0

Table 5. Results on the Panoptic Scene Graph (PSG) Generation
task. We report the recall (R@20) and mean recall (mR@20) of the
predicted triplet relations. Underlined values denote the best results
among open-ended generation models. Note that all closed-set
models are single-task fine-tuned on the PSG dataset.

V2-13B (18.2/10.9 vs. 14.2/10.3 on R@20/mR@20) After
applying scene graph self-distillation in Stage 2, our Robin-
3B model further improves to 20.6/13.2 on R@20/mR@20.
This demonstrates that scene graph self-distillation helps our
model generate more accurate and diverse relation predic-
tions. When comparing to closed-set detection models, our
Robin-3B achieves an R@20 of 20.6, which is on par with
early closed-set models like MOTIFS and VC Tree, both
reporting an R@20 of around 20.0. Notably, these closed-set
models are single-task fine-tuned on the PSG dataset and op-
erate within a constrained set of relation classes, whereas our
model operates in an open-ended setting without pre-defined
set of relation classes. Overall, these results suggest the
effectiveness of our approach in generating accurate scene
graphs in an open-ended manner.

Qualitative Results Figure 6 shows a qualitative example of
generated dense scene graphs in a complex scene. Notably,
ROBIN correctly identifies different parts of objects with
high accuracy, such as the interior dashboard [6], the door
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Figure 4. Effectiveness of SG-EDIT distillation.

[4], the front wheel [9], and the handle [20] as parts of the
“silver convertible car with black top” [1]. It also includes
spatial markers, such as the “left taillight” [17] and “right
taillight” [18], as parts of the blue car [5]. Furthermore, it
accurately associates the person [15] as working on the blue
car [5], rather than other cars.

4.5. Ablation studies
In our ablation studies, we focus on showing the effective-
ness of our proposed instruction tuning with dense scene
graphs, and self-distillation with refinement from GPT4.

Training Dataset Region Classification Relationship Understanding
LVIS PACO VSR CRPE

Grounding Vis-Ins SG SS SS ZS-test Relation

- - - 50.3 48.0 48.6 51.6
X - - 49.3 47.1 48.1 54.0
X - X 55.3 53.5 48.9 60.4
- X - 65.4 68.9 69.1 63.5
- X X 70.5 72.5 69.3 64.1
X X - 68.6 70.5 68.2 64.1
X X X 70.9 71.1 69.7 64.8

Table 6. Ablation studies of instruction tuning with scene graph data.
Different models trained with combinations of visual instruction (Vis-Ins),
grounding (Grounding), and scene graph (SG) data, which are categorized
in Stage 1 training (Section 3.2), are evaluated on region classification (SS:
semantic similarity) and relationship understanding tasks. Note, the last
row corresponds to the Robin-3B (Stage 1) model.

Role of scene graphs in instruction tuning To understand
the benefits of incorporating scene graph data in visual un-
derstanding, we trained model variants using different com-
binations of the three datasets introduced in Stage 1 training
(Sec 3.2), specifically comparing models trained with and
without scene graph data. Table 6 shows the results. In re-
gion classification, we observe that adding scene graph (SG)
data provides consistent gains across different training data
configurations. Interestingly, the highest performance on the
PACO dataset is achieved when training with only visual
instruction and SG data (72.5 in SS). We suspect this is be-
cause the RefCOCO dataset is biased towards COCO objects
rather than fine-grained, part-level objects. In contrast, our
scene graph data encompass diverse relationships including
part-level objects, providing enhanced reasoning capabilities

Figure 5. VQA performance of blind LLMs using different scene graphs
as context: (1) original Visual Genome (VG) scene graphs, (2) GPT-edited
VG scene graphs, (3) VG scene graphs appended with Robin-3B relations
(Stage 1), and (4) the GPT-edited scene graphs from Stage 2.

for this task. Similarly, in relationship understanding tasks,
we observe the same benefits of adding SG data with gains
of 1.5% in VSR and 0.7% in CRPE.

Advantages of GPT4 editing and self-distillation Next,
we explore the components introduced in our proposed SG-
EDIT framework. We investigate the empirical gains of
using GPT-4 edited scene graphs compared to training on
the model’s own generated scene graphs without refinement.
Figure 4 compares the performance of ROBIN-3B trained
with and without the GPT-4 edited scene graphs on relation-
ship understanding benchmarks. We see a marginal average
improvement of 0.5% over the Stage 1 model, when training
the model additionally with its own scene graph genera-
tions (w/o GPT Editing). This gain is primarily due to im-
provements in the CRPE (+2.9%) and SugarCrepe (+0.4%)
datasets, whereas performance decreases on the VSR (-0.9%)
and What’s Up (-1.0%) datasets. Meanwhile, we observe
consistent gains for all benchmarks using edited scene graph
(w/ edit) with average improvement of 2.2%.

Human-annotated vs. machine edited scene graphs
Given the consistent gains from GPT-4 edited scene graphs,
a natural question arises: can we simply refine human-
annotated scene graphs with GPT-4 instead of relying on
model-generated graphs? We hypothesize that a high-quality
scene graph must encode sufficient visual details for a lan-
guage model to accurately answer questions. To test this, we
run an ablation study on VQAv2 [19] and AOKVQA [71]
in a “blind LLM” setting, where the model has no direct
image input but only a scene graph. As Figure 5 shows,
editing scene graphs with GPT-4 (→ GPT Edit) consistently
improves VQA performance compared to unedited versions.
Notably, the model-generated scene graphs (VG SG & Robin
Relations) outperform GPT-4 edits on human annotations
alone (VG SG →GPT Edit), indicating that our model cap-
tures additional relationships missing from Visual Genome.
Finally, applying GPT-4 edits on these model-generated
graphs (VG SG & Robin Relations→ GPT Edit) leads to the
highest accuracy, validating the proposed framework.
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Figure 6. Qualitative example of dense scene graph generated by ROBIN-3B.

5. Related work
Relationship understanding and scene graphs Understand-
ing relationships in visual scenes is a crucial challenge in
computer vision, commonly addressed via scene graph gen-
eration (SGG) [81]. Compared to visual question answer-
ing [25, 46], scene graphs require a more comprehensive and
structured understanding of the objects and their relation-
ships within an image. Datasets such as Visual Relationship
Detection [51] and Visual Genome [37] have stimulated re-
search into SGG models, while Panoptic scene graph genera-
tion (PSG) [84] has extended bounding boxes based SGG to
panoptic segmentation. Numerous end-to-end architectures
rely on classification-based methods[41, 81, 91, 93, 99], and
efforts exist to address object-relationship biases [74, 102]
or to distill relationships from LLMs or MLMs [9, 35, 42].
However, these distillation-based approaches focus on im-
proving the SGG task itself rather than enhancing the under-
lying MLMs.

Visual instruction tuning and MLMs The recent ad-
vancements in large language models [59] have resulted in
the emergence of numerous LLM-based multimodal mod-
els [39, 47, 88, 103]. LLaVA is the first work that intro-
duces visual instruction for LLMs, where the authors use
language-only GPT-4 to generate a multi-modal instruction-
following dataset [49]. Follow-up works have built other
types of multi-modal instruction tuning data, including
conversational-style QA [103], single-round QA based on
academic datasets [15], detailed image descriptions [12].

Among the variants of MLMs, grounded MLMs [3, 10,
66, 76, 89, 100] are most relevant to our study, which are
trained on region-based instruction tuning data to enable
grounding capabilities of existing MLMs. A common rep-
resentation of regions in such models is to refer the object
regions as their bounding box coordinates in the text input-
output [11, 95]. Alternatively, Osprey [92] is designed to

understand a single or a handful of object segmentations at
different levels of granularity. In this work, we extend Os-
prey to scene graph generation for a more comprehensive un-
derstanding of the entire image. ASM-v2 [78] is a grounded
MLM designed for relation understanding and scene graph
generation. Our approach relies on reasoning over rela-
tionships with diverse categories inferred by GPT4-V, and
creates more complete and comprehensive scene graphs.

Data filtering of image-text datasets Radenovic et al.
propose a rule-based system that filters out examples with
low complexity [63], while LAION-400M introduces CLIP-
filtering to remove image-text pairs with low similarity
[64, 70]. Since then, various works have proposed improved
filtering methods based on CLIP [16, 18]. A more recent
work reports that finetuning MLMs such as LLaVa can yield
better image-text data filters [77]. In contrast, we have de-
veloped a novel filtering pipeline that combines rule-based
and model-based filtering for image-scene-graph data.

6. Conclusion

We present SVG and ROBIN to enhance the visual reasoning
capabilities of MLMs. Our model outperforms the SoTA ap-
proaches in a suit of relationship reasoning tasks, grounded
reasoning, and open-ended panoptic scene graph genera-
tion. Using the SG-EDIT distillation framework, ROBIN-3B
model outperforms the state of the art 3B models in relation-
ship understanding and REC tasks, and even 13B models
trained with a similar amount of data. One limitation is
the lack of evaluation of scene graph generations beyond
existing annotations on COCO images but for images in the
wild, which we leave it as future work. Another extension
is to include reasoning over the shapes and structures of 3D
objects, enhancing consistency in video understanding, and
facilitating image generation with controllable layouts.
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