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Abstract

Monocular 3D estimation is crucial for visual perception.

However, current methods fall short by relying on oversimpli-

fied assumptions, such as pinhole camera models or rectified

images. These limitations severely restrict their general ap-

plicability, causing poor performance in real-world scenar-

ios with fisheye or panoramic images and resulting in sub-

stantial context loss. To address this, we present UniK3D1,

the first generalizable method for monocular 3D estimation

able to model any camera. Our method introduces a spheri-

cal 3D representation which allows for better disentangle-

ment of camera and scene geometry and enables accurate

metric 3D reconstruction for unconstrained camera models.

Our camera component features a novel, model-independent

representation of the pencil of rays, achieved through a

learned superposition of spherical harmonics. We also intro-

duce an angular loss, which, together with the camera mod-

ule design, prevents the contraction of the 3D outputs for

wide-view cameras. A comprehensive zero-shot evaluation

on 13 diverse datasets demonstrates the state-of-the-art per-

formance of UniK3D across 3D, depth, and camera metrics,

with substantial gains in challenging large-field-of-view and

panoramic settings, while maintaining top accuracy in con-

ventional pinhole small-field-of-view domains. Code and

models are available at github.com/lpiccinelli-eth/unik3d.

1. Introduction

Estimating 3D scene geometry is a fundamental task in com-

puter vision since such 3D information serves as a crucial

cue for action planning and execution [13, 80]. The scene’s

geometry 3D estimation task is vital for a wide range of ap-

plications, including autonomous navigation [49, 67] and 3D

modeling [12], where accurate spatial understanding is essen-

tial. Recent advances in generalizable monocular depth esti-

mation (MDE) [27, 56, 72] deliver impressive performance

and visual quality across various domains, but these mod-

1Pronounced “Unique-3D”, with K denoting the intrinsics matrix.
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Figure 1. UniK3D introduces a novel and versatile approach that

delivers precise metric 3D geometry estimation from a single im-

age and for any camera type, ranging from pinhole to panoramic,

without requiring any camera information. By leveraging (i) a flexi-

ble and general spherical formulation both for the radial dimension

of 3D space and for the two camera-model-dependent orientation

dimensions and (ii) advanced conditioning strategies. UniK3D out-

performs traditional models without needing camera calibration or

domain-specific tuning.

els are constrained to a relative output scale. Nonetheless,

for practical applications, a consistent and reliable metric-

scaled monocular depth estimate (MMDE) is crucial, as it

enables accurate 3D reconstruction and geometric scene un-

derstanding necessary for embodied agents.

Existing methods have made considerable strides in the

above direction of metric estimation. Earlier approaches as-

sumed known camera intrinsics at test time [22, 76], while

more recent works have relaxed this assumption [8, 53, 54].

However, these approaches still impose restrictive assump-

tions about input cameras, such as relying on a basic pinhole

camera model [8, 53] or requiring access to ground-truth

rectification parameters [76]. These simplifications substan-

tially hinder the applicability and degrade the performance
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of the above methods in real-world settings, where a wide

range of camera projection models with strong non-linear de-

formations are common, such as fisheye or panoramic lenses.

This limitation is more pronounced when estimating com-

plete metric 3D geometry instead of only depth maps, as the

former depends more heavily on the quality of camera esti-

mation. Due to the restrictive assumptions in existing mod-

els, general camera estimation can not be effectively learned,

even when models are exposed to images from varied cam-

era types. Furthermore, the output space of previous state-of-

the-art MMDE methods has inherent limitations, e.g. both

disparity and log-depth prediction become mathematically

ill-posed when the field of view (FoV) exceeds 180 degrees.

To address these challenges, we introduce UniK3D, the

first framework for monocular metric 3D scene’s geometry

estimation that generalizes across a wide variety of camera

models, from pinhole to fisheye and panoramic configura-

tions, as shown in Fig. 1. Our method proposes a novel for-

mulation for monocular 3D estimation which is spherical in

two senses. First, UniK3D leverages a fully spherical out-

put 3D space, modeling the range dimension through radial

distance instead of perpendicular depth. This approach is es-

pecially beneficial at large angles from the optical axis, ef-

fectively resolving the ill-posed nature of traditional meth-

ods at extreme fields of view. Second, while building on

the recently proposed decomposition [53] of camera predic-

tion from depth estimation, UniK3D newly presents a gen-

eral spherical harmonics basis as the direct output space of

the camera module that represents the pencil of rays. Unlike

previous works [8, 53] which predict explicit pinhole cam-

era parameters and then encode [53] induced rays using a

spherical basis, we remove the camera assumption and di-

rectly model the rays. As a result, UniK3D spans an unre-

stricted space of possible camera models, allowing for flex-

ible and accurate depth prediction regardless of camera in-

trinsics. Our assumption-free spherical camera representa-

tion, with its flexibility, ensures that our model is well-suited

for real-world deployment, where capturing scenes with non-

standard cameras is common.

Our key contribution is the first camera-universal model

for monocular 3D estimation that can accommodate any cam-

era projective geometry. We achieve this through our uni-

fied spherical output representation that supports all inverse

projection problems. By employing a fully spherical frame-

work, our method ensures a complete disentanglement of

projective vs. 3D scene geometry, as the dimension of an ob-

ject projection on the image is a univocal function only w.r.t.

radial distance and not w.r.t. depth. This disentanglement al-

lows more consistent 3D reconstructions and enhances the

stability of 3D outputs near the xy-plane, where depth ap-

proaches zero. Moreover, UniK3D models the camera rays

as a decomposition across a finite spherical harmonics basis.

This choice ensures representation generality and versatility,

and at the same time maintains an accurate and compact rep-

resentation for the resulting pencils of rays, also introducing

inductive biases such as continuity and differentiability. In

addition, we propose multiple novel strategies to ensure ro-

bust camera conditioning of our radial module such as an

asymmetric angular loss based on quantile regression, static

encoding, and curriculum learning.

We validate our approach through extensive zero-shot ex-

periments on 13 widely used metric depth datasets, where

UniK3D not only achieves state-of-the-art performance in

monocular metric depth and 3D estimation, but also general-

izes very well across various camera models, without either

preprocessing or specific camera domains during training.

2. Related Work

Monocular Depth Estimation. The introduction of end-to-

end neural networks for MDE, first demonstrated by [15],

revolutionized the field by enabling depth prediction through

direct optimization, utilizing the Scale-Invariant log loss

(SIlog). Since then, the field has evolved with increasingly

sophisticated models, ranging from convolutional architec-

tures [18, 30, 38, 51] to recent advancements using trans-

formers [5, 52, 71, 77]. While these approaches have pushed

the boundaries of MDE performance in controlled bench-

marks, they often fail when faced with zero-shot scenarios,

highlighting a persistent challenge: ensuring robust gener-

alization across varying camera and scene domains and di-

verse geometric and visual conditions.

Generalizable Monocular Depth Estimation. To address

the limitations of domain-specific models, recent research

has focused on developing generalizable and zero-shot MDE

techniques. These methods can be categorized into scale-

agnostic approaches [27, 56, 65, 72, 73], which aim to miti-

gate scale ambiguity and emphasize perceptual depth qual-

ity, and metric depth models [6, 8, 22, 23, 53, 54, 76], which

prioritize accurate geometric reconstruction. However, most

existing MDE methods fall short of achieving truly zero-shot

monocular metric 3D scene estimation. In particular, scale-

agnostic approaches often require additional information to

resolve scale ambiguities, while most of the metric-based

models depend on a known camera or assume a simplistic

pinhole camera configuration. Even the few models which

are designed for zero-shot 3D scene estimation [8, 53, 76]

remain constrained: they either explicitly assume a pinhole

camera model [8, 53] or necessitate image rectification [76],

effectively requiring test-time camera information and limit-

ing their zero-shot generalizability to pinhole cameras.

On the contrary, UniK3D addresses these limitations by

offering a unified solution that can handle any inverse pro-

jection problem. Our model can recover a coherent 3D point

cloud from any single image, regardless of camera intrinsics,

without any rectification or camera information at test time.

This generality sets UniK3D apart, enabling robust and uni-
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Figure 2. Model architecture. UniK3D utilizes solely the single input image to generate the 3D output point cloud (O) for any camera. The

projective geometry of the camera is predicted by the Angular Module. The camera representation corresponds to azimuth and polar angles

(C) of the backprojected pencil of rays on the unit sphere S3. The class tokens from the Encoder are processed by 2 Transformer Encoder (T-

Enc) layers to obtain the 15 coefficients (H) of the inverse Spherical transform F−1
B

{H} defined by a finite basis (B) of spherical harmonics

up to degree 3 with no constant component. Stop-gradient is applied to the angular information which conditions the Radial Module,

simulating external information flow. The “static encoding” refers to sinusoidal encoding which matches the internal feature dimensionality.

The Radial Module is composed of Transformer Decoder (T-Dec) blocks, one for each input resolution, which is utilized to condition

the Encoder features on the bootstrapped camera representation. This conditioning injects prior knowledge on scene scale and projective

geometry. The radial output (Rlog) is obtained by processing the camera-aware features via a learnable upsampling module. The final output

is the concatenation of the camera and radial tensors (C||Rlog). A closed-form coordinate transform is applied to obtain the Cartesian 3D

output, but supervision is applied directly on angular coordinates, with our asymmetric angular loss LAA, and radial coordinates.

versal monocular metric 3D estimation that is required in di-

verse and challenging real-world applications.

Camera Calibration. Camera calibration is essential for

estimating intrinsic parameters like focal length, principal

point, and distortion coefficients to model the mapping

from 3D world points to 2D image coordinates. Traditional

parametric models, such as the pinhole model, Kannala-

Brandt [25], Mei [42], Omnidirection [57], Unified Cam-

era Model (UCM) [20], Enhanced UCM [28], and Double

Sphere [61] models are effective for narrow- and wide-angle

lenses but require controlled environments for accurate cali-

bration. As models grow more complex, the risk of errors

or divergence increases, especially under varying lighting or

sensor noise. Additionally, each model has inherent limita-

tions, e.g. UCM cannot represent tangential distortion, and

Kannala-Brandt struggles beyond a 210◦ FoV.

By contrast, we take a different approach and model the

camera backprojection as a linear combination of spherical

basis functions, i.e. via an inverse spherical harmonics trans-

formation, where the model simply infers the scalar expan-

sion coefficients and the spherical domain boundaries.

3. UniK3D

Generalizable depth or 3D scene estimation models often

face significant challenges when adapting to diverse camera

configurations. Existing methods typically rely on rigid and

camera-specific assumptions, such as the pinhole model or

equirectangular models, or require extensive preprocessing

steps like rectification. These constraints limit their applica-

bility to real-world scenarios with non-standard camera pro-

jective geometries. By contrast, our model, UniK3D, intro-

duces a novel framework that enables monocular 3D geome-

try estimation for any scene and any camera setup.

We begin by introducing the design of our 3D out-

put space and the internal representation of the camera in

Sec. 3.1. Our representation is intentionally formulated to

be as general as possible, allowing to handle all inverse pro-

jection problems. Through our preliminary studies, we ob-

served a consistent issue: the network predictions contracted

to a reduced FoV, even when trained on a diverse set of cam-

era types including large FoVs. Simple data re-balancing

strategies proved insufficient to address this phenomenon.

To overcome this, we have developed a series of architectural

and design interventions, detailed in Sec. 3.2, aimed at pre-

venting the backprojection contraction. In Sec. 3.3, we de-

scribe the architecture of our model, our optimization strat-

egy, and the specific design and loss functions underpinning

our approach. Fig. 2 displays an overview of our method.

3.1. Representations

Output Space. The output representation of UniK3D is de-

signed to be universally compatible with any scene and cam-

era configuration, providing a direct metric 3D scene esti-

mate for each input image. Drawing from the disentangle-

ment strategy presented in [53], our approach separates cam-

era parameters from scene geometry. Specifically, we rep-

resent the camera using a dense tensor C = θ||φ, where θ

1030



is the polar angle and φ is the azimuthal angle, consistent

with standard spherical coordinates. However, we use the

Euclidean radius (distance from the camera center) as the

scene range component within a fully spherical framework,

instead of relying on traditional perpendicular-depth-based

representations. This design choice ensures that dimensions

of projected objects in the image vary univocally with radius,

a property that does not characterize the depth representation

and renders the latter much harder to learn. Furthermore,

the spherical framework enhances numerical stability when

handling points near the xy-plane, a region where previous

methods typically face challenges due to large gradients. We

convert the spherical representation to Cartesian coordinates

using a bijective transformation, accurately capturing the 3D

geometry of the scene as the output 3D point cloud O.

Camera Internal Space. In UniK3D, the dense pencil of

rays which represents the viewing directions for the various

pixels is expressed through a basis decomposition, providing

a flexible and comprehensive angular representation. As

shown in Fig. 2, our Angular Module predicts a tensor of

coefficients H, which is derived from the encoder’s class

tokens, denoted as T. These coefficients correspond to a

predefined basis: the Spherical Harmonics (SH) basis. We

reconstruct the pencil of rays from H as follows:

C = F−1
B {H} =

L
∑

l=0

l
∑

m=−l

HlmBlm(θ, φ), (1)

where C represents the reconstructed angular field and F−1
B

denotes the inverse transform from the coefficient space to

the angular space, using the SH basis B. Blm(θ, φ) are the

SH basis functions, i.e. Legendre polynomials, and Hlm are

the predicted coefficients. Here, l and m index the degree

and order of the harmonics, respectively. This inverse trans-

form is implemented as an inner product that maps from

R
n×S

3 to S
3. The SH basis domain is defined by 4 parame-

ters: the generalized “principal point” of the reference frame,

i.e. the pole, and the horizontal and vertical FoVs. This for-

mulation allows us to describe complex ray distributions

compactly and implicitly, while ensuring important proper-

ties of the output, such as continuity and differentiability.

Additionally, the SH basis offers high sparsity, requiring

only 15 harmonics for a 3rd degree basis without constant

component and an equal number of coefficients to accurately

represent intrinsics for most camera types. By leveraging this

SH-based representation and defining the domain through

the pole and FoV parameters, UniK3D achieves a robust

and flexible framework that can handle virtually any camera

geometry with only 19 parameters.

3.2. Preventing Distribution Contraction

Asymmetric Angular Loss. Neural networks tend to regress

towards the most frequent modes in the training data, often

neglecting the distribution tails. In our case, this bias would

cause UniK3D to underrepresent wide-FoV angles in its out-

puts, since most visual datasets are heavily skewed towards

small-FoV pinhole cameras. This leads to poor performance

in scenarios requiring accurate wide-angle predictions. To

overcome this issue, we introduce an asymmetric angular

loss based on quantile regression, inspired by robust statisti-

cal estimators and decision theory principles, i.e. type-I and

type-II errors [44]. Our loss function is defined as:

Lα
AA(θ̂, θ

∗) = α
∑

θ̂>θ∗

∣

∣

∣
θ̂ − θ∗

∣

∣

∣
+(1−α)

∑

θ̂≤θ∗

∣

∣

∣
θ̂ − θ∗

∣

∣

∣
, (2)

where 0 ≤ α ≤ 1 is the target quantile, θ̂ is the predicted

angle, and θ∗ is the ground-truth angle. This formulation

adjusts the weighting of over- and underestimations of the

polar angle θ. When α = 0.5, the loss degenerates to the

standard Mean Absolute Error (MAE), but by tuning α, we

can emphasize underrepresented angles and balance the re-

gression more effectively. Unlike naive dataset rebalancing–

which would alter the underlying 3D scene diversity and in-

troduce significant complexity, especially across multiple

datasets–our loss addresses the angular imbalance directly

and efficiently. By using quantile regression, we minimize

the complexity to a simple search over the interval [0, 1] for

α, making our method well-suited for large-scale and diverse

training scenarios. This quantile-based strategy allows us to

address the angular distribution bias without sacrificing sim-

plicity and diversity, making it a robust and scalable solution.

Enhancing Camera Conditioning. In our initial experi-

ments, we observed that our model struggled to effectively

utilize camera conditioning following previous works [53],

even when explicitly supplied with ground-truth camera rays

during both training and testing. This issue was subtle for

small-FoV pinhole cameras, but it became significant for

large-FoV configurations. The root of the problem lies in

weak conditioning: the model fails to disentangle camera pa-

rameters from geometric features, causing it to route local

aberrations back to the encoder features’ space, without inte-

grating essential FoV information. As a result, even when

prompted with accurate camera parameters at test time, the

model might ignore, or be misled by, this information.

To address this, we hypothesize that camera data must be

clear and explicitly structured from the beginning of train-

ing. To this end, we implement in UniK3D a static (non-

learnable) encoding of camera rays and adopt a curriculum

learning strategy, transitioning gradually from feeding GT

camera parameters to predicted ones to the Radial Module.

In particular, the GT camera is fed to the Radial Module

with probability 1− tanh( s

105
), where s is the current opti-

mization step. To reinforce external conditioning, we detach

gradients from the camera output that is fed to the Radial

Module, hence preventing the model from relying on feed-

back mechanisms that could undermine the conditioning on
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Figure 3. Qualitative comparisons. Each pair of consecutive rows represents one test sample. Each odd row displays the input RGB

image and the 2D error map, color-coded with the coolwarm colormap based on absolute relative error (for panoramic images, the error is

computed on distance rather than depth). To ensure a fair comparison, errors are calculated on GT-based shifted and scaled outputs for all

models. Each even row shows the ground truth and predictions of the 3D point cloud. The last column displays the specific colormap ranges

for absolute relative error. Key observations for each rows pair: (1) competing methods are limited to only positive depth and heavily distort

the scenes for larger FoV; (2) in the case of representable but large FoV (180◦), UniK3D output is the only one that does not suffer from

pronounced FoV contraction; (3) for moderate-FoV images but with strong boundary distortion, e.g. fisheye, UniK3D can maintain planarity

and overall scene structure; (4) our approach also delivers accurate 3D estimates for standard pinhole images.

the camera. Additionally, we disable learnable gains, such

as LayerScale [60], in the cross-attention layers of the Ra-

dial Module’s transformer decoder, to avoid shortcuts of the

conditioning. These strategies ensure that the model effec-

tively leverages camera information to adjust its encoder fea-

tures, enhancing the robustness of 3D predictions.

3.3. Network Design

Architecture. Our network consists of an Encoder Back-

bone, an Angular Module, and a Radial Module, as illus-

trated in Fig. 2. Our encoder is ViT-based [14] and we extract

dense features F ∈ R
h×w×C×4–where (h,w) = (H

14
, W

14
)–

along with class tokens T. The Angular Module processes

these class tokens, projecting them onto 512-channel rep-

resentations that are split into 3 domain parameters and 15

spherical coefficient prototypes. These tokens pass through

two layers of a Transformer Encoder (T-Enc) with 8 heads

and are then projected onto scalar values. The values for the

3 domain parameters define the principal point (2) and the

horizontal FoV (1), determining the intervals for the harmon-

ics. We assume square pixels and thus do not learn an ex-

tra, fourth parameter for the vertical FoV, but rather compute

this fourth parameter directly from the horizontal FoV. The

15 spherical coefficients undergo an inverse SH transforma-

tion according to (1), using a 3-degree SH basis. The gradi-

ent flowing from the Angular Module to the class tokens is

multiplied by 0.1, as the magnitude of the camera-induced

gradient for the encoder weights was empirically found to

be ca. 10x higher than the radial-induced gradient.
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Table 1. Comparison on zero-shot evaluation for diverse camera domains. Validation sets: S.FoV includes NYU, KITTI, IBims-1,

ETH-3D, nuScenes, and Diode Indoor; S.FoVDist includes IBims-1, ETH-3D, and Diode Indoor with synthetic distortion; L.FoV includes

ADT, ScanNet++ (DSLR), and KITTI360; Pano uses Stanford-2D3D. All models use a ViT-L backbone. Missing values (-) indicate the

model’s inability to produce the respective output. Metric3D and Metric3Dv2 cannot be evaluated on panoramic images as focal lengths are

undefined. †: Requires ground-truth (GT) camera for 3D reconstruction. ‡: Requires GT camera for 2D depth map inference.

Method
S.FoV S.FoVDist L.FoV Pano

δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑

DepthAnything [72] 92.2 - - 94.3 - - 47.5 - - 10.4 - -

DepthAnythingv2 [73] 92.4 - - 88.9 - - 48.7 - - 11.3 - -

Metric3D†‡ [76] 86.4 43.1 - 88.0 36.7 - 58.7 26.0 - - - -

Metric3Dv2†‡ [23] 91.1 59.7 - 89.4 47.1 - 69.2 24.7 - - - -

ZoeDepth† [6] 88.9 53.3 - 90.3 40.1 - 65.3 6.4 - 32.7 9.9 -

UniDepth [53] 94.9 59.0 85.0 94.0 43.0 70.5 68.6 16.9 19.8 33.0 2.0 1.7
MASt3R [32] 88.0 37.8 80.8 89.9 35.2 77.1 67.1 29.7 25.1 32.3 3.7 2.1
DepthPro [8] 87.4 56.0 79.6 80.6 29.4 71.7 64.5 26.1 32.1 31.8 1.9 1.9

UniK3D-Small 94.3 61.3 85.7 95.1 48.4 73.8 84.5 55.5 70.1 81.3 72.5 53.7
UniK3D-Base 95.5 64.9 86.1 96.5 50.2 75.1 87.4 67.7 79.9 83.6 73.7 53.7
UniK3D-Large 96.1 68.1 89.4 97.3 54.5 78.8 91.2 71.6 81.9 81.4 80.2 57.1

Table 2. Zero-shot comparison with equirectangular-specialized

methods. All methods are zero-shot tested on Stanford-2D3D [2].

Competing methods are all trained on equirectangular images. Our

training set includes Matterport3D [10] with 2% sampling.

Method Train δ1 ↑ A.Rel ↓

BiFuse† [63] Matterport3D 86.2 12.0
BiFuse++† [64] Matterport3D 91.4 10.7
UniFuse† [24] Matterport3D 91.3 9.42

UniK3D Ours 96.8 8.01

The Radial Module first processes the dense encoder fea-

tures F through a Transformer Decoder (T-Dec) with 4 par-

allel layers, one for each resolution, and 1 head. These lay-

ers condition F on the sine-encoded angular representation

C (cf. supplements). The conditioned features are then pro-

jected onto a 512-channel tensor, forming radial features

D ∈ R
h×w×512. These radial features are afterwards up-

sampled to the input resolution using residual convolutional

blocks and learnable upsampling techniques, i.e. bilinear up-

sampling followed by a single 1 × 1 convolution. The ra-

dial log-scale output Rlog ∈ R
H×W is computed from the

upsampled features and transformed to R via element-wise

exponentiation. The final 3D spherical output O = C||R
is converted to a Cartesian point cloud O ∈ R

H×W×3 us-

ing a spherical-to-Cartesian coordinate transformation. Also,

we predict a confidence map (Σ) for the radial outputs by

including a second projection head fed with upsampled D

features, besides the first head of the Radial Module which

computes Rlog.

Optimization. The optimization process is defined by three

different losses. The angular loss LAA is applied on θ and φ
separately, with L0.7

AA and L0.5
AA for θ and φ, respectively. The

final angular loss can be expressed as

LA(Ĉ,C∗) = βL0.7
AA(θ̂, θ

∗) + (1− β)L0.5
AA(φ̂, φ

∗), (3)

with (̂·) and (·)∗ serving as prediction and GT identifiers, re-

spectively, and β = 0.75. It is worth noting that L0.5
AA corre-

sponds to the standard, symmetric L1-loss, as the azimuthal

dimension φ w.r.t. the principal point is not affected by pre-

diction contraction. Our radial loss is the L1-loss between

the predicted and GT log-radius obtained by the GT camera

and depth: Lrad =
∥

∥

∥
R̂log −R

∗
log

∥

∥

∥

1
. The confidence loss is

the L1-loss between the detached radial loss and the inverse

predicted confidence, Σ: Lconf =
∥

∥

∥
|R̂log −R

∗
log| −Σ

∥

∥

∥

1
.

The loss is a linear combination of the three losses: LA +
ηLrad + γLconf, with η = 2 and γ = 0.1.

4. Experiments

Training Datasets. The training dataset accounts for 26 dif-

ferent sources: A2D2 [21], aiMotive [41], Argoverse2 [68],

ARKit-Scenes [4], ASE [16], BEDLAM [7], Blended-

MVS [74], DL3DV [37], DrivingStereo [70], Dynami-

cReplica [26], EDEN [31], FutureHouse [35], HOI4D [39],

HM3D [55], Matterport3D [10], Mapillary-PSD [1],

MatrixCity [33], MegaDepth [34], NianticMapFree [3],

PointOdyssey [79], ScanNet [11], ScanNet++ (iPhone) [75],

TartanAir [66], Taskonomy [78], Waymo [59], and Wil-

dRGBD [69]. More details are given in the supplement.

Zero-shot Testing Datasets. We evaluate the generalizabil-

ity of models by testing them on 13 datasets not seen dur-

ing training, grouped in 4 different domains which are de-

fined based on their camera type: 1) small FoV (S.FoV), i.e.

FoV < 90◦, 2) small FoV with radial and tangential distor-

tions (S.FoVDist), 3) large FoV (L.FoV), i.e. FoV > 120◦,

and 4) Panoramic (Pano) with 360◦ viewing angle. More

specifically, the S.FoV group corresponds to the validation

splits of NYU-Depth V2 [43], KITTI Eigen-split [19] and

nuScenes [9], and the full IBims-1 [29], ETH-3D [58], and
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Table 3. Ablation on data. Data indicates whether training images

include strongly distorted cameras, either from real data or synthe-

sized from pinhole cameras. Output representation: depth.

Model Data
S.FoV S.FoVDist L.FoV Pano

FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Pinhole ✗ 55.1 79.2 31.7 60.0 41.2 35.1 8.4 4.2
2 Pinhole ✓ 56.1 81.1 40.4 58.2 44.9 43.1 5.9 3.0
3 SH ✗ 56.1 79.1 34.5 60.2 47.1 56.7 11.3 16.1
4 SH ✓ 56.2 79.4 42.1 62.7 48.5 60.8 10.9 14.8

Diode Indoor [62]; the S.FoVDist is composed by images

artificially distorted from IBims-1, ETH-3D, and Diode In-

door (more details in the supplement); L.FoV is the mix of

ADT [48], ScanNet++ (DSLR) [75], and KITTI360 [36]; and

Panoramic (Pano) is to the full Stanford-2D3D [2] dataset.

Evaluation Details. All methods have been re-evaluated

with a fair and consistent pipeline. In particular, we do not

exploit any test-time augmentations and utilize the same set

of weights for all zero-shot evaluations. We use the check-

point corresponding to the zero-shot model for each method,

i.e. not fine-tuned on KITTI or NYU. The metrics utilized

in the main experiments are δSSI1 , FA, and ρA. Further met-

rics are reported in supplements. δSSI1 measures scale- and

shift-invariant depth estimation performance. FA is the area

under the curve (AUC) of F1-score [47] up to 1/20 of the

datasets’ maximum depth and evaluates monocular 3D es-

timation. ρA evaluates the camera performance and is the

AUC of the average angular error of camera rays up to 15◦,

20◦, 30◦ for S.FoV, L.Fov, and Pano, respectively. We avoid

parametric evaluations, such as those based on focal length

or FoV, because they lack generality across diverse camera

models. Instead, our chosen metrics ensure applicability to

any camera type, preserving fairness and consistency in eval-

uation. Supplements show the fine-tuning ability of UniK3D

by training the final checkpoint on KITTI and NYU-Depth

V2 and evaluating in-domain, as per standard practice.

Implementation Details. UniK3D is implemented in Py-

Torch [50] and CUDA [45]. For training, we use the

AdamW [40] optimizer (β1 = 0.9, β2 = 0.999) with an ini-

tial learning rate of 5×10−5. The learning rate is divided by

a factor of 10 for the backbone weights for every experiment

and weight decay is set to 0.1. We exploit Cosine Annealing

as learning rate scheduler to one-tenth starting from 30% of

the whole training. We run 250k optimization iterations with

a batch size of 128. The training time amounts to 6 days

on 16 NVIDIA 4090. The dataset sampling procedure fol-

lows a weighted sampler, where the weight of each dataset

is its number of scenes. Our augmentations are both geomet-

ric and photometric, i.e. random resizing and cropping for

the former type, and brightness, gamma, saturation, and hue

shift for the latter. We randomly sample the image ratio per

batch between 2:1 and 9:16. Our ViT [14] backbone is initial-

ized with weights from DINO-pre-trained [46] models. For

the ablations, we run 100k training steps with a ViT-S back-

bone, with training pipeline as for the main experiments.

Table 4. Ablation on camera model. Model corresponds to the

type of camera model for output rays and internal conditioning:

pinhole, Zernike-polynomial coefficients, SH coefficients, or non-

parametric, i.e. predicting one ray per pixel. All experiments are

with full data, augmentation, model components, and radial output.

Model
S.FoV S.FoVDist L.FoV Pano

FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Pinhole 55.5 79.9 52.5 73.8 45.2 47.9 24.6 16.4
2 Zernike 56.6 80.9 39.9 51.3 49.9 54.6 31.8 17.9
3 Non-Parametric 56.4 81.0 45.2 62.8 42.0 42.8 51.7 20.1
4 SH 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

Table 5. Ablation on output representation. Output refers to

the type of the 3rd dimension of the predicted output space: either

Cartesian z-axis depth or spherical radius, i.e. distance. All experi-

ments are with full data and augmentation.

Model Output
S.FoV S.FoVDist L.FoV Pano

FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Pinhole depth 56.1 81.1 40.4 58.2 44.9 43.1 5.9 3.0
2 Pinhole radius 56.0 81.1 39.5 57.6 44.4 48.9 10.1 4.9
3 SH depth 56.2 79.4 42.1 62.7 48.5 60.8 10.9 14.8
4 SH radius 56.8 76.7 35.0 43.7 51.8 61.1 53.8 22.0

4.1. Comparison with The State of The Art

Table 1 presents a comprehensive comparison of UniK3D

against existing SotA methods across various FoV and im-

age types. Our model consistently outperforms prior models,

especially in challenging large-FoV and panoramic scenar-

ios. For instance, in the L.FoV domain, UniK3D achieves a

remarkable δ1SSI of 91.2% and FA of 71.6%, outperforming

the second-best method by more than 20% and 40%, respec-

tively. This substantial improvement underscores the robust-

ness of our unified spherical framework in handling wide

FoVs. In the Pano category, our model’s δ1SSI and FA scores

of 71.2% and 66.1% also set the new SotA, demonstrating

its ability to effectively reconstruct 3D geometry even un-

der extreme camera setups. These results validate that our

design choices, including the SH-based camera model and

radial output representation, are crucial for maintaining high

performance in complex and diverse camera settings.

In addition, Fig. 3 clearly shows how UniK3D can esti-

mate the 3D geometry of scenes from various and distorted

cameras. This is in contrast to other methods that fail when

facing unconventional or non-pinhole camera images, as de-

picted by the 2nd, 3rd, and 4th columns. It is important to high-

light that Metric3D, Metric3Dv2, and ZoeDepth are evalu-

ated using GT camera parameters for the FA score, while

UniK3D, UniDepth, MASt3R, and DepthPro rely on their

predicted cameras. Despite this added difficulty, UniK3D

still demonstrates superior 3D reconstruction performance,

showcasing its strength in handling real-world conditions

where precise camera information is unavailable. Interest-

ingly, our method does not sacrifice performance in more

conventional, small-FoV scenarios. UniK3D keeps its top

rank, with a δ1SSI of 94.3 in the S.FoV setting, outperform-

ing previously leading methods. This balance highlights that

our advancements in L.FoV representation do not undermine
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Table 6. Ablation on network components. LAA indicates if our

asymmetric angular loss is used, L1-loss otherwise. Cond indicates

if our design for enhanced camera conditioning from Sec. 3.2 is

utilized. All experiments are with full data and augmentations,

radial output representation, and an SH-based camera model.

LAA Cond
S.FoV S.FoVDist L.FoV Pano

FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 ✗ ✗ 56.8 76.7 35.0 43.7 51.8 61.1 53.8 22.0
2 ✓ ✗ 57.7 80.9 39.5 52.1 52.9 64.2 56.1 24.4
3 ✓ ✓ 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

the model’s effectiveness for S.FoV tasks. FA scores remain

high in S.FoV and the ρA metric shows that our model con-

sistently provides accurate camera parameter estimation.

Moreover, UniK3D is competitive with specialized meth-

ods for equirectangular images, as demonstrated in Table 2.

This shows how our model can incorporate different scene

and camera domains at training time without compromising

any domain-specific performance.

4.2. Ablation Studies

Data. Table 3 demonstrates the effect of training on datasets

with and without large FoV and camera distortions. Incorpo-

rating images with strong camera distortions generally en-

hances performance across all domains, particularly in chal-

lenging cases such as S.FoV with distortion and L.FoV. This

underscores the importance of diverse camera geometries in

the training set to achieve better generalization. However, the

improvement on Pano is limited due to the difficulty of repre-

senting panoramic images using a log-depth representation.

Camera Model. As shown in Table 4, employing SH as the

basis for camera rays yields the best overall performance,

particularly on L.FoV and Pano. This highlights the effective-

ness of our basis function selection in capturing diverse cam-

era models. By contrast, the non-parametric model underper-

forms in FA and ρA. Since the latter formulation is purely

data-driven, we presume that it requires significantly more

data to generalize well. It tends to underrepresent the tails of

the data distribution, i.e. L.FoV and Pano, while performing

adequately on more common domains, i.e. S.FoV with or

without distortion. The Zernike-polynomial basis [17], typi-

cally used for modeling lens aberrations, struggles to repre-

sent spherical or equirectangular camera geometries due to

its inherent planar structure.

Output Space. Table 5 compares different output represen-

tations for the third dimension of the predicted space: ei-

ther the Cartesian z-axis (rows 1 and 3) or the spherical ra-

dius (rows 2 and 4). The results show that using the radius

representation improves reconstruction metrics in Pano and

L.FoV settings, as depth is less effective when dealing with

FoVs near or exceeding 180 degrees. This improvement is

realized only when the radial component is paired with a

camera model capable of representing a wide range of ge-

ometries, e.g. our SH-based model (row 4 vs. row 2). How-

ever, the radius-based output space leads to poorer recon-

struction for S.FoV with distortion (row 3 vs. row 4). This

GT Point cloud c) Final

b) Non-parametric

a) No contraction guard

RGB

Figure 4. FoV effects. The image on the left showcases the chal-

lenge of representing the full 180◦ FoV, alongside the GT point

cloud. The effect of FoV contraction occurs when no “guarding”,

i.e. asymmetric loss (LAA) and camera conditioning, is put in force,

as shown in a). The total absence of any prior may lead to impos-

sible and inconsistent backprojection, as shown in b). The final

UniK3D is depicted in c), clearly showing the ability to recover

large FoVs with a sensible camera backprojection model.

degradation occurs because the radius representation is more

sensitive to minor angular variations, which disproportion-

ately impacts accuracy in small but highly distorted views.

Components. Table 6 examines the impact of our asym-

metric angular loss (LAA) and our strategies designed to en-

hance camera conditioning. Our full model, which lever-

ages both the asymmetric loss and the improved condition-

ing (row 3), significantly outperforms those that do not, es-

pecially in distorted and L.FoV domains. This demonstrates

the efficacy of our combined strategies in preventing con-

traction in backprojection and improving angular prediction

accuracy. The overall gains are rather due to the synergy of

combining these contributions. Moreover, these strategies

aim at mitigating extreme cases, which may not be easily

represented in aggregate quantitative results, but are clearly

visible in qualitative samples as in Fig. 4.

5. Conclusion

We have presented UniK3D, the first universal framework

for monocular 3D estimation that generalizes seamlessly

across diverse camera models, from pinhole to fisheye and

panoramic. Our approach introduces strategies to prevent

FOV contraction and supports accurate metric 3D estimation

through a flexible and robust design for backprojection with

any generic camera model. While expanding the diversity

and coverage of training data could even further enhance the

robustness and applicability of UniK3D, the latter already

achieves compelling generalization to unseen cameras and

3D scene domains far beyond the capabilities of the previous

state of the art, with only a fair quantity of data.
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[58] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,

Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-

dreas Geiger. A multi-view stereo benchmark with high-

resolution images and multi-camera videos. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2017. 6

[59] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2446–2454, 2020. 6

[60] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
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