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Abstract

We present a validation dataset of newly-collected kitchen-

based egocentric videos, manually annotated with highly

detailed and interconnected ground-truth labels covering:

recipe steps, fine-grained actions, ingredients with nutri-

tional values, moving objects, and audio annotations. Im-

portantly, all annotations are grounded in 3D through dig-

ital twinning of the scene, fixtures, object locations, and

primed with gaze. Footage is collected from unscripted

recordings in diverse home environments, making HD-

EPIC the first dataset collected in-the-wild but with detailed

annotations matching those in controlled lab environments.

We show the potential of our highly-detailed annotations

through a challenging VQA benchmark of 26K questions as-

sessing the capability to recognise recipes, ingredients, nu-

trition, fine-grained actions, 3D perception, object motion,

and gaze direction. The powerful long-context Gemini Pro

only achieves 37.6% on this benchmark, showcasing its dif-

ficulty and highlighting shortcomings in current VLMs. We

additionally assess action recognition, sound recognition,

and long-term video-object segmentation on HD-EPIC.

HD-EPIC is 41 hours of video in 9 kitchens with digital

twins of 413 kitchen fixtures, capturing 69 recipes, 59K fine-

grained actions, 51K audio events, 20K object movements

and 37K object masks lifted to 3D. On average, we have

263 annotations per minute of our unscripted videos.

Figure 1. Annotation Highlights. We capture multi-day recordings of unscripted activities. Centre-Top: Recipes are recorded

with steps and their preparation temporally annotated, along with ingredient addition. Ingredients are weighed and nutrition recorded.

Centre-Middle: Dense fine-grained narrations detailing what, how, and why are parsed and clustered. Audio events are also annotated.

Centre-Bottom: Object movements are temporally annotated with bounding boxes and hands and object masks. Right-Top: All annota-

tions are temporally grounded in a 3D digital twin. We show trajectories of 3 (masked) objects: Sweet potato, Food processor and Spoon,

highlighting relevant kitchen fixtures. Right-Bottom: Gaze captures when objects are primed (i.e. looked at) before being taken/placed.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Detailed understanding of videos, from the brief fine-

grained action to the overarching hour-long activity, is ef-

fortless for humans but currently out of reach for both foun-

dational and specialised models. Egocentric videos, in par-

ticular, introduce additional challenges to general video un-

derstanding, including significant camera motion, subtle ac-

tion motion, objects occluded during manipulations and fre-

quently going out of view. Understanding such videos re-

quires disentangling the combined signals of head motion,

hand interactions and a global understanding of the dynamic

scene. This makes ego videos a great testbed for a compre-

hensive evaluation of video perception models.

Egocentric vision has recently been fuelled by an influx

of datasets [18, 28, 29, 80]. While large-scale, making them

ideal for training, these datasets are sparsely annotated, par-

ticularly for tasks which link various parts of the long video,

or those requiring 3D grounding. In contrast, richly anno-

tated datasets tend to be synthetic or collected in controlled

settings [7, 50, 68] which limits their realism. We bridge

this gap by presenting the most densely annotated dataset

of unscripted recordings, ideal for comprehensive valida-

tion of video-only and video-language models.

We collect new videos, allowing us to capture addi-

tional meta-data and to ensure these videos have not al-

ready been used to train existing models. Following EPIC-

Kitchens [17], participants collect all kitchen activities for

three days. We thus term our dataset Highly-Detailed EPIC

(HD-EPIC). Fig. 1 provides an overview of the multi-tiered

annotations, several of which are novel:

⨲ Recipe steps are temporally annotated, and linked to an-

notations of all preparatory actions that relate to the step.

⨲ Ingredients are weighed in videos and labelled with nu-

trition. We track dish nutrition as ingredients are added.

⨲ Each action has a dense description capturing the what,

how, and why of actions along the start and end time.

⨲ For each kitchen, we curate a digital twin with la-

belled fixtures. These are associated with actions (e.g.

open/close) and the taking/placing of objects.

⨲ All moved objects are tracked, with manual masks lifted

to 3D bounding boxes.

⨲ We associate gaze with object movements, labelling

when objects are spotted before take/place actions.

With these dense annotations, we design a challeng-

ing Visual Question Answering (VQA) benchmark of 26K

questions. We purposefully do not use LLMs to generate

negatives, instead using similar annotations. We highlight a

few novel question types:

⨲ Recipe nutrition: we question the change in the recipe

nutrition as one or more ingredients are added.

⨲ Multi-video: we question recipes prepared across

recordings, with a VQA that spans multiple long videos.

⨲ Object itinerary: we question multi-hop object move-

ments over a long video, relative to kitchen fixtures.

⨲ Fixture interactions: we question how many times a par-

ticular cupboard/drawer is opened/closed.

⨲ Action how/why: we question how/why an action was

carried out, using participant-narrated manners/reasons.

⨲ Anticipation with gaze: With gaze priming, we query

next-object movement, offering evidenced anticipation.

Additionally, we report results on action recognition, sound

recognition, and long-term video object segmentation.

This paper thus contributes: (i) 41 hours of multi-day

unscripted egocentric recordings, (ii) highly-detailed anno-

tations including novel labels (e.g. ingredient nutrition, dig-

ital twin, gaze prime) and (iii) a challenging VQA bench-

mark including novel Qs (e.g. object itinerary, recipe nutri-

tion changes) along with 3 standard video benchmarks.

2. Related Work

With the rise of foundation models [5, 6, 11, 13, 21, 59, 70,

79, 81, 88], there has been a recent influx of benchmarks

[8, 10, 15, 23, 25, 35, 42–44, 49, 58, 78, 92] aiming to test

video understanding abilities. These benchmarks evaluate

diverse capabilities e.g. physics [58], counting [23], tempo-

ral reasoning [8, 10] and long video [23, 25, 49].

A few benchmarks test embodied or egocentric under-

standing. [28] released a Natural Language Queries (NLQ)

benchmark (19.2K queries) centred around episodic mem-

ory of objects. [48] collects 1.6K human-made questions

and answers on topics such as relative object locations,

episodic memory, and spatial reasoning. However, it uses

views from the HM3D [63] and ScanNet [16] datasets, so

these questions are based on passive views of a static envi-

ronment. [49, 86] auto-generate 5K and 7K questions based

on Ego4D narrations. Whilst this approach is efficient, it is

limited to these short narrations. [8] collects its own anno-

tations for videos from several datasets, including Ego4D.

Their benchmark is solely focused on temporal questions

related to ordering, counting, causality and direction.

To evaluate a wider range of capabilities, a wider range

of annotations are required. Of particular note are 3D

grounding annotations. Ego4D [28] contains some environ-

ment scans and static 3D object locations. With SLAM-

equipped devices [91] builds a benchmark for 3D object

tracking; [50] contains an office and living room digital

twin; and [29] contains ego- and exo- views of expert tasks.

In contrast to these works which focus on only a few an-

notation types, we collect the most comprehensive set of

annotations in one dataset, including highly detailed narra-

tions, object and hand segmentations, and a comprehensive

3D digital twin of the scene and objects, all from unscripted

egocentric footage in participants’ homes.

3. Data Collection

Recruitment and Equipment. Each participant engaged

in a long commitment (∼50 hours) involving data record-
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Recorded over 3 days Objects Activities Recipes

Figure 2. Diversity in HD-EPIC, which is filmed over 3 days in-the-wild, resulting in many objects, activities and recipes.

Figure 3. Recipe modification in ingredients and steps.

ing and providing detailed narrations, recipes and nutri-

tion information. Data was collected with Project Aria

glasses [72]—a multi-sensor platform with 3 forward cam-

eras (1 RGB and 2 SLAM), 7 microphones and inward cam-

eras for gaze estimation. We collected 30 FPS RGB videos

at 1408⋊ 1408 resolution, 60 FPS eye tracking and 30 FPS

SLAM. We supplied participants with multiple devices in-

cluding scales for nutritional tracking (see Fig. A1).

Instructions and Collected Data. Participants recorded

all their daily kitchen activities for at least 3 consecutive

days. All 9 participants were asked to wear the glasses

each time they walked into their kitchen, pressing record

upon entering, and stopping the recording when they left

the kitchen. Participants recorded for 3.5 to 7.2 hours (avg.

4.6). Overall, we collected 156 videos, with an average

length of 15.9 (± 14.5) minutes totalling 41.3 hours (4.46M

frames). Fig. 2 shows the diversity in the collected data.

Following data collection, participants provided the

recipes they freely prepared, citing the source (e.g. website)

and any modifications (see Fig. 3). We collected a total of

69 recipes covering various cuisines. On average, recipes

contained 6.6 steps, 8.1 ingredients, and took 4 hours 48

minutes across 2.1 videos from preparation to serving. Our

longest recipe took 2 days and 6 hours to complete.

To track nutrition of recipes, participants weighed and

manually logged ingredients with MyFitnessPal [3], giving

us detailed nutrition information and adding an additional

dimension to the dataset. In total, participants used 558 in-

gredients including ingredients high in protein, e.g. tuna and

kidney beans; carbohydrates, e.g. dates and flour; and fat

e.g. sour cream and pine nuts. Participants prepared both

high calorie dishes e.g. Lazy Cake (4.8K calories) and low

calorie dishes e.g. Crispy Cucumber Salad (274 calories).

Narrations. We follow prior datasets [17, 18, 28], ask-

ing participants to watch their recordings and narrate with

a web-based narrator tool [28]. We expand on this by ask-

ing participants to describe what they are doing, along with

how and why. This results in a rich set of narrations that are

denser, and more detailed than previous datasets (e.g. 3.8⋊

more words/min than Ego4D). See stats in Supp. B.

Post-Processing—Multi-Video Slam and Gaze. We use

Aria MPS [1] to process videos obtaining singular multi-

day point clouds per kitchen; 1kHz 6DoF camera trajecto-

ries; and eye gaze direction. We post-process VRS files,

converting videos to mp4, removing the gaze camera input

for anonymity. Further details are in Supp. B.

4. Annotation Pipeline

We collect extensive multi-tiered annotations to achieve the

level of detail that distinguishes HD-EPIC from other video

understanding datasets. Here we detail our pipeline.

4.1. Annotating Recipe Steps and Ingredients

Our videos are distinct from short recipe videos found on-

line, which are typically trimmed to only crucial steps, and

often edited further or sped up. Videos in HD-EPIC include

a wider range of recipe-relevant activities, such as fetching

or prepping ingredients. To comprehensively annotate these

videos, we introduce prep and step pairs.

The prep of a corresponding step is defined as all essen-

tial actions the participant takes to get ready to execute a

given step. For example, the prep of the step ‘chop tomato’,

includes retrieving the tomato from storage, washing it, and

gathering the knife and chopping board. However, if the

step is ‘Add chopped onions and stir’, then the chopping of

onions is part of the prep for that step. This introduces a

more fine-grained understanding of all steps, unexplored in

prior datasets [29, 39, 73]. Fig. 4 shows sample prep-step
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Figure 4. For the ‘Carbonara’ recipe, we visualise the prep and step time segments for three consecutive steps (left), along with sample

frames with corresponding action narrations (top). The interleaving of different preps/steps is evident in the annotations.

o
p
e
n

tu
rn

-o
n

u
n
ro

ll

u
n
sc

re
w

u
n
co

ve
r

sw
it
ch

u
n
w

ra
p

u
n
lo

ck

ta
ke

re
m

o
ve lif

t

sc
o
o
p

g
a
th

e
r

ch
o
o
se

h
o
ld

p
re

ss

p
u
ll

tu
rn

sh
a
ke

sq
u
e
e
ze

sl
id

e

re
a
ch fl
ip

w
ri
te

sc
re

w

co
o
k

fo
rm

w
a
te

r

w
e
a
r

se
t

st
re

tc
h

fl
a
tt

e
n

b
e
n
d

kn
e
a
d

b
a
la

n
ce

p
ro

ve

fi
n
is

h

m
a
rk

p
re

p
a
re

p
ro

d
u
ce

m
a
tc

h

so
lid

if
y

m
ix

p
o
u
r

a
d
d fi
ll

a
tt

a
ch

co
a
t

cu
t

p
e
e
l

e
m

p
ty

b
re

a
k

d
iv

id
e

ri
p

fi
lt
e
r

cr
u
sh

g
ra

te

st
a
b

m
o
ve

tr
a
n
si

ti
o
n

ca
rr

y

a
p
p
ly

sp
ri
n
kl

e

sp
ra

y

se
a
so

n

so
rt

fo
ld

ch
e
ck

a
d
ju

st

se
a
rc

h

lo
o
k

m
e
a
su

re

in
cr

e
a
se

w
a
it

tu
rn

-d
o
w

n

lo
w

e
r

sc
a
n

u
n
fr

e
e
ze p
a
t

e
a
t

fe
e
l

d
ri
n
k

sm
e
ll

cl
o
se

tu
rn

-o
ff

w
ra

p

ro
ll

lo
ck

w
a
sh d
ry

sc
ru

b

ru
b

sc
ra

p
e

b
ru

sh

so
a
k

p
u
t

d
ro

p

th
ro

w

in
se

rt

h
a
n
g

le
t-

g
o

se
rv

e

10 0

10 1

10 2

10 3

10 4

V
e
rb

 F
re

q
u
e
n
c
y
 (

L
o
g
 S

c
a
le

)

ta
p

h
o
b

sc
a
le

o
ve

n
d
is

h
w

a
sh

e
r

fr
id

g
e

p
h
o
n
e

a
la

rm
b
u
tt

o
n

ke
tt

le
kn

o
b tv

b
le

n
d
e
r

co
ff

e
e
 m

a
ke

r
h
e
a
t

p
lu

g
w

a
sh

in
g
 m

a
ch

in
e

w
ir
e

m
ic

ro
w

a
ve

fr
e
e
ze

r
re

m
o
te

 c
o
n
tr

o
l

to
a
st

e
r

e
xt

ra
ct

o
r 

fa
n

ca
m

e
ra

lig
h
t

h
e
a
te

r
w

a
tc

h
fo

o
d
 p

ro
ce

ss
o
r

h
o
o
ve

r
p
o
w

e
r

cd
b
a
tt

e
ry

sl
o
w

 c
o
o
ke

r
co

m
p
u
te

r
 h

o
t 

ch
o
c.

 m
a
ke

r
ca

n
d
y 

fl
o
ss

 m
a
ke

r
p
a
n

tr
a
y

p
o
t

h
a
n
d
le

ch
o
p
p
in

g
 b

o
a
rd

sp
a
tu

la
co

la
n
d
e
r

p
e
n

to
n
g
s

sc
is

so
rs

sl
ic

e
r

u
te

n
si

l
la

d
le

p
o
ta

to
 p

e
e
le

r
fi
lt
e
r

g
ra

te
r

ju
ic

e
r

ro
lli

n
g
 p

in
h
o
ld

e
r

w
h
is

k
p
e
st

le
p
iz

za
 c

u
tt

e
r

cl
ip

ch
o
p
st

ic
k

b
o
tt

le
 o

p
e
n
e
r

p
re

ss
e
r

st
ra

w
m

a
sh

e
r

th
e
rm

o
m

e
te

r
ke

y
w

h
e
ts

to
n
e

ta
p
e

fu
n
n
e
l

sa
la

d
 s

p
in

n
e
r

sp
o
o
n

kn
if
e

fo
rk

cu
tl
e
ry

b
o
w

l
p
la

te
cu

p
g
la

ss ju
g

o
n
io

n
p
o
ta

to
m

u
sh

ro
o
m

to
m

a
to

g
a
rl
ic

ca
rr

o
t

p
e
p
p
e
r

sq
u
a
sh

ve
g
e
ta

b
le

le
tt

u
ce

le
a
f

cu
cu

m
b
e
r

a
u
b
e
rg

in
e

la
d
y 

fi
n
g
e
r

b
ro

cc
o
li

st
a
lk

ce
le

ry
ka

le
co

u
rg

e
tt

e
co

rn
b
e
a
n

sp
in

a
ch

p
e
a

sp
ri
n
g
 o

n
io

n
le

m
o
n

ra
sp

b
e
rr

y
se

e
d

m
a
n
g
o

o
ra

n
g
e

n
u
t

a
vo

ca
d
o

b
a
n
a
n
a

ch
e
rr

y
lim

e
g
ra

p
e

o
liv

e
b
lu

e
b
e
rr

y
a
p
p
le

fr
u
it

ra
is

in
p
in

e
a
p
p
le

p
lu

m
ki

w
i

p
e
a
r

co
co

n
u
t

ch
ic

ke
n

m
e
a
t

b
a
co

n
sa

lm
o
n

b
u
rg

e
r

b
e
e
f

to
fu

fi
sh

sa
la

m
i

q
u
o
rn

tu
n
a

sa
u
sa

g
e

ch
e
e
se

e
g
g

b
u
tt

e
r

m
ilk

yo
g
h
u
rt

o
m

e
le

tt
e

cr
e
a
m

d
o
u
g
h

ri
ce p
ie

fl
o
u
r

b
re

a
d

ro
ll

le
n
ti
l

p
a
st

a
b
re

a
d
cr

u
m

b
b
is

cu
it

p
a
n
ca

ke
o
a
tm

e
a
l

ca
ke

ce
re

a
l

ye
a
st

b
re

a
d
st

ic
k

n
o
o
d
le o
il

sa
lt

sa
u
ce

g
in

g
e
r

co
ri
a
n
d
e
r

ch
ill

i
sp

ic
e

su
g
a
r

st
o
ck

p
o
w

d
e
r

b
a
si

l
p
a
st

e
p
a
rs

le
y

o
re

g
a
n
o

vi
n
e
g
a
r

ci
n
n
a
m

o
n

cu
m

in
p
a
p
ri
ka

ro
se

m
a
ry

tu
rm

e
ri
c

th
ym

e
w

a
te

r
co

ff
e
e

te
a

ju
ic

e
d
ri
n
k

co
ck

ta
il

w
in

e
so

d
a

b
e
e
r

fo
o
d

m
ix

tu
re

cu
rr

y
sa

la
d

p
iz

za
so

u
p

ch
o
co

la
te

sp
re

a
d
s

sa
n
d
w

ic
h

d
u
m

p
lin

g
cr

is
p

o
n
io

n
 r

in
g

va
n
ill

a
 e

x
tr

a
ct

p
a
ck

a
g
e lid

b
a
g

b
o
tt

le
b
ox ja

r
co

n
ta

in
e
r

ca
n

ca
p

co
ve

r
b
a
sk

e
t

co
rk

te
a
p
o
t

sa
lt
 c

e
lla

r
b
a
ck

p
a
ck

cu
p
b
o
a
rd

d
ry

in
g
 r

a
ck to
p

si
n
k

d
ra

w
e
r

sh
e
lf

w
a
ll

ki
tc

h
e
n

st
a
n
d

fl
o
o
r

ch
a
ir

w
in

d
o
w

la
d
d
e
r

a
ir
e
r

h
o
o
k

ca
n
d
le

ki
tc

h
e
n
 d

o
o
r

cl
o
th

e
s

to
w

e
l

p
a
p
e
r

n
a
p
ki

n
w

ra
p

p
la

st
ic

 w
ra

p
fo

il
g
lo

ve
la

b
e
l

sh
e
e
ts

m
a
t

ru
b
b
e
r

h
a
n
d
 g

u
a
rd

a
p
ro

n
p
ill

o
w

ki
tc

h
e
n
 t

o
w

e
l

h
a
n
d

sp
o
n
g
e

cl
o
th

w
a
sh

in
g
 l
iq

u
id

b
ru

sh
ta

b
le

t
w

a
sh

in
g
 p

o
w

d
e
r

d
u
st

 p
a
n

b
in

ru
b
b
is

h
sk

in
e
g
g
 s

h
e
ll

p
it
h

re
st

re
ci

p
e

liq
u
id a
ir

b
o
o
k

fa
ce b
a
r

ic
e

b
a
llo

o
n

10 0

10 1

10 2

10 3

10 4

N
o
u
n
 F

re
q
u
e
n
c
y
 (

L
o
g
 S

c
a
le

)

L
e

a
ve

C
le

a
n

B
lo

ck

S
e

n
se

M
o

n
ito

r

O
rd

e
r

D
is

tr
ib

u
te

T
ra

n
si

tio
n

S
p

lit

M
e

rg
e

M
a

n
ip

u
la

te

R
e

tr
ie

ve

A
cc

e
ss

R
u

b
b

is
h

O
th

e
r

H
a

n
d

M
a

te
ri
a

ls

F
u

rn
itu

re

S
to

ra
g

e

C
o

n
ta

in
e

rs

P
re

p
a

re
d

 F
o

o
d

D
ri
n

ks

S
p

ic
e

s,
 H

e
rb

s 
a

n
d

 S
a

u
ce

s

B
a

ke
d

 G
o

o
d

s 
a

n
d

 G
ra

in
s

D
a

ir
y 

a
n

d
 E

g
g

s

M
e

a
t 
a

n
d

 S
u

b
st

itu
te

F
ru

its
 a

n
d

 N
u

ts

V
e

g
e

ta
b

le
s

C
ro

ck
e

ry

C
u

tle
ry

U
te

n
si

ls

C
o

o
kw

a
re

A
p

p
lia

n
ce

s

C
le

a
n

in
g

 M
a

te
ri
a

ls

Figure 5. Frequency of verb clusters (top) and noun clusters (bottom) in narrated sentences by category, shown on a logarithmic scale.

Figure 6. Nutrition is monitored throughout recipes as ingredients

are incorporated into dishes. Here we show Banana Bread Choco-

late Chip Cookies. We annotate when ingredients are weighed,

document their nutrition, and locate their adding time, giving us

overall dish nutrition at each stage.

annotations for 3 steps. Nearly all steps (93.1%) have paired

prep annotations. Typically, prep is shorter than a step: avg.

prep is 54.5s (±95.3s), avg. step is 78.2s (±100.7s).

We also annotate weighing and adding temporal seg-

ments which enables monitoring the nutrition of the full

dish as ingredients are incorporated (see Fig. 6). In total,

we annotate 283 in-view weighing sequences (avg. 18.9s)

and 501 adding sequences (avg. 31.6s), excluding spices.

Details of the annotation process are in Supp. C.

4.2. Fine-Grained Actions

Transcription. We automatically transcribe and manually

check and correct all audio narrations provided by partici-

pants, to obtain detailed action descriptions.

Action Boundaries. For all narrations, we label precise

start and end times. In total, we obtain segments for 59,454

actions, with a mean duration of 2.0s (±3.4s).

Parsing. We parse verbs, nouns and hands from open

vocabulary narrations so they can be used for closed vo-

cabulary tasks, such as action recognition. We also ex-

tract how and why clauses from 16,004 and 11,540 narra-

tions, respectively. For example, “Turn the salt container

clockwise by pushing it with my left hand so that the lid

is aligned with the container opening.”

Clustering. Fig. 5 shows the distribution of clusters (i.e.

classes) across all videos in HD-EPIC, along with hierar-

chical clusters [18]. As with prior datasets [18, 28], our

highly diverse actions and objects are long-tailed.

Sound Annotations. We follow [31] to collect audio anno-

tations. These capture start-end times of audio events along

with a class name (e.g. ‘click’, ‘rustle’, ‘metal-plastic col-

lision’, ‘running water’). Overall, we have 50,968 audio

annotations from 44 classes.

Full details of transcription, boundary labelling, parsing,

clustering and sound annotations are in Supp. C.
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Figure 7. Digital Twin: from point cloud (left), to surfaces (mid-

dle) and labelled fixtures (right). We show two moved objects

(masks on top) at fixtures: cheese and pan. Body poses from [87].

4.3. Digital Twins: Scene & Object Movements

Scene. We create digital copies of participants’ kitchens

by reconstructing the surfaces and manually curating every

fixture (e.g. cupboard, drawer), storage space (e.g. shelves,

hooks) and large appliance (e.g. fridge, microwave). This is

distinct from digital twins that rely on known environments

with replicas. Our digital twin is created in Blender [2] on

top of the multi-video SLAM point clouds from recordings.

Each kitchen contains an average of 45.9 labelled fix-

tures (min 31, max 62), including 14.2 counters/surfaces,

12.2 cupboards, 7.8 drawers and 5.2 appliances (sample in

Fig. 7). We refer to these annotations as Fixtures F .

We then associate narrations which describe scene inter-

actions with F . We find actions where a noun indicates a

fixture, e.g. “open drawer”, identify the exact “drawer” in

the digital twin (e.g. drawer.001) and update its state. Fol-

lowing studies showing humans fixate up to 1 second before

interacting [40], we take the fixture f∈F with the highest

cumulative gaze intersection for the 1s before the narration.

Hand Masks. We annotate a handful of frames per video

for both hands. Frames are selected to cover various ac-

tions and kitchen locations. We use these to automatically

segment, and manually correct a selected subset. In to-

tal, our dataset contains 7.7M hand masks: 3.9M right and

3.8M left of which 11K are manually annotated (details in

Supp. C).

Moving Objects in 2D. To generate 3D object movement

annotations, we first annotate when objects move. Annota-

tors label a temporal segment each time an object is moved

until it is set, along with 2D object bounding boxes at the

onset and end of motion. For example, if a person moves a

cup from a countertop to the sink, one bounding box cap-

tures the cup on the countertop and another when in the

sink. Tracks are annotated even for slight shifts/pushes, and

Figure 8. Priming Object Interaction Through Gaze. Top:

Camera position with projected eye-gaze and object positions in

3D. Middle: 2D gaze location. Bottom: Timeline for priming ob-

ject movement e.g. the glass is primed 8.3s before taking.

thus offer full annotations of all object movements.

Overall, we collected 19.9K object movement tracks and

36.9K bounding boxes. We label an average of 9.2 objects

taken and 9.0 objects placed per minute. On average, tracks

are 9.0s long, the longest is 461.5s.

Object Masks. Despite progress in segmentation [36, 64]

and available annotations [19, 29], models perform poorly

in egocentric video, particularly under occlusions. We ob-

tain pixel-level segmentations from each bounding box by

initialising with iterative SAM2 [64] then manually correct-

ing. Annotators corrected 74% of masks; the IoU between

SAM2 and the manual masks is 0.82.

Masks to 3D. We lift object masks to 3D using dense depth

estimates and 2D-to-3D sparse correspondences provided

by MPS. Given metric depth from [85], we identify S, the

set of pixels within or around the object with 3D correspon-

dences. We then find the linear transformation coefficients:

α,β = argmin
α,β

⌊(αD̂S + β) − DS⌊
2
. where D̂S are esti-

mated depth values and DS are existing depth values, fol-

lowed by RANSAC to remove outliers.

3D Object Motion. Objects move 61.4cm (±84.5cm) on

average, 27.6% move ≤10cm, while 7.6% move ≥2m.

Object-Scene Interactions. With the 3D object locations,

we associate locations with the closest fixture f∈F , subject

to fixture-specific heuristics (e.g. objects must be within a

counter’s x-y plane). We manually verify all assignments,

correcting any errors. On average objects move between 1.8

different fixtures per video (see Supp. C for stats).

Priming Object Movement. The behaviour of gaze when

picking up and placing objects is well-studied [32, 40]. We

combine eye-gaze and 3D object locations, to find when an

object is primed, i.e. the moment in time when the gaze

attends to the object’s location before picking it up (pick-up

priming) or when the gaze attends to the future location of

an object before it’s put down (put-down priming).

We calculate the priming time for all objects, excluding

those taking or placed off screen. Additionally, at times, a

person is already manipulating an object well before pick-

ing it up. We thus exclude objects with a pick up location
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Dataset Val&Test Action Unscripted Free Recipe Nutrition Gaze Audio Object Hand 3D object Labelled 3D Camera Fully

Hours Segments Setting Labels over time environment pose annotated

HOI4D [46] 11.4 ✁ ✂ ✂ ✂ ✂ ✂ ✂ Mask Mask ✁ ✁ ✂ ✁

Assembly101 [68] 66.8 ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ 3D pose ✂ ✂ ✂ ✁

EPIC-KITCHENS-100 [18] 25.3 ✁ ✁ ✁ ✂ ✂ ✂ ✁ Mask Mask ✁ ✂ ✁ ✂

Ego4D [28] 288.7 ✁ ✁ ✁ ✂ ✂ ✂ ✂ B-Box B-Box ✂ ✂ ✂ ✂

HoloAssist [80] 49.8 ✁ ✂ ✂ ✂ ✂ ✁ ✂ ✂ 3D pose ✂ ✂ ✁ ✁

Aria Digital Twin [50] 8.1 ✂ ✂ ✂ ✂ ✂ ✁ ✂ Mask ✂ ✁ ✁ ✁ ✁

Aria Everyday Activities [47] 7.3 ✂ ✂ ✁ ✂ ✂ ✁ ✂ ✂ ✂ ✂ ✂ ✁ ✂

Aria Everyday Objects [74] 0.4 ✂ ✁ ✁ ✂ ✂ ✂ ✂ B-Box ✂ ✁ ✂ ✁ ✁

Ego-Exo4D [29] 85.1 ✂ ✁ ✁ ✁ ✂ ✁ ✂ Mask 3D pose ✂ ✂ ✁ ✂

HD-EPIC 41.3 ✁ ✁ ✁ ✁ ✁ ✁ ✁ Mask Mask ✁ ✁ ✁ ✁

Table 1. Comparison of Egocentric Video Datasets (see full table A1 in Supp.).

Location
Filtered

(% Total)

Feasible

(% Total)

Primed

(% Feasible)

Not Primed

(% Feasible)
Avg. Time (s)

Start 29.40 70.60 94.82 5.18 3.99(±2.94)
End 66.92 33.08 88.46 11.54 2.62(±2.05)

Figure 9. (Top) Priming Statistics for both start and end locations

(Bottom) Histogram showing the difference in time when an object

is primed before it is picked up (blue) or placed (red).

already close to the gaze 10s earlier. In Fig. 8 we show gaze

priming for two objects: milk bottle and glass. The glass’s

end location, a cupboard, is primed 3s before the glass is

put away. Fig. 9 displays priming statistics. Of those ob-

jects feasible for priming, 94.8% are primed, an average of

4.0s before being picked up, compared to 88.5% primed an

average of 2.6s before being placed.

Long Term Object Tracking. We connect object move-

ments and form longer trajectories, i.e. object itineraries, to

capture sequences of an object’s movement. Our efficient

pipeline utilises our lifted 3D locations and allows annotat-

ing a 1-hour long video in minutes (details in Supp. C).

4.4. HD-EPIC vs Prior Egocentric Datasets

Tab. 1 compares HD-EPIC to other egocentric datasets (full

table in Supp.). Compared to the largest dataset with la-

belled 3D environments (Aria Digital Twin [50]), HD-EPIC

contains 5x more footage; has more annotations; and impor-

tantly was collected in an unscripted manner in the partic-

ipants’ homes. In particular, HD-EPIC is the first to an-

notate recipes, nutritional values, detailed action segments,

gaze and audio labels on the same set of videos. With these

diverse and dense annotations, HD-EPIC constitutes a true

zero-shot benchmark for video understanding.

5. Benchmarks and Results

We show the potential of HD-EPIC as a validation dataset

with benchmarks on general Video Question Answering

(VQA) (Sec 5.1), action and sound recognition (Sec 5.2)

and long-term video object segmentation (Sec 5.3).
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Figure 10. VQA Question Prototypes. We show our 30 question

prototypes by category alongside the number of questions. Outer

bars indicate the distribution over input lengths for each question.

5.1. HD-EPIC VQA Benchmark and Analysis

Benchmark Creation. We take the dense output of our

annotation pipeline and construct a comprehensive VQA

benchmark around 7 types of annotations:

1. Recipe . Questions on temporally localising, retrieving,

or recognising recipes and their steps.

2. Ingredient . Questions on the ingredients used, their

weight, their adding time and order.

3. Nutrition . Questions on nutrition of ingredients and nu-

tritional changes as ingredients are added to recipes.

4. Fine-grained action . What, how, and why of actions

and their temporal localisation.

5. 3D perception . Questions that require the understand-

ing of relative positions of objects in the 3D scene.

6. Object motion . Questions on where, when and how

many times objects are moved across long videos.

7. Gaze . Questions on estimating the fixation on large

landmarks and anticipating future object interactions.

For each question type, we define prototypes to sample

questions, correct answers, and strong negatives from our

annotations. For example, Object Movement Counting

asks “How many times did the object <bbox> seen at

<time> move in the video?”. This uses long videos, re-

quiring multiple hops to be correctly answered. In contrast,
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Figure 11. VQA Results per Question Prototype. Our benchmark contains many challenging questions for current models.

Model Recipe Ingredient Nutrition Action 3D Motion Gaze Avg.

Blind - Language Only

Llama 3.2 33.5 25.0 36.7 23.3 22.3 25.5 19.5 26.5

Gemini Pro 38.0 26.8 30.0 22.1 21.5 27.7 20.5 26.7

Video-Language

VideoLlama 2 30.8 25.7 32.7 27.2 25.7 28.5 21.2 27.4

LongVA 29.6 30.8 33.7 30.7 32.9 22.7 24.5 29.3

LLaVA-Video 36.3 33.5 38.7 43.0 27.3 18.9 29.3 32.4

Gemini Pro 60.5 46.2 34.7 39.6 32.5 20.8 28.7 37.6

Sample Human Baseline 96.7 96.7 85.0 92.5 93.8 92.7 75.0 90.3

Table 2. VQA Results per Category (% Acc.). Our VQA bench-

mark cannot be solved blind or by external knowledge and is a

challenge for state-of-the-art video VLM models.

How Recognition asks “What is the best description for

how the person carried out the action <verb, noun>?” to

test a model’s ability to capture intricate details of actions.

Each question prototype is 5-way multiple choice. We

generate hard negatives for prototypes by sampling within

the dataset for difficult answers. For example, we take 4 dif-

ferent answers of how participants performed the same ac-

tion. This ensures realistic negatives and challenging ques-

tions. In total, we have 30 prototypes, and generate 26,650

multiple-choice questions. This makes it one of the largest

VQA video benchmarks, but keeps it tractable particularly

to evaluate closed-source VLMs. Due to the density of our

annotations, we estimate an upper bound of 100,000 possi-

ble unique questions with this set of prototypes.

Fig. 10 shows the distribution of questions per category

alongside the distribution of input lengths which varies from

single frames to 7+ hours. Details of each prototype’s sam-

pling can be found in Supp. D. A sample of our questions

and answers can be seen in Fig. 13.

VLM Models. Due to the size and long-term nature of

many question prototypes in our benchmark, we use 5 rep-

resentative models as baselines (more details in Supp. D):

• Llama 3.2 90B [21]. We use this as a strong open-source

(OS) text-only baseline, as LLMs can perform well on

visual QA benchmarks without any visual input [82].

• VideoLlama 2 7B [13]. OS short context model.

• LongVA [89]. Longest context OS model.

• LLaVa-Video [90]. OS model trained also on ego data.

• Gemini Pro [75]. Closed source, longest context of any

model, and state-of-the-art on long-video [25].

VQA Results Per Category and Per Prototype. Tab. 2

provides overall and per-category accuracy averaged over

the prototype results shown in Fig. 11. Both language-only

models only achieve 26.5% and 26.7%, only 6.7% above

random. Open-source video VLMs (VideoLlama, LongVA,

Figure 12. Effect of Input Length. Models struggle with ques-

tions of all video input lengths. s=second, m=minute, h=hour.

Model Modality Verb Noun Action
Unseen

EPIC-100 Action

EPIC-KITCHENS-100 SOTA

TIM [9] A+V 77.1 67.2 57.5 44.6

HD-EPIC

Chance - 10.9 1.8 0.0 -

SlowFast [24] V 29.2 10.6 5.3 29.0

Omnivore [26] V 19.5 17.1 8.7 28.7

MotionFormer-HR [51] V 35.7 20.0 10.2 32.2

VideoMAE-L [76] V 47.5 29.4 17.9 29.3

TIM [9] A+V 51.3 36.1 23.4 44.6

TIM [9] V 51.2 36.5 23.9 44.4

Table 3. Action Recognition Benchmark (% Acc.). HD-EPIC

provides a significant challenge for state-of-the-art models.

LlaVA-Video) perform similarly (27.4%, 29.3%, 32.4%)

but have different strengths as shown in Fig. 11. For exam-

ple, Llama better estimates nutrition, while the video is nec-

essary to get above random performance on action recogni-

tion and gaze estimation. Gemini achieves the best perfor-

mance, particularly for Recipe and Ingredient where ex-

ternal knowledge helps. However, the average performance

(37.6%) and the gap to our sample human baseline (90.3%)

shows the challenge posed by our VQA benchmark.

Video Length. Fig. 12 shows models struggle with all

video lengths but are worst with inputs ≥1 minute.

Common Failures. Fig. 13 shows qualitative results. In

Recipe, models struggle when steps have common objects

or actions. In Ingredient , models guess weights (readable

from the scale by humans) poorly, also causing errors in

Nutrition. Fine-grained action is hard when answers share

nouns. In Gaze, models just select recently moved objects.

Confusion in 3D and Object motion occurs with directions

(right/left) and fixtures (counters/drawers).

5.2. Recognition Benchmarks

Action Recognition. We assess 5 action recognition meth-

ods [9, 24, 26, 51, 76], using publicly available checkpoints

fine-tuned on EPIC-KITCHENS-100. Results are shown

in Tab. 3. For context we show the results from EPIC-

KITCHENS-100 (top row) and on the unseen kitchens sub-

set of EPIC-KITCHENS-100 (last col.). Best performance
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Figure 13. VQA Qualitative Results. We mark GT answers with a green background, and predictions from different models, i.e., LLaMA

3.2, VideoLLaMA 2, LongVA, Gemini Pro with coloured dots. Note: Under Nutrition, [fat] values are not provided to the model.

Model Modality Top-1 Top-5 mCA mAP mAUC

EPIC-Sounds SOTA

TIM [9] A+V 58.3 86.0 25.8 30.6 0.879

HD-EPIC

Chance - 6.9 29.4 2.2 2.3 0.500

SSAST [27] A 25.1 59.8 10.8 13.5 0.748

TIM [9] A 26.9 56.9 12.4 11.4 0.689

ASF [34] A 27.9 64.0 11.9 14.0 0.741

TIM [9] A+V 31.9 61.0 14.4 15.7 0.765

Table 4. Sound Recognition Benchmark. Current models strug-

gle on HD-EPIC compared to the EPIC-Sounds state-of-the-art.

on HD-EPIC is only 51% for verbs, 37% for nouns and 24%

for actions leaving plenty of room for improvement.

Sound Recognition. We evaluate 3 audio models [9, 27,

34], all trained on EPIC-Sounds. Tab. 4 shows a large gap

in performance comparing HD-EPIC to EPIC-Sounds for

SSAST (-28.4), ASF (-25.9) and TIM (-26.4). This shows

audio is not sufficiently robust to new scenes or devices.

5.3. Long-Term VOS Benchmark

We construct a long-term video object segmentation bench-

mark using our segmentations and track associations (Sec.

4.3). Our benchmark has 1000 sequences, each with 1-5

objects and 2 hand masks (see Supp. D for details). While

we have a lot more tracks, we keep it comparable to cur-

rent benchmarks in size. We evaluate two models [12, 64]

with a naive baseline where object masks are kept static.

Fig. 14 shows the results. SAM2 [64] surpasses Cutie [12]

for hands, but does worse on objects. Overall, objects have

added challenge in diversity in perspective, lighting, loca-

Total Hands Objects

Model J F J&F J F J&F J F J&F

Static 8.0 10.3 9.2 14.6 14.4 14.5 4.8 8.4 6.6

Cutie [12] 44.8 52.3 48.6 74.8 79.5 77.2 30.1 39.0 34.6

SAM2 [64] 45.2 49.6 47.4 87.5 90.8 89.1 24.5 29.5 27.0

Figure 14. Long-Term VOS. jaccard index J & contour accuracy

F show Cutie and SAM2 struggle with segmenting objects.

tion and occlusion.

6. Onwards...

HD-EPIC is available from: http://dx.doi.org/

10.5523/bris.3cqb5b81wk2dc2379fx1mrxh47

– i.e. the videos, audio, gaze, blender digital twin, cam-

era pose estimates. Annotations are available at: http:

//hd-epic.github.io – i.e. object movements, ob-

ject masks and 3D locations, long-object tracks, and object-

action-fixture labels. We hope HD-EPIC will direct future

research to a more holistic perception of egocentric videos.
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