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Abstract

Person re-identification (ReID) is to associate images of indi-
viduals from different camera views against cross-view vari-
ations. Like other surveillance technologies, Re-ID faces
serious privacy challenges, particularly the potential for
unauthorized tracking. Although various tasks (e.g., face
recognition) have developed machine unlearning techniques
to address privacy concerns, such methods have not yet been
explored within the Re-ID field. In this work, we pioneer
the exploration of the person de-reidentification (De-ReID)
problem and present its inherent challenges. In the context of
ReID, De-ReID is to unlearn the knowledge about accurately
matching specific persons so that these “unlearned persons”
cannot be re-identified across cameras for privacy guarantee.
The primary challenge is to achieve the unlearning without
degrading the identity-discriminative feature embeddings
to ensure the model’s utility. To address this, we formulate
a De-ReID framework that utilizes a labeled dataset of un-
learned persons for unlearning and an unlabeled dataset of
accessible persons for knowledge preservation. Instead of
unlearning based on (pseudo) identity labels, we introduce a
variation-guided identity shift mechanism that unlearns the
specific persons by fitting the variations in their images while
preserving ReID ability on other persons by overcoming the
variations in images of accessible persons. As a result, the
model shifts the unlearned persons to a feature space that is
vulnerable to cross-view variations. Extensive experiments
on benchmarks demonstrate the superiority of our method.

1. Introduction
Person re-identification (ReID) aims to match the images
of the same person across different camera views based
on feature similarity. While deep learning [9, 35, 43] has
significantly enhanced the performance of the ReID mod-
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Figure 1. Person de-reidentification (De-ReID) prevents intelligent
surveillance from tracking unlearned persons. For example, when
using surveillance models for security (track and record the person
in the red box), the residents in the community and the important
customers in business (in the green box) should not be tracked for
privacy and commercial secrets.

els [10, 19, 45], there are growing public concerns about
potential misuse, leading to ethical and societal implications.
To avoid misuse and mitigate the potential privacy concerns,
the research in surveillance has begun exploring machine
unlearning techniques that limit the operational scope of
these models. For instance, in face recognition, models are
adjusted to "unlearn" individuals who raise privacy concerns,
as mandated by regulations like the EU’s General Data Pro-
tection Regulation (GDPR) [3, 5, 24, 53].

However, similar constraints on the ReID models have
not yet to be explored, despite its significance for real-world
applications. For instance, the residents in the neighborhood
prefer to constrain the surveillance in the community to
only focus on external people and not track themselves; in
working buildings, security cameras should only be set for
monitoring and preventing theft or accidents, not for tracking
or identifying specific employees during their routine work;
and homeowners expect smart home devices to track only
unknown individuals for security purposes while avoiding
any continuous surveillance of themselves; To meet these
requirements, there is an urgent need to develop methods that
limit the scope of ReID models, enabling them to "ignore"
specific individuals during deployment.

In this work, we pioneer the exploration of person de-
reidentification (De-ReID) problem: limiting the ReID scope
by unlearning specific persons (referred to as “unlearned
persons”) in the ReID model while maintaining the ReID
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performance on other persons (referred to as “accessible
persons”). In the context of image matching, a person is
unlearned by a model means the model can hardly associate
the images of the person under different camera views, as
shown in Fig. 1. Forming a De-ReID model is challenging
because only the knowledge strictly related to matching the
unlearned persons should be eliminated, without destroying
the identity-discriminative feature embeddings. A trivial
solution is to distinguish the images of unlearned persons
under different camera views for unlearning while associat-
ing the images of accessible persons based on their identity
labels to preserve ReID knowledge. However, due to the
large network capacity, the model may learn spurious cues
or overfit the images of unlearned persons in the training
set, leading to poor generalization during evaluation. Addi-
tionally, collecting identity labels for accessible persons to
preserve ReID knowledge is both costly and difficult to scale,
especially when the number of cameras is large [29, 31, 36].

To handle the De-ReID, we formulate a weakly-
supervised unlearning framework where a labeled image
set of unlearned persons and an unlabeled dataset of accessi-
ble persons are available to adapt a well-trained ReID model
to De-ReID. Given that the core of ReID is to overcome
cross-view variations, such as different camera viewing an-
gles and lighting conditions, we propose variation-guided
identity shift that learns De-ReID based on the variations in
images. The core of our method is to guide the ReID model
bias towards environmental information (e.g., lighting) when
encountering unlearned persons, which shifts the unlearned
persons out of the view-invariant feature space. At the same
time, we keep the model remains robust to cross-view varia-
tions when querying accessible persons.

Specifically, for unlearned persons, we guide the model
to distinguish their images and the images augmented by
variations. Compared with distinguishing images under dif-
ferent camera views, learning to distinguish image and its
augmentation results is more effective for unlearning since
the augmented images are highly similar to the original im-
age (e.g., body shape) but varies in style information (e.g.,
brightness and color tone). Therefore, the model is biased
to encode the style information to push away these images.
In contrast, for accessible persons, we pull closer their im-
ages and augmented versions in the feature space, expecting
the model to overcome the variations when matching them.
Moreover, we introduce relation regularization to character-
ize the desired properties of De-ReID in terms of relations.

In summary, our main contributions are as follows:
• We are the first to investigate the challenging De-ReID

task and conduct a new benchmark.
• We formulate a De-ReID framework and propose variation-

guided identity shift that achieves De-ReID by fitting the
variations in images of interest while against the variations
in others to preserve ReID knowledge.

• To further utilize the identity annotations in unlearned
person images for learning, we propose relation regular-
ization that characterizes the desired properties of ReID
and De-ReID. Both qualitative and quantitative results
demonstrate the effectiveness of our method.

2. Related Works
- Person re-identification. Based on deep learning, ad-
vanced ReID models automatically learn a discriminative
feature embedding from a large amount of data [20]. Various
network architectures [19, 21, 22, 30, 39, 42, 44, 45] and
loss functions [10, 40, 41, 48] are developed to enhance
feature representation learning. Besides, the challenges
in ReID including cross-modality [25, 31, 51, 55], cloth-
changing [23, 26], low-resolution [62], occlusion [52], and
unsupervised ReID [7, 50] are also widely studied.
- Privacy protection for person images. Apart from pursu-
ing high performance, protecting human privacy in human-
centric tasks is also important [54, 59, 60]. A stream of
research focuses on generating anonymized images by re-
moving or obscuring identity-related information, such as
faces and silhouettes, while preserving the image’s utility for
subsequent tasks, such as action recognition [1, 4, 15].

In the field of ReID, Ye et al. [54, 57] proposed a genera-
tive model to anonymize the person images to avoid privacy
leakage while keeping the ReID utility. Wang et al. [46] add
imperceptible perturbations to the images of in the database
to prevent malicious use of the images. Particularly, one
stream of works explores person de-identification [1, 4, 15],
which obscures the identity information in images or videos,
including face and silhouette. The new sensors including
event cameras and LiDAR are also investigated for privacy-
preserving ReID [2, 6, 14, 17].

Despite their progress, previous works mainly focus on
preventing the malicious use of images while we aim to
prevent the malicious use of models. Technically, previous
works [54, 57] learn to anonymize person images and jointly
adapt the ReID model to ensure ReID utility. Their methods
cannot prevent the ReID model from retrieving specific per-
sons, as well as the methods that explore new sensors such
as event cameras for ReID [2, 6, 14, 17]. Besides, although
PRIDE [46] protects the images in the database from being
maliciously used, the attacker can also collect images that are
not in the database to track specific persons. Moreover, some
works in person de-identification only concern the identity-
unrelated utility [1, 4, 15], such as action recognition, while
De-ReID requires identifying accessible persons.
- Machine unlearning. De-ReID has a similar goal to ma-
chine unlearning. Machine unlearning is first proposed to
eliminate the influence of specific data on the deep model as
if the model never uses these data for training, which enables
users to erase their personal data [3, 5, 16, 18, 37].

Kurmanji et al. [24] further apply machine unlearning for
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various purposes such as removing the bias from the model
or eliminating the negative effects of mislabeled samples.
To maximize the error in forgetting classes, they maximize
the difference between the outputs of the learned model and
the original model in the forgetting samples. Choi et al. [11]
propose to jointly maximize the loss on the forgetting data
and learn on the other data. Chen et al. [8] unlearn specific
classes by adjusting their decision boundary. The forgetting
samples are assigned a nearest but incorrect label for bound-
ary shrink. Zhao et al. [58] propose GS LoRA to maintain
performance on remaining classes when maximizing the loss
on the forgetting data. Ye et al. [53] enforce that the model
should be different from the original model in terms of the
attention map of intermediate features to forget classes.

Our work is different from existing works. Firstly, even
if the model does not see the unlearned person in training,
the ReID model can effectively match the cross-view images
of unlearned persons. Hence, the methods eliminating the
influence of samples on network weights are not applicable
to De-ReID. For the methods that maximize the errors in
the forgetting classes, they mainly focus on classification
tasks. Differently, ReID pursues discriminative features for
matching. Even if the unlearned persons cannot be correctly
classified as their methods desired, the model could retrieve
the correct images as long as the feature distances between
the query and the correct images are smaller than others.

3. De-ReID Learning
- Problem formulation. Given a well-trained ReID model
denoted as fp(·) and a set of unlearned persons Pu, our goal
is to learn a model f(·) that the model cannot match the
images of unlearned persons while keeping the ReID perfor-
mance for other persons that are accessible to model. f(·) is
initialized as fp(·), and fp(·) is kept unchanged. An ideal
De-ReID model f(·) is expected to satisfy the conditions:{

ϕf (x, xp) < ϕf (x, xn), ∀x ∈ Pu, ∀xn s.t. yn ̸= y,

ϕf (x, xp) > ϕf (x, xn), ∀x /∈ Pu, ∀xn s.t. yn ̸= y,

(1)
where ϕf (·, ·) is the similarity metric in the feature space of
f(·). x is a query image with label y, and likewise yp and yn
are labels of xp and xn. xp is a different image containing
the same person with x, but xn contains a different person.

To learn f(·) for approximating Eq. 1, we assume a
labeled image set of MT unlearned persons denoted as
ST = {(xt

i, y
t
i)}

|ST |
i=1 and an unlabeled image set of acces-

sible persons denoted as SO =
{
xo
j

}|SO|
j=1

are available for
fine-tuning. xt

i is the i-th image in ST with corresponding
label yti ∈ {1, 2, ...,MT }. xo

j is the j-th image in SO. The
persons in SO are different from those in ST and the persons
in testing. While unlearning the specific persons based on
the labeled data ST seems straightforward (e.g., by max-

imizing the classification error), it is hard to ensure only
the knowledge strictly subject to matching the unlearned
persons is eliminated, rather than simply destroy identity
discriminative feature embedding.

Considering the ubiquitous existence of cross-view vari-
ations, we propose variation-guided identity shift based on
variations in images to unlearn the specific person in view-
invariant feature space. Besides, we formulate the goals of
De-ReID in the form of images relations and present relation
regularization. An overview of our method is in Fig. 2.

3.1. Variation-guided Identity Shift
Intuitively, person ReID requires a view-invariant feature
space, where image features are identity discriminative re-
gardless of camera views. Hence, we propose to shift the un-
learned persons out of the view-invariant feature space, and
therefore their images from different camera views cannot
be properly associated. To this end, we guide the model to fit
the variations in images of unlearned persons and overcome
the variations for accessible persons, forming asymmetric
learning objectives. In this way, the images of unlearned
persons will be encoded into distinct features affected by the
variations in images while the images of accessible persons
are encoded as view-invariant features.

To introduce abundant variations, we employ augmenta-
tion function T (·) to obtain an augmented view x̂t

i = T (xt
i)

for each image xt
i. To simulate the natural cross-view varia-

tions, T (·) should not change the identity of xt
i but properly

adjust the images’ color, brightness, and so forth, ensuring
that x̂t

i contains the same person with xt
i but is different in

image style. We ablate the design of T (·) in experiments
in our Appendix. To shift the unlearned persons out of the
view-invariant feature space, the model f(·) should prioritize
rich environmental information unrelated to identity when
extracting features from the unlearned person’s image xt

i.
In other words, the feature f(xt

i) should encode rich envi-
ronmental information (e.g., background, image style) that
cannot be applied for matching unlearned person in other
cameras. To this end, we guide f(·) to push away xt

i and its
augmented view x̂t

i in the feature space, which encourages
the model to fit the variations for images of the unlearned
person. Formally, the learning objective for shifting the
unlearned persons out of view-invariant feature space is:

Lp
V IS = [σc − ∥f(xt

i)− f(x̂t
i)∥22]+, (2)

where [a]+ = max(a, 0.0) and σc is the margin to bound
the loss. Through optimization, the features of unlearned
person images become image-specific and cannot be used for
cross-view matching since the features are severely affected
by the variations.

Simply learning with Eq. 2 alone will cause the model
to forget the ReID knowledge, and fail to extract features
robust to variations for the accessible persons. It will cause
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Figure 2. An overview of our method. In variation-guided identity shift, the model is guided to adapt to the variations when encountering
images of unlearned persons, thereby shifting them out of the view-invariant feature space. Meanwhile, the view-invariant feature space is
maintained for other accessible persons by guiding the model to overcome the variations when encountering images of these individuals.
Relation regularization formulates the desired properties of De-ReID in terms of image relations and ensures the feature discriminability.

feature space collapse instead of the specific identity shift.
To maintain a view-invariant feature space for re-identifying
accessible persons, we guide the model to overcome the vari-
ations for images of these persons. For image xo

j of an acces-
sible person, we obtain its augmented view x̂o

j = T (xo
j). We

encourage the model to pull closer xo
j and x̂o

j to remind the
model of extracting robust features for accessible persons.
Formally, the learning function for accessible person is:

Lo
V IS = ∥f(xo

j)− f(x̂o
j)∥22. (3)

Combining Eq. 3 and Eq. 2, we form an asymmetric objec-
tive to shift the identities of unlearned persons while pre-
serving a view-invariant feature space for accessible persons:

LV IS = Lp
V IS + Lo

V IS . (4)

- Discussion on asymmetric learning scheme. LV IS alters
knowledge within the ReID model by treating the variations
in images asymmetrically. The two asymmetric parts in the
LV IS are collaborative, not isolated. Intuitively, one may
think that guiding the ReID network against the variations
(Lo

V IS) is merely for keeping ReID knowledge for accessible
persons. However, Lo

V IS is also helpful for unlearning
because it maintains a view-invariant feature space, which in
turn gives the direction for shifting the identities of unlearned
persons (Lp

V IS): out of the view-invariant space. As a result,
more unlabeled images of accessible persons can improve
the unlearning effect, which is not shown in other methods.

3.2. Relation Regularization
The relations between pairwise images are critical in the
context of person ReID, directly reflecting the discriminative
capability of the features. As formulated in Eq. 1, there
should be some accessible persons spread around an un-
learned person. Hence, we introduce relation regularization
to facilitate De-ReID and ReID learning. Specifically, we

constraints that, in the feature space, the distance between
the images of the same unlearned person should be greater
than the distance to the accessible persons. This TRiplet
Constraint facilitates retrieving images of different persons
when querying an unlearned person’s image.

LTRC = [dp − dn + σr]+,

where dp = ∥xt
i − xo

i,K∥22, dn = ∥xt
i − xt

h∥22.
(5)

Here, xo
i,K(xo

i,K ∈ SO) represents the K-th nearest image
to xt

i, and σr is the margin. xt
h is an image containing the

same person as xt
i (y

t
h = yti). LTRC constrains that the

distance between pairwise images of the same unlearned
person should be at least larger than dp + σr, where dp is
dynamically determined based on the distance to the K-th
nearest accessible person. When K is larger, LTRC encour-
ages more accessible persons to spread around xt

i. Through
optimizing LTRC , the top retrieval results mainly contain
different persons when retrieving unlearned person images
from feature space.

Complementary to variation-guided identity shift that
changes the cross-view invariance in features, we employ
Relation Consistent Regularization on dataset SO to main-
tain the feature discriminability during De-ReID fine-tuning.
The regularization is to ensure that the relations between
accessible individuals remain as discriminative as those in
the original model fp(·) during the unlearning process:

LRCR = ∥sim(fp(x
o
j), fp(x

o
h))− sim(f(xo

j), f(x
o
h))∥22.

(6)
By cooperating with LV IS , the model can extract discrim-
inative and view-invariant features for accessible persons
when unlearning the specific persons.
- Overall Learning objective. The model f(.) is trained
end-to-end with an overall learning objective as:

L = λ1 ∗ LV IS + λ2 ∗ LTRC + LRCR, (7)

where λ1 and λ2 are trade-off parameters.
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4. Experiments

4.1. Datasets and Experimental Setup

- Datasets. We conduct experiments in Market-1501 [61],
MSMT17 [47], Occ-Duke [34] and SYSU-MM01 [49]
datasets. Due to the limited space, we leave the results
in Occ-Duke and SYSU-MM01 datasets in our Appendix.
Market-1501 (abbreviated as Market) consists of 1,501 per-
sons, and all the images are captured from 6 camera views.
In the conventional ReID protocol, there are 750 persons for
training and 751 persons for testing. MSMT17 is a large-
scale ReID dataset, containing images of 4101 persons from
15 disjoint camera views. Conventionally, 1,041 persons
are for training and 3,060 persons for testing. For evaluat-
ing De-ReID, we slightly modify the conventional protocol
by referring to the experimental setups of other machine
unlearning works [8, 24, 53, 58].

Specifically, in each dataset, we take MT persons from
the testing set as the unlearned persons. Considering the
scale of the datasets, we set MT ∈ {25, 50, 75, 100} in
MSMT17 and MT ∈ {25, 50} in Market1501. For each un-
learned person, we split his images into two image sets from
disjoint cameras. One set is added to the training set and the
other is kept in the testing set. After adding the unlearned
persons to the training set, we divide the training set into
two subsets. One pre-training subset consists of accessible
persons with identity annotations and is used for pretraining
the ReID model. There are 900 accessible persons in the
pre-training subset of MSMT17 and 600 accessible persons
in the pre-training subset of Market-1501.

The fine-tuning subset consists of unlabeled images of
accessible persons and labeled images of unlearned persons,
simulating the practical scenario where we need to efficiently
fine-tune the ReID model without collecting additional la-
beled images of accessible persons. The dataset statistics
are shown in Table 1. We emphasize that the images of the
unlearned persons in the testing set under the cameras are
different from those of the training set. The identities of
accessible persons in the testing set are different from those
in the training set. More details are in Appendix.

- Experimental setup. In each dataset, the pre-training
subset is used to learn a ReID model in a supervised manner
as fp(·). After obtaining the well-trained ReID model, the
fine-tuning subset is for learning De-ReID model f(·) in our
main experiments.

- Evaluation metrics. We adopt the widely used Cumulative
Matching Characteristic (CMC) and mean Average Precision
(mAP) to evaluate our performance. Following previous
works [38, 58], we also adopt H-Means to comprehensively
evaluate the model’s ability of ReID in accessible persons

Table 1. Statistics in the case of MT = 100 in MSMT17 and
MT = 50 in Market1501. MT is the number of unlearned per-
sons for De-ReID. Notably, the accessible persons in training are
different from those in testing. “Train” refers to the fine-tuning
subset. For the unlearned persons, the images in training and those
in testing are from different cameras. More details are in Appendix.

MSMT17 Market-1501
MT |ST | MO |SO| MT |ST | MO |SO|

Train 100 4295 141 5061 50 931 151 2284
Query 100 533 2960 10706 50 150 700 3068

Gallery 100 4136 2960 74165 50 918 700 18033

and De-ReID in unlearned persons. Formally,

H-Mean =
2 ∗ R-1O(f) ∗∆R-1T

R-1O(f) + ∆R-1T
,

where ∆R-1T = R-1T (fp)− R-1T (f).

(8)

where R-1O(f) is model f ’s Rank-1 accuracy in accessible
persons, and ∆R-1T is the changes in the Rank-1 accuracy in
unlearned persons after De-ReID fine-tuning using different
methods. In the following, we only discuss the performance
of f(·) and therefore R-1O means R-1O(f) by default.

4.2. Implementation Details
By default, we use ViT-B [13] as the ReID backbone
fp(·), f(·). The images are resized to 256×128, and the
data augmentation includes random crop and flip. For intro-
ducing variations in variation-guided identity shift, we use
stronger augmentation derived from RandAugment [12]. We
detailed the augmentation and conducted corresponding ab-
lation studies in the Appendix. The AdamW [32] optimizer
is adopted for De-ReID learning with an initial learning of
3e-4. The weight decay is set to 0. We empirically set trade-
off parameters λ1 = 1.0 and λ2 = 1.0. The batch size for
accessible persons is 48, and that for unlearned persons is 32.
The above hyper-parameters are the same in all experiments.
K in Eq. 5 is set to 20.

4.3. Comparison with Related Methods
- Compared methods. Since this is the first work for De-
ReID, we compare our method with existing methods po-
tentially applicable to ReID. We pretrain a vanilla ViT-B in
the pretraining subset of each dataset and then apply these
methods to the ViT-B in the fine-tuning subset for De-ReID.
We report the performance of the machine unlearning meth-
ods, including GS-LoRA [58], LIRF [53], SCRUB [24], and
Boundary Shrink [8]. Besides, we implement a naive solu-
tion: label augmentation based on cameras, which assign
different labels for images containing the same person but
under different cameras. This naive solution is denoted as
“LabelAug”, and the triplet loss and cross-entropy loss [33]
are applied for training LabelAug.

Notably, previous methods usually assume that the la-
beled data of accessible classes are available. Since the data
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Table 2. Comparisons in the MSMT17 dataset. “BS” is the Bound-
ary Shrink [8]. “H” denotes “H-Mean”. R-1T is the Rank-1 accu-
racy on the unlearned persons, and R-1O is the Rank-1 accuracy on
the accessible persons. R-1T is expected to be low for unlearning
specific persons, while a higher R-1O and H is preferred. Since we
apply additional augmentation for asymmetric contrastive learning,
we further apply our augmentation to LIRF, denoted as LIRF*.
“RR” is the Re-Ranking [63]. The method with the best/second-
best H-Mean is marked in red/ blue. Blue background means the
H-Mean are improved by Re-Ranking.

Method
MT = 25 MT = 50

R-1T ↓ R-1O ↑ H ↑ R-1T ↓ R-1O ↑ H ↑
LabelAug 54.6 73.8 38.1 56.8 73.5 32.4

+ RR 62.3 76.9 29.2 65.3 77.2 21.2
BS 63.8 78.7 27.3 54.6 74.9 35.2

+ RR 70.0 82.2 18.3 62.5 78.7 25.3
SCRUB 43.8 75.0 49.1 45.2 74.4 45.1

+ RR 52.3 78.4 41.3 53.7 78.2 36.6
LIRF 10.0 62.5 66.2 18.5 54.6 56.8
+ RR 6.9 65.4 69.2 20.5 57.3 57.2

LIRF* 18.5 68.8 65.1 35.1 69.7 52.8
GS-LoRA 56.9 77.5 35.9 60.2 80.7 28.6

+ RR 56.9 79.7 36.2 64.1 82.9 23.2
Ours 4.6 77.0 76.3 10.8 72.9 69.7
+ RR 4.6 79.0 77.3 10.4 75.1 70.9

Table 3. Comparison results in the MSMT17 dataset when MT =
75 and MT = 100. The notations are consistent with Table 2

Method
MT = 75 MT = 100

R-1T ↓ R-1O ↑ H ↑ R-1T ↓ R-1O ↑ H ↑
LabelAug 61.4 72.2 29.2 62.7 71.9 27.2

+ RR 69.1 75.8 18.6 66.8 75.7 21.8
BS 57.2 69.1 33.9 54.8 68.3 36.3

+ RR 65.6 74.3 23.7 61.4 72.7 28.9
SCRUB 54.7 74.8 37.5 50.5 67.8 40.6

+ RR 62.9 79.0 27.7 55.7 72.8 35.9
LIRF 18.6 51.9 56.1 20.8 49.7 53.8
+ RR 19.6 55.1 57.5 24.8 52.4 53.5

LIRF* 38.4 65.0 50.5 15.6 50.9 56.7
GS-LoRA 62.4 79.5 28.4 62.1 76.1 28.3

+ RR 65.3 81.8 24.5 63.8 78.6 26.2
Ours 12.4 69.8 68.5 13.1 67.1 66.7
+ RR 13.1 71.6 69.0 15.3 68.8 66.4

of accessible persons is unlabeled in our experiments, we
apply our LRCR as a regularization for previous methods.
We further apply our methods to advanced ReID models,
including DCFormer [27], PAT [28], and PHA [56].
- Results. Table 2 and Table 4 shows the comparison results.
From the tables, we can observe that our method achieves
the best performance in terms of H-Mean. Since the post-
processing methods like Re-Ranking [63] can improve the
results, we investigate whether these methods can reduce the
unlearning effect when retrieving unlearned persons. The
results show that existing unlearning methods usually get
worse results after post-processing. For example, in Table 2,
the Rank-1 accuracy of the SCRUB on unlearned persons
is clearly increased from 43.8% to 52.3% when MT = 25,

Table 4. Comparison results in the Market-1501 dataset.

Method
MT = 25 MT = 50

R-1T ↓ R-1O ↑ H ↑ R-1T ↓ R-1O ↑ H ↑
LabelAug 50.7 76.5 51.3 64.7 77.4 42.5

+ RR 49.3 77.6 52.8 66.0 78.9 41.3
BS 57.3 73.1 44.5 62.0 72.2 44.3

+ RR 54.7 75.3 47.4 65.3 74.0 41.4
SCRUB 50.7 76.0 51.2 54.7 70.2 50.4

+ RR 56.0 77.4 46.6 64.7 71.8 41.6
LIRF 25.3 84.8 72.9 31.3 75.9 68.7
+ RR 26.7 84.4 71.9 32.7 75.7 67.7

LIRF* 37.3 86.0 64.5 39.3 79.0 64.6
GS-LoRA 56.0 91.7 48.9 65.3 91.4 43.7

+ RR 54.7 91.3 50.2 67.3 91.3 41.3
Ours 10.7 91.1 84.4 12.0 84.4 83.2
+ RR 5.3 91.0 87.4 10.0 83.5 83.8

demonstrating that the model does not effectively unlearn
the persons and there are potential cues to re-identify them.

While other methods achieve a worse H-mean after Re-
ranking, our method can benefit from Re-Ranking [63] since
the overall performance H-Mean is improved in most cases.
For example, in the case of MT = 25 in Market dataset, the
H-Means of our method is increased to 87.4% from 84.4%.

Compared with the other methods, Boundary Shrink
changes the classification decision boundary of the unlearn-
ing classes, i.e., the unlearned persons in this work. However,
the feature representation is the core for person image match-
ing instead of the classifier. In contrast, our method directly
optimizes the feature representation for De-ReID. As a re-
sult, our method outperforms Boundary Shrink by 30.4%
H-Mean in MSMT17 with MT = 100.

LIRF unlearns classes by constraining the attention map
of intermediate features to be significantly different before
and after unlearning. Since it directly constrains the features,
it obtains the second-best results. However, the attention map
has lots of knowledge about extracting identity information
from images. Hence, their constraints largely hurt the ReID
ability on accessible persons, and our method outperforms
LIRF by 12.9% at H-Mean in MSMT17 when MT = 100.
Besides, since we apply additional augmentation in variation-
guided identity shift, we further validate the effectiveness of
the additional augmentation by applying the augmentation in
LIRF, denoted as LIRF*. However, the H-Mean is improved
only in the case of MT = 100 in MSMT17 and decreases
in other cases, demonstrating that additional augmentation
does not necessarily lead to higher performance.

GS-LoRA effectively protects the ReID ability on acces-
sible persons but falls behind in unlearning specific persons.
LabelAug directly guides the model in distinguishing the
images of unlearned persons under different camera views,
but it has an unsatisfactory performance. We speculate it
is because the model overfits the images in training and
fails to unlearn the specific persons under cameras unseen in
training. Differently, our method employs variation-guided
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Table 5. Evaluation with different ReID models. Regardless of the
ReID models, our method performs the best in terms of erasing
the knowledge about unlearned persons (quantified by R-1T ) and
keeping ReID knowledge for accessible persons (R-1O). “Null”
indicates that no De-ReID method is applied.

ReID model De-ReID method R-1T ↓ R-1O ↑ H ↑

DCFormer

Null 81.2 84.4 —
LabelAug 44.1 54.0 46.2
GS-LORA 75.3 81.9 16.4
LIRF 18.0 51.0 57.7
Ours 17.8 66.1 66.3

PAT

Null 72.8 75.6 —
LabelAug 38.3 43.3 40.1
GS-LORA 52.5 60.9 33.5
LIRF 16.7 42.6 49.4
Ours 12.0 55.0 59.0

PHA

Null 70.2 78.7 —
LabelAug 44.3 51.4 41.2
GS-LORA 56.4 68.3 33.6
LIRF 23.6 50.5 52.7
Ours 3.9 51.2 60.8

identity shift (Lp
V IS , L

o
V IS) and guides the model to handle

the variations adaptively. Fitting the variations in unlearned
images helps the model bias to the environmental informa-
tion when querying the unlearned persons. Simultaneously,
the model is guided to be robust to the variations when query-
ing accessible persons. As a result, the unlearned persons
are shifted out of the view-invariant feature space while the
accessible persons are retained.
- Evaluations on other ReID methods. Apart from the
comparison on the vanilla ViT backbone, we also compared
our method with related methods on the advanced ReID
models [27, 28, 56]. The experimental results in Table 5
demonstrate that our method is superior to others regarding
unlearning different ReID models.

4.4. Ablation Study
We conduct experiments to show the effectiveness of each
component in our design. Due to the space limit, we report
the experimental results in Market and MT ∈ {25, 100} in
MSMT17 in Table 6, and the rest in Appendix. Regardless
of MT , our designs clearly improve H-Mean that compre-
hensively evaluates the effectiveness of unlearning specific
persons and ReID performance on accessible persons.
- The effectiveness of the relation regularization. From
Table 6, we first observe that the model suffers from catas-
trophic forgetting in ReID knowledge and collapses in the
absence of LRCR. Although our variation-guided identity
shift pulls closer the images and the augmented images for
accessible persons, it mainly preserves the view-invariant
feature embedding but it fails to preserve the feature dis-
criminability, leading to model collapses. LRCR preserves
the discriminability of features by preserving the relations
between accessible persons.

Another constraint LTRC attempts to push away the im-

Table 6. Ablation study in MSMT17 dataset. “W/o” means “with-
out”, and other notations are the same as Table 2. fp(·) is the initial
model for De-ReID learning. The full model achieves the best H-
Mean. Notably, without LRCR, the model forgets ReID knowledge
and collapses. “SD” denotes the “self-augmented discrimination”.

Method
MSMT17

MT = 25 MT = 100
R-1T ↓ R-1O ↑ H ↑ R-1T ↓ R-1O ↑ H ↑

fp(·) 80.3 85.4 — 79.5 85.4 —
Components in Relation regularization

W/o LTRC 5.5 73.4 74.1 18.3 65.3 63.2
W/o LRCR — — — — — —

Components in Variation-guided Identity Shift
W/o SD 4.6 74.5 75.1 10.5 58.7 63.4

W/o Lo
V IS 10.0 75.8 72.9 18.0 63.2 62.3

W/o LV IS 20.5 77.4 67.5 41.3 70.0 49.4
Full model 4.6 77.0 76.3 13.1 67.1 66.7

Table 7. Ablation study in Market-1501.

Method
Market-1501

MT = 25 MT = 50
R-1T ↓ R-1O ↑ H ↑ R-1T ↓ R-1O ↑ H ↑

fp(·) 89.3 96.3 — 94.0 96.3 —
Components in Relation regularization

W/o LTRC 20.0 89.7 78.2 24.0 78.3 73.9
W/o LRCR — — — — — —

Components in Variation-guided Identity Shift
W/o SD 24.0 90.3 75.8 11.3 79.7 81.2

W/o Lo
V IS 10.7 84.5 81.4 12.7 77.3 79.2

W/o LV IS 46.7 93.9 58.6 55.3 89.9 54.1
Full model 10.7 91.1 84.4 12.0 84.4 83.2

�� ��
Figure 3. Evaluation results under various λ1 and λ2.

ages between unlearned persons to prevent them from being
cross-view retrieved, referring to the distance between acces-
sible persons and unlearned persons. We observe a degraded
H-Mean in the absence of LTRC in all cases. For example,
when deprecating LTRC in the case of MT = 50 in Market,
the Rank-1 accuracy of the unlearned persons is increased
to 24.0% from 12.0%, meaning that more unlearned person
images are correctly matched and is not expected. As a
result, the H-Mean drops by 9.8% compared with the full
model. In the case of MT = 100 in MSMT17, the Rank-1
accuracy of the unlearned persons increases to 18.3% from
13.1% without LTRC , and the H-Mean drops by 3.3%.

The hyper-parameter λ2 controls the weight of LTRC .
We evaluate our model under different λ2 and show the per-
formance in Fig. 3. When λ2 = 0, LTRC is not employed
and the performance is inferior. As λ2 increases, the perfor-
mance is improved. However, LTRC should not be set to
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too large to avoid overwhelming other learning objectives.
- The effectiveness of the variation-guided identity shift.
The variation-guided identity shift (VIS) emphasizes the
style difference between images of unlearned persons in
the feature space while keeping the other images robust
to the style variations. Overall, comparing the results of
“W/o LV IS” and the full model in Table 6, we observe that
the ReID model struggles to unlearn the specific persons
without LV IS . For example, in MSMT17 dataset, the Rank-1
accuracy on unlearned persons is 20.5%/41.3% when MT =
25/100, which is 15.9%/28.2% larger than the full model.
This is because ReID requires view-invariant features and
our model correspondingly guides the model to be biased to
encode environmental information for images of unlearned
persons. As a result, we effectively prevent the images
of unlearned persons from being re-identified. The hyper-
parameter λ1 controls the weight of LV IS in optimization.
We evaluate our model under different λ1 and show the
performance in Fig. 3.

We also studied the effectiveness of the designs in VIS.
As discussed in the introduction, we argue that simply push-
ing away the images under different camera views may learn
the spurious cues for De-ReID, and therefore we push away
the image and the corresponding augmented image in our
VIS. We refer to this as “self-augmented discrimination”.
To verify its effectiveness, we conduct an experiment that
pushes away the image and the augmented image from an-
other image, denoted as “W/o SD”, and observe a significant
performance drop. For example, in the case of MT = 25 in
Market dataset, the Rank-1 accuracy on the unlearned person
increases to 24.0% from 10.7% without SD, and the H-Mean
drops by 8.6%. In other cases, the H-Mean drops without
using the SD, demonstrating the effectiveness of SD.

Moreover, we observe that guiding the ReID to overcome
the variations for accessible persons is important for bal-
ancing the ReID ability and De-ReID of unlearned persons.
Deprecating the Lo

V IS leads to 3% ∼ 4% performance drops
in H-Mean in different cases, and reduce the protection effect
since the rank-1 accuracy of unlearned persons increases.
- The impact of the unlabeled sample. We evaluate our
method in MSMT17 under different ratios between unla-
beled images of accessible persons and labeled images of
unlearned persons in the fine-tuning subset. The results are
in Table 8.

From the results, we obtain two conclusions. (i) More
unlabeled data is helpful for both unlearning specific per-
sons and keeping ReID performance on the accessible per-
sons. When the number of accessible persons decreases,
the Rank-1 accuracy of the unlearned persons (denoted as
R-1T ) increases, which means the unlearned persons are
easier to retrieve by the ReID model. Simultaneously, the
Rank-1 accuracy of the accessible persons (R-1O) decreases,
which means the ReID model cannot properly re-identify

Table 8. Evaluations under different numbers of accessible persons
in MSMT17 when MT = 100. MO is the number of accessible
persons in the fine-tuning subset. ’With LUP’ means using the
images in LUPerson dataset as auxiliary unlabeled data and the
number in parentheses denotes the performance gain. By default,
we do not use LUPerson dataset.

MO
Without LUP With LUP

R-1T ↓ R-1O ↑ H ↑ R-1T ↓ R-1O ↑ H ↑
141 13.1 67.1 66.7 - - -
100 15.8 61.3 62.5 14.1 68.2 66.8 (+4.3%)
80 15.8 54.3 58.6 15.4 67.7 65.9 (+7.3%)
60 17.4 51.4 57.6 15.4 65.6 64.8 (+7.2%)

Images of unlearned persons Images of other persons
Figure 4. Attention map on images of the unlearned persons and
the images of accessible persons.

the accessible persons. (ii) Although the performance of our
method decreases when the unlabeled images become fewer,
our method can effectively utilize the publicly available un-
labeled person images for unlearning, demonstrating the
scalability of our method. When using additional unlabeled
images from LUPerson dataset, our method can achieve
similar performance even though the number of accessible
persons in MSMT17 decreases from 141 to 60.

4.5. Visualization
We visualize the attention map on different persons in the
testing set in Fig. 4. From the figure, for the images of
unlearned persons, we can observe that the model’s attention
mainly focus on the background which contains abundant
environmental information. At the same time, the model
pays diverse attention to the informative parts of images
for extracting discriminative features for accessible persons.
These results demonstrate the effectiveness of our method.

5. Conclusion

To address the privacy concerns in person ReID, we pio-
neer the exploration of the De-ReID problem that guides the
ReID model to forget the knowledge about matching specific
persons. We formulate a framework and propose a novel
variation-guided identity shift method for De-ReID. Our
method unlearns the specific person shifting them out of the
view-invariant feature space and simultaneously keeps the
ReID knowledge by overcoming the cross-view variations
for accessible persons. We further introduce relation regu-
larization to characterize the desired properties of De-ReID.
Extensive experiments conducted on a new benchmark show
the superiority of our method.
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