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Figure 1. (a) We introduce the Universal Dataset Distillation Framework (UniDD), a novel dataset distillation framework supporting
a range of vision tasks, including classification, object detection, and segmentation. UniDD incorporates diverse label types, such as
class labels, bounding box coordinates, and pixel-level masks, facilitating the synthesis of task-specific datasets. (b) UniDD improves the
performance of dataset distillation across diverse tasks on ImageNet [8], Pascal VOC [11, 12], and MS COCO [28].

Abstract

Dataset distillation (DD) condenses key information from
large-scale datasets into smaller synthetic datasets, reduc-
ing storage and computational costs for training networks.
However, most recent research has primarily focused on im-
age classification tasks, with limited exploration in detec-
tion and segmentation. Two key challenges remain: (i) Task
Optimization Heterogeneity, where existing methods focus
on class-level information but fail to address the diverse
needs of detection and segmentation, and (ii) Inflexible Im-
age Generation, where current generation methods rely on
global updates for single-class targets and lack localized
optimization for specific object regions. To address these
challenges, we propose UniDD, a universal dataset dis-
tillation framework built on a task-driven diffusion model
for diverse DD tasks, as shown in Fig. 1. Our approach
operates in two stages: Universal Task Knowledge Min-
ing, which captures task-relevant information through task-
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specific proxy model training, and Universal Task-Driven
Diffusion, where these proxies guide the diffusion process
to generate task-specific synthetic images. Extensive exper-
iments across ImageNet-1K, Pascal VOC, and MS COCO
demonstrate that UniDD consistently outperforms state-of-
the-art methods. In particular, on ImageNet-1K with IPC-
10, UniDD surpasses previous diffusion-based methods by
6.1%, while also reducing deployment costs.

1. Introduction

Dataset distillation (DD) [44], as an innovative data opti-
mization technique in machine learning [13, 14, 20, 22, 45],
condenses essential information from large datasets into
smaller proxy sets. Training on these highly ensemble
proxy sets enables the model to use much fewer resources
while providing comparable performance. Prior DD meth-
ods excelled in image classification using various tech-
niques like Gradient Matching [26, 48, 50], Distribution
Matching [49, 51], Training Trajectory Matching [3, 7], and
Decoupled Methods [42, 46].
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Despite advancements in DD, research on key visual
tasks—detection and segmentation—remains limited. We
identify the following key challenges: (i) Task Optimiza-
tion Heterogeneity. Existing DD methods are primarily
focused on image classification, optimizing distillation by
compressing class-level information, but they fall short in
addressing the diverse needs of tasks like detection [27] and
segmentation, such as object localization and pixel-level in-
formation. (ii) Inflexible Image Generation. Current im-
age generation methods rely on global updates for single-
class targets and lack localized optimization for specific ob-
ject regions. These limitations become especially evident
in images with multiple objects or complex structures, hin-
dering the ability of existing DD to generate distilled data
that meets the requirements of diverse tasks. Consequently,
the applicability of DD in the visual domain remains con-
strained.

To address these limitations, we propose a Universal
Dataset Distillation (UniDD) framework that optimizes for
multi-task learning, including classification, detection, and
segmentation, overcoming the shortcomings in task adapta-
tion and image generation. Our approach consists of two
stages: Universal Task Knowledge Mining and Univer-
sal Task-Driven Diffusion. In the first stage, we introduce
Task-Specific Proxy (TSP ) models, trained on real datasets
to extract task-specific information. This allows the TSP
models to capture and store category information for clas-
sification, bounding box positions for detection, and mask
data for segmentation within their parameters. Addition-
ally, previous research has often overlooked the importance
of contextual information, particularly in high-resolution
datasets like ImageNet [8], Pascal VOC [11, 12] and MS
COCO [28], where rich object-context relationships ex-
ist. To address this, we introduce Task-Aligned Contextual
Prompting, which uses a Vision-Language model [33] to
generate contextual prompts for real images. In the second
stage, we introduce a Task-Driven Diffusion for image syn-
thesis. Specifically, the TSP models trained in the first stage
supervise the denoising process of the diffusion model by
calculating the task loss on the predicted clean images. This
guides the diffusion model in generating images that match
the given labels. Notably, since the TSP models already
align with the target domain, there is no need to retrain the
diffusion model on the real set, significantly reducing the
cost in practical applications.

In summary, our contributions are threefold:
• We identify key challenges in extending dataset distilla-

tion beyond classification and propose the first universal
framework for DD across classification, detection, and
segmentation tasks.

• We develop a two-stage approach, Universal Task Knowl-
edge Mining and Universal Task-Driven Diffusion for
Data Synthesis, which flexibly synthesizes images for

multi-tasks. Additionally, we address the previously over-
looked need to align potential contextual information
within datasets.

• Our method achieves state-of-the-art performance in clas-
sification tasks, on the ImageNet-1K dataset, our ap-
proach surpasses the previous state-of-the-art method by
over 6.1%. Additionally, we establish new benchmarks
for detection and segmentation on VOC and COCO,
showing significant improvements over coreset methods.

2. Related works

2.1. Dataset Distillation
Dataset distillation [44], a dataset reduction method, ad-
dresses the challenge of handling substantial data by syn-
thesizing a smaller, representative dataset. Existing dataset
distillation methods can be categorized into meta-learning
and data matching frameworks based on whether they ex-
plicitly mimic the performance of target data. In the meta-
learning framework, the distilled data are treated as hy-
perparameters and optimized in a nested loop fashion ac-
cording to the trained model’s risk. For example, KIP
[32] performs kernel ridge regression using the Neural Tan-
gent Kernel (NTK) [25]. The data matching framework in-
cludes gradient matching, distribution matching, and tra-
jectory matching. These methods update distilled data
by imitating the influence of target data. For example,
DC [50] and DM [49] enforce synthetic and real images
to have similar gradients or distribution at every training
step. MTT [3] proposes to imitate long-range trajectories
of optimization steps for real images, thereby better mim-
icking the training dynamics of real images for synthetic
images. However, the aforementioned gradient matching
methods require a large number of iterations. To address
this, DREAM [31] and IDC [26] focus on more efficient
dataset distillation training. Due to the unsatisfactory per-
formance of DM, CAFE [43] and IDM [51] propose im-
proved distribution matching between the real and synthetic
data. For the trajectory matching method, DATM [19]
scales trajectory matching-based methods to larger syn-
thetic datasets, achieving lossless dataset distillation.

Despite significant progress in previous work, there have
been few breakthroughs in dataset distillation for detection
and segmentation tasks. In this work, we introduce the first
universal framework that simultaneously handles classifica-
tion, object detection, and semantic segmentation, signifi-
cantly expanding the generality and scope of dataset distil-
lation research.

2.2. Diffusion Models
Diffusion models [15, 16, 37, 47] are generative mod-
els that show superior fidelity and diversity compared to
GANs [17]. It aims to learn the mapping from a Gaussian
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(a) Synthetic images for classification. (b) Synthetic images for detection. (c) Synthetic images for segmentation.

Figure 2. Visualization of synthetic images generated by UniDD. (a) For classification, images are synthesized on the ImageWoof [8]
dataset. (b) For detection, images are synthesized on the Pascal VOC dataset with specified bounding box coordinates. (c) For segmentation,
images are synthesized on the Pascal VOC [11, 12] dataset with pixel-level masks. Our UniDD is the first approach to enable high-realism
data distillation across classification, detection, and segmentation tasks.

distribution to the real dataset distribution by adding noise
in the diffusion process and reversing the noise to the raw
image in the denoising process. In the forward process, dif-
fusion models progressively add noise to a clean sample z0,
resulting in a noisy sample zt:

zt =
√
αtz0 +

√
1− αtϵ, ϵ ∼ N (0, I). (1)

In the reverse process, a denoising network ϵθ estimates
the noise and iteratively recovers the clean sample z0:

ϵθ(zt, t) ≈
zt −

√
αtz0√

1− αt
. (2)

DDIM [40] provides the following formula for predict-
ing a clean data sample:

ẑ0 =
zt −

√
1− αtϵθ(zt, t)√

αt
. (3)

This formula predicts the clean data point ẑ0 from the noisy
sample zt, enabling deterministic sampling for efficient and
high-quality image synthesis.

To introduce additional conditions into the diffusion
model, classifier guidance [9] has been proposed to train an
additional classifier on the noise to guide the model to gen-
erate images that are closer to the specified condition. Addi-
tionally, [23] introduces classifier-free guidance that trains
both an unconditioned and conditioned model simultane-
ously, achieving more efficient guidance. Following these,
recent methods [1, 10, 30] have been proposed to generate
high-quality images from diverse conditions.

3. Universal Dataset Distillation Framework
3.1. Problem Definition
Universal Dataset Distillation. Current dataset distilla-
tion research primarily targets classification tasks and lacks

a generalizable approach for detection and segmentation.
To address this, we propose a universal dataset distilla-
tion standard that constructs a compact synthetic dataset
S = (x̂1, ŷ1), . . . , (x̂|S|, ŷ|S|) from a larger real dataset
T = (x1, y1), . . . , (x|T |, y|T |), with |S| ≪ |T |. The pri-
mary difference between tasks lies in label structure: classi-
fication uses single-class labels, detection includes bound-
ing boxes with class information, and segmentation requires
pixel-level masks. Our goal is for models trained on the dis-
tilled dataset S to perform comparably to those trained on
the full dataset T across classification, detection, and seg-
mentation tasks, as formalized by:

E(x,y)∼PD

∣∣ℓ(θtaskT (x), y)− ℓ(θtaskS (x), y)
∣∣ ≤ ϵ, (4)

where PD denotes the distribution of test data, ℓ repre-
sents the performance metric specific to each task, task ∈
{class, detect, segment}, and ϵ is a small tolerance value.
For each task, the parameter set θtaskT on the real dataset T
is optimized as follows:

θtaskT = argmin
θ

E(x,y)∈T
[
ℓ
(
ϕtask
θ (x), y

)]
, (5)

Similarly, θtaskS is optimized using the synthetic dataset S.

3.2. Universal Task Knowledge Mining
Task-Specific Proxy Training. Building a universal DD
framework is challenging due to the diverse optimization
objectives in classification, detection, and segmentation
tasks. Recent decoupled DD studies have reached a con-
sensus [34, 42, 46]: a fully trained network can capture and
retain essential dataset information. Inspired by this, we
extend to general tasks, training a classifier, detector, and
segmenter on task-specific datasets to extract critical infor-
mation—class labels for classification, bounding boxes for
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Figure 3. Universal Dataset Distillation Framework. This framework consists of two stages: in the Universal Task Knowledge Mining
stage, we introduce an easily deployable task-specific proxy (TSP ) model trained on the target dataset and a vision-language model to
extract task-aligned context. In the Universal Task-Driven Diffusion stage, we apply the gradient of the supervision loss, derived from the
TSP model’s prediction of the clean image ẑ0, at each sampling step.

detection, and pixel-level masks for segmentation. We call
this Task-Specific Proxy (TSP ) Model, defined as:

θ = argmin
θ

Ltask(F(x), y), (6)

where F represents the TSP model trained on the target
data, θ denotes the model’s parameters, Ltask represents
the loss function specific to the task.

The TSP model choice is flexible, allowing adaptation
for optimal performance on target datasets. For example,
ResNet-18 [21] can serve as a lightweight, fast-deploy op-
tion for simple classification, while Faster R-CNN [36] may
be used for complex detection tasks to capture key detection
information. Unlike previous diffusion-based dataset dis-
tillation methods, our approach relies on task-driven learn-
ing to align synthetic and real datasets, avoiding costly dif-
fusion model fine-tuning on the target dataset and signifi-
cantly reducing deployment overhead.
Task-Aligned Contextual Prompting. Previous diffusion-
based dataset distillation has largely focused on classifi-
cation tasks and overlooked the role of natural language
in guiding image generation. For diverse tasks, textual
prompts must go beyond describing the primary objects in
images. As inputs to Stable Diffusion models, prompts can
also guide the generation process. To address this, we use a
vision-language model to extract natural language descrip-
tions and design task-specific questions to generate task-
aligned prompts, a method we call Task-Aligned Contex-
tual Prompting. Following GPT-4o [33], we create tailored
prompts for different tasks. For classification, prompts de-

scribe object classes, while for detection and segmentation,
they also include object relationships and the interaction be-
tween objects and the background, providing richer contex-
tual guidance.

3.3. Universal Task-Driven Diffusion.
Inspired by recent advancements in guidance diffusion tech-
niques [1, 9], we propose a Task-Driven Diffusion approach
for Dataset Distillation. As illustrated in Fig. 3, during each
sampling step S(zt, t) of the diffusion process, the trained
TSP model F provides task-specific guidance. Given an
label ã, the original noise prediction ϵθ(zt, t, c̃) is adjusted
using the output of F . The adjusted noise prediction ϵ̂ is
formulated as follows:

ϵ̂θ(zt, t, c̃)) = ϵθ(zt, t, c̃) +
√
1− αt∇ztLtask(ã,F(zt)), (7)

where Ltask represents the task-specific loss function and
ã = {acl, abbox, amask} may denote a class label acl, a
bounding box abbox, or a pixel-level segmentation mask
amask. This adjustment mechanism effectively guides the
diffusion process to produce data closely aligned with the
intended distribution for each task. c̃ is a textual prompt.

Because F is trained on clean images, it may not perform
well directly on noisy inputs. Therefore, we first use Equa-
tion 3 to estimate the clean image ẑ0. Once ẑ0 is obtained,
we apply F to compute the task-driven loss as follows:

ϵ̂θ(zt, t, c̃)) = ϵθ(zt, t, c̃)+s(t) ·∇ztLtask(ã,F(ẑ0)), (8)

where s(t) is the task-driven strength at each sampling step,

10560



defined as:
s(t) = λs ·

√
1− αt, (9)

with λs being a constant coefficient controlling the overall
intensity of the task-driven. The term ∇ztLtask(ã,F(ẑ0))
represents the gradient of the loss function computed based
on the TSP model’s prediction of the clean image ẑ0.
Specifically, this gradient is computed as:

∇ztLtask(ã,F(ẑ0)) = ∇ztLtask

(
ã,F

(
zt −

√
1− αtϵθ√
αt

))
.

(10)

Unlike previous approaches [18, 41] that required finetun-
ing the diffusion model, such as those involving SD [37], to
align with new data domains, our method leverages a TSP
model trained specifically on the target dataset. This model
encapsulates critical information about the target task, ef-
fectively driving the diffusion process to generate data that
is well-aligned with the target task without the need for ad-
ditional finetuning. This not only conserves time and re-
sources but also mitigates the risk of overfitting the diffu-
sion model to the specific task.
Proxy-Driven High-Realism Refinement. To ensure the
high realism and accuracy of the generated images, we em-
ploy a trained TSP model, to score each image. By setting
a well-defined threshold, we filter out low-quality images
based on their scores. The remaining images are then re-
labeled using the same TSP model. This combined process
of filtering and relabeling can be expressed as:

{x, y} = {xi,Flabel(xi) | score(F(xi)) ≥ τ} (11)

where F(xi) represents the model’s output score for image
xi, τ is the quality threshold, and Flabel generates the ac-
curate label yi for the filtered image. This ensures that both
the generated images and their labels are of high quality and
closely match the desired data distribution.

4. Experiments
4.1. Experimental Setups
Datasets and Evaluation Metric. To enhance practical-
ity, we prioritize high-resolution and large-scale datasets.
(1) Classification task: our experiments are primarily con-
ducted on the full ImageNet 1K dataset [8], with IPC set-
tings commonly set to 10 and 50, following the configura-
tions in [41]. Additionally, based on the dataset partition-
ing settings from previous work [3], we also use the Im-
ageNet 10-class subsets, such as ImageWoof, ImageFruit,
ImageNette, and ImageMeow. These 10-class subsets con-
tain very similar categories, making them challenging for
dataset distillation. Top-1 accuracy (%) is reported in the
experimental tables. (2) Object detection task: we con-
duct experiments on the widely-used Pascal VOC [11, 12]
and MS COCO [28] datasets, using mAP (Mean Average

Algorithm 1 Universal Dataset Distillation Approach
Input: Real data T , Diffusion model ϵθ, TSP model F ,
Sampling steps T , Task-Driven strength s(t)
Output: Synthetic dataset S.

1: Step I: Universal Task Knowledge Mining
2: Train TSP model F on T using Equ. 6
3: Use GPT-4o to generate task-aligned context for classi-

fication, detection, and segmentation datasets
4: Step II: Universal Task-Driven Diffusion for Data

Synthetic
5: for each sampling step t = 1 to T do
6: Generate noisy sample zt.
7: Predict clean image ẑ0 using Equ. 3
8: Calculate guidance loss ∇ztLtask(c,F(ẑ0)).
9: Adjust noise prediction using Equ. 8

10: Update zt−1 using adjusted noise prediction.
11: end for
12: Score each generated image xi using F(xi).
13: Filter and relabel synthetic set based on threshold τ us-

ing Equ. 11.

Precision) and AP50 (Average Precision at IoU threshold
of 0.50) as evaluation metric. (3) Semantic segmentation
task: we utilize the Pascal VOC dataset, with mIoU (Mean
Intersection over Union) as evaluation metrics.
Implementation Details. Unless otherwise specified, the
Task-Specific Proxy TSP model used for the classification
task is ResNet-18 [21], the detector is Faster R-CNN [36],
and the segmentation model is LR-ASPP [24], all utilizing
the official pre-trained weights from PyTorch. For the dif-
fusion model, we use SD v1.5 [37] as the baseline. For
quantitative comparisons, we generate 256×256 images for
classification tasks and 512× 512 images for detection and
segmentation tasks. Synthetic images are created using 250
denoising steps based on a predefined number of random
noise samples, aligned with the IPC settings. The threshold
τ for Proxy-Driven High-Realism Refinement is set to 0.9
for classification, 0.85 for detection, and 0.75 for segmenta-
tion. Generally, this operation results in a data discard rate
of approximately 5-10%. All experiments are conducted
on NVIDIA V100 GPUs, with further details provided in
the special experiments section. We generate the distilled
dataset 3 times, train the network from scratch 5 times per
dataset (with pre-trained backbone weights for the detector
and segmenter), and evaluate on the original test set, report-
ing results as x̄± std.

4.2. Results on Classification
We perform comprehensive comparisons across datasets of
various scales. For large-scale datasets ImageNet-1k, we
compare TESLA [7], SRe2L [46], D4M [41], RDED [42],
and MiniMax Diffusion [18] (abbreviated as MiMxDiff in
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Dataset IPC Method Accuracy(%)

ImageNet-1K

1000 Full dataset 69.8

10

TESLA 7.7
SRe2L 21.3
D4M 27.9

RDED 42.0
MiMxDiff 44.3

UniDD (Ours) 50.4 (↑6.1)

50

SRe2L 46.8
D4M 55.2

RDED 56.5
MiMxDiff 58.6

UniDD (Ours) 62.8 (↑4.2)

Table 1. Performance comparison with state-of-the-art methods on
large-scale dataset ImageNet-1K. All methods employ ResNet18
as test model. All standard deviations in this table are less than
one. The results of Full dataset come from the official PyTorch.
The best results are marked in bold, while the second-best results
are underlined.

the table). For small-scale dataset ImageNet-Subset, we
compare Random selection, DM [49], MTT [3], HaBa [29],
DataDAM [38], and MiniMax Diffusion.
Quantitative comparison on ImageNet-1K and
ImageNet-Subset. As shown in the Tab 1, we utilize
ResNet-18 as the TSP model, trained on ImageNet-1K.
We report results for IPC-10 and IPC-50, evaluating all
outcomes with the ResNet-18 model. To ensure a fair com-
parison, our training and testing pipeline is aligned with
that of RDED and D4M. Our method, UniDD, achieves
state-of-the-art performance on this large-scale dataset.
Specifically, at IPC-10, UniDD surpasses optimization-
based methods, delivering substantial gains over TESLA
and SRe2L. Additionally, it demonstrates significant
advantages over diffusion-based methods, outperforming
D4M by 22.5% and MiniMax Diffusion by 6.1%. These
results underscore UniDD’s effectiveness by using a
lightweight TSP model to guide SD denoising, aligning
generative and target domains without requiring diffusion
model finetuning, thus advancing performance in dataset
distillation.

As shown in the Tab 2, we conduct experiments on the
ImageNet-subset under the IPC-10 setting. For consistency,
the test model is standardized to a 5-layer ConvNet across
all methods, except for MiniMax Diffusion, which uses a
6-layer ConvNet. Our method stands out among the com-
parison methods, outperforming the second-best by 8.2%
on ImageWoof, 9.1% on ImageFruit, and 6.6 % on Image-
Meow. Additionally, our method surpasses the diffusion-
based MiniMax Diffusion by 9.8 % on ImageWoof, further
demonstrating the effectiveness of UniDD approach in ag-

gregating information from the original dataset.
Qualitative Result. In Fig. 2 (a), we present the synthetic
images generated by UniDD on ImageWoof. Benefiting
from the powerful generative capability of SD and the use
of a TSP model to align the real and synthetic data domains,
our synthetic images for the classification task exhibit sig-
nificantly higher realism compared to optimization-based
methods [3, 46, 50]. However, unlike other diffusion-based
dataset distillation methods [18, 41], we do not finetune SD,
greatly reducing the deployment time of UniDD.

4.3. Results on Detection and Segmentation

We deploy our UniDD framework for detection and seg-
mentation tasks and conduct experiments on the Pascal
VOC and MS COCO datasets. Since dataset distillation is
rarely applied to these tasks, we reference earlier dataset
distillation works (DD [44], DC [50]) and compare UniDD
with core-set selection methods. Specifically, we con-
struct the following baseline methods: Random [35], K-
center [39], and Herding [2, 5]. Additionally, we develop
a method that selects a subset with balanced class represen-
tation, which we refer to as Uniform.
Quantitative Result. In Table 3, we compare coreset se-
lection methods with UniDD across different compression
ratios on the object detection task. According to the official
MMDetection implementation [4], the detector Faster R-
CNN [36] achieves 51.4% mAP and 80.3% AP50 on Pascal
VOC with the full dataset, and 32.6% mAP and 51.4% AP50

on MS COCO, providing an approximate performance up-
per bound. On Pascal VOC, UniDD demonstrates signif-
icant performance gains, achieving 7.7% mAP and 19.2%
AP50 higher than the Random method at an extremely low
compression ratio of 0.5%. Additionally, UniDD surpasses
Uniform by 11.1% mAP and 21.2% AP50 at a 1% com-
pression ratio. On the more challenging MS COCO dataset,
UniDD also shows a clear advantage, surpassing the best
coreset selection method by 3.7%, 3.4%, and 3.4% mAP at
compression ratios of 0.25%, 0.5%, and 1%, respectively.
This indicates UniDD’s robustness, achieving strong results
even on more complex datasets, which can be attributed to
the Task Knowledge Mining in the first stage that extracts
sufficient task-relevant information.

In Table 4, we present experimental results on the VOC
dataset for the semantic segmentation task. Based on the
MMSegmentation [6] implementation, LR-ASPP with a
MobileNetV3 backbone achieves 32.9% mIoU on the full
dataset. UniDD outperforms coreset selection methods at
all compression ratios, demonstrating its effectiveness in
dataset distillation for segmentation tasks. This result fur-
ther underscores UniDD’s versatility across different tasks.
By leveraging task-driven diffusion synthesis alongside task
knowledge mining, UniDD generates synthetic data well-
suited to complex, pixel-level predictions, illustrating its
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Dataset Random DM MTT HaBa DataDAM MiMxDiff UniDD (Ours) Full

ImageNette 47.7±2.4 58.1±0.3 63.0 ±1.3 64.7 ±1.6 59.4±0.4 62.0±0.2 66.0±0.7 87.4 ±1.0
ImageWoof 27.0±1.9 31.4±0.5 35.8 ±1.8 38.6 ±1.2 34.4±0.4 37.0±1.0 46.8±0.9 67.0 ±1.3
ImageFruit 21.4±1.2 - 40.3 ±1.3 42.5 ±1.6 - - 51.6±0.5 63.9 ±2.0

ImageMeow 29.0±1.1 - 40.4 ±2.2 42.9 ±0.9 - - 49.5±0.7 66.7 ±1.1

Table 2. Performance comparison with other state-of-the-art methods on ImageNet-Subset. IPC is set to 10. The best results are marked in
bold, while the second-best results are underlined. “-” were not officially implemented in the original papers.

Methods
Object Detection

Pascal VOC MS COCO
mAP AP50 mAP AP50

Ratio 0.5% 0.25%
Random 0.8±0.2 3.1±0.4 0.5±0.1 1.7±0.3
Uniform 0.9±0.1 3.4±0.3 0.8±0.2 2.4±0.5
K-Center 0.5±0.1 2.1±0.3 0.4±0.1 1.5±0.2
Herding 0.6±0.2 2.4±0.2 0.5±0.1 1.8±0.4

UniDD (Ours) 8.5±0.4 22.3±0.6 4.5±0.3 10.3±0.4
Ratio 1% 0.5%

Random 4.2±0.5 13.7±0.6 3.7±0.2 10.1±0.3
Uniform 5.7±0.2 17.7±0.4 3.4±0.4 9.5±0.6
K-Center 3.6±0.6 12.3±0.3 3.2±0.5 9.3±0.5
Herding 3.5±0.5 11.9±0.5 3.5±0.3 9.7±0.3

UniDD (Ours) 16.8±0.5 38.9±0.7 7.1±0.4 16.9±0.3
Ratio 2% 1%

Random 12.4±0.4 34.3±0.5 7.2±0.8 17.3±0.9
Uniform 13.8±0.3 36.2±0.4 7.4±0.5 17.6±0.5
K-Center 10.9±0.6 29.3±0.6 6.1±0.3 15.4±0.6
Herding 10.4±0.4 28.7±0.7 6.7±0.4 16.3±0.7

UniDD (Ours) 23.9±0.5 48.5±0.6 10.8±0.4 22.5±0.5
Full 51.4±0.8 80.3±0.4 32.6±0.7 51.4±0.8

Table 3. Performance comparison with coreset selection methods
on Pascal VOC and MS COCO for the object detection task, using
Faster R-CNN as the detector. “Ratio” denotes the compression
ratio.

Methods Semantic Segmentation (mIoU)
Ratio: 3.5% Ratio: 7% Ratio: 14% Full

Random 6.7±0.4 9.6±0.5 11.3±0.4

32.9±0.6
Uniform 6.5±0.6 9.3±0.4 12.1±0.5
K-Center 6.1±0.4 8.5±0.6 10.4±0.7
Herding 6.2±0.7 8.7±0.4 10.6±0.3

UniDD (Ours) 10.3±0.5 12.3±0.3 14.9±0.7

Table 4. Performance comparison with coreset selection meth-
ods on Pascal VOC for the semantic segmentation task, using LR-
ASPP as the segmenter. The metric is mIoU, and “Ratio” denotes
the compression ratio.

versatility across a range of vision tasks.
Qualitative Result. As shown in Fig. 2 (b) and 2 (c), we
present visualizations of detection and segmentation data
synthesized using the UniDD framework. These images

are generated with TSP models, Faster R-CNN for detec-
tion and LR-ASPP for segmentation, which effectively steer
the diffusion process toward the specified labels, bound-
ing boxes, and masks. Previous research in dataset distil-
lation has predominantly focused on single-category label
synthesis, where each image aligns with a single class. In
contrast, our UniDD framework overcomes this limitation,
enabling dataset distillation for more complex, multi-class
tasks. This advancement not only broadens the applicabil-
ity of dataset distillation but also offers valuable insights for
future research in this domain.

4.4. Ablation Study
Component Analysis. We conduct a comprehensive ab-
lation study on the proposed UniDD, analyzing its com-
ponents: (1) Baseline (a standard SD v1.5 checkpoint),
(2) Task-driven Diffusion with the TSP model, (3) Task-
Aligned Contextual Prompting (abbreviated as Context),
and (4) Proxy-Driven High-Realism Refinement (abbrevi-
ated as Refine). As shown in Table 5, the proposed task-
driven approach significantly improves the performance of
the baseline, demonstrating that this guidance effectively
bridges the gap between real and synthetic datasets. The
contextual information is more effective for more complex
detection and segmentation datasets, as it reveals underlying
target relationships. The refinement module also proves to
be effective, as the randomness of the SD model can lead to
the generation of images that deviate from the annotations
or result in failed generations.

Methods
Dataset

Cls. / Accuracy (%) Det. / mAP (%) Seg. / mIoU (%)
ImageNette ImageWoof VOC VOC

Baseline 60.4±0.9 39.1±1.1 11.5±0.2 7.2±0.3
Baseline+TSP 64.2±0.8 45.3±0.6 14.7±0.4 8.9±0.5

Baseline+TSP+Context 64.7±0.4 46.1±0.7 15.9±0.3 9.6±0.4
Baseline+TSP+Context+Refine 66.0±0.7 46.8±0.9 16.8±0.5 10.3±0.5

Table 5. Ablation study on UniDD. For classification datasets,
IPC is set to 10 with ResNet-18 as the test model. For detection
on VOC, the compression ratio is set to 1% with Faster R-CNN as
the test model. For segmentation on VOC, the ratio is set to 3.5%
with LR-ASPP as the test model.

Cross-Architecture Analysis. Cross-Architecture experi-

10563



Dataset Test Model
TSP Model

ResNet-18 ResNet-50 ResNet-101

ImageNette
ResNet-18 66.0±0.7 68.8±0.7 69.5±0.7
ResNet-50 67.2±0.6 69.5±1.1 70.7±0.9

ResNet-101 69.3±0.9 70.9±1.2 72.1±0.6

ImageWoof
ResNet-18 46.8±0.9 49.2±0.5 50.1±0.8
ResNet-50 47.3±0.7 50.0±0.8 50.9±0.6

ResNet-101 48.9±1.1 51.5±0.6 52.4±0.7

Table 6. TSP Model Ablation and Cross-Architecture Testing:
We use ResNet-18, ResNet-50, and ResNet-101 as TSP models
to generate synthetic images. During testing, the same three mod-
els are used. IPC is set to 10.

Figure 4. Hyper-parameter analysis on (a) guidance strength λs

and (b) sampling step t. The star symbol indicates the parameters
chosen for trade-off.

Figure 5. Comparison of distillation cost on ImageNet-1k using
our UniDD with comparison methods (MTT [3], SRe2L [46], and
D4M [41]), tested on V100 GPUs.

ments are crucial for validating the generalizability of syn-
thetic data. We compare different combinations of TSP
models and testing models. In this study, we set up
three TSP models: ResNet-18, ResNet-50, and ResNet-
101. These models are also used during testing to evaluate
the cross-architecture performance of the synthetic datasets.
As shown in Table. 6, using more complex TSP mod-
els improves the guidance effectiveness. Moreover, when
testing across different architectures, the performance does
not degrade as seen in previous optimization-based meth-

ods [3, 49, 50], demonstrating the generalizability of our
synthetic data.
Guidance Stregth Analysis. As shown in Fig. 4 (a), we
analyze the performance variations of ImageWoof and Im-
ageNette at IPC-10 under different guidance strength set-
tings λs, with Conv5 as the test model. The best results are
achieved at λs = 100, but further increasing the guidance
strength interferes with the quality of diffusion-generated
images, leading to a decline in test performance.
Sample Step Analysis. As shown in Fig. 4 (b), we analyze
the impact of different SD sample steps on the performance
of synthetic datasets under the IPC-10 setting, with Image-
Woof and ImageNette resolutions set to 256x256. Perfor-
mance improves significantly with sample steps below 250,
but gains are minimal beyond this point while time con-
sumption increases. Thus, we select 250 steps as the opti-
mal trade-off.
Distillation Cost Analysis. As shown in Fig. 5, we eval-
uate the time and GPU cost of various DD methods. Pre-
vious methods primarily focus on the time required to syn-
thesize images, often neglecting the time needed to train or
deploy the DD model. For MTT [3], the deployment time
corresponds to the expert trajectory training time, while for
D4M [41], it is the time required to finetune the SD model.
The slight increase in UniDD’s distillation time and GPU
cost is mainly due to the added supervision process of the
TSP model and the refinement stage, where approximately
5%-10% of low-quality generated data is discarded. Com-
bining the deployment and distillation costs for comparison,
UniDD demonstrates the best advantage, indicating its su-
perior suitability for practical deployment.

5. Conclusion
In this study, we introduce the first Universal Dataset Dis-
tillation (UniDD) framework, capable of handling classi-
fication, detection, and segmentation tasks within a uni-
fied approach. UniDD follows a two-stage process: in
the first stage, Task-Specific Proxy Training and Task-
Aligned Contextual Prompting extract critical information
from real datasets. In the second stage, Universal Task-
driven Diffusion synthesizes images with specific cate-
gories, bounding boxes, and segmentation masks tailored
to each task. We conduct extensive experiments to validate
UniDD’s effectiveness across all three tasks. For classifica-
tion, UniDD achieves state-of-the-art results on ImageNet-
1k and ImageNet-Subset. In detection and segmentation,
we establish the first dataset distillation benchmark on Pas-
cal VOC and MS COCO, comparing UniDD to coreset se-
lection methods. Encouraging results demonstrate that our
UniDD consistently outperforms these methods, especially
under extremely low compression ratios.
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