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(a) Visualization of cross-attention map. For longer text prompts, 2D Stable Diffusion (SD) [26] fails to accurately associate the word “black” with the
correct spatial location in the generated image. This limitation poses a challenge for methods [15, 27] lifting 2D to 3D using SD effectively.

Non-automatic 
model: 

Progressive3D

Wrong order:
1. A man in black coat 
is waving
2. A man in black coat, 
yellow shirt is waving
3. A man in black coat, 
yellow shirt and pink 
trousers is waving

Input Text: A man in black coat, yellow shirt and pink trousers is waving

(b) Some work such as Progressive3D [5] that targets 3D generation with complex attributes heavily relies on user-defined bounding boxes and generation
order, and imperfect given order results in low-quality results with wrong attributes.

Input Text: A man in black coat, yellow shirt, pink trousers, blue shoes and green hat is waving

①Hierarchical Blocks (In-n-out Order): 
Block 1: Yellow shirt, blue shoes, pink trousers
Block 2: Black coat, green hat
② Initial Input Texts (Coarse):
1. “A man in a shirt, shoes and trousers is waving."
2. “A man wearing a coat and a hat is waving.“
③ Input Texts with Attributes (Precise): 
black coat, yellow shirt, pink trousers, blue shoes, 
green hat

Our automatic pipeline: HCoG

Coarse
-To-
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(c) Our method (HCoG) leverages LLM to generate hierarchical chain of generation, realizing automatic generation of 3D assets with better complex
attributes binding capability.

Figure 1. The problem of existing work and the example of our method.

Abstract

Recent text-to-3D generation models have demonstrated re-
markable abilities in producing high-quality 3D assets. De-
spite their great advancements, current models struggle to
generate satisfying 3D objects with complex attributes. The
difficulty for such complex attributes 3D generation arises
from two aspects: (1) existing text-to-3D approaches typi-
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cally lift text-to-image models to extract semantics via text
encoders, while the text encoder exhibits limited compre-
hension ability for long descriptions, leading to deviated
cross-attention focus, subsequently wrong attribute binding
in generated results. (2) Objects with complex attributes of-
ten exhibit occlusion relationships between different parts,
which demands a reasonable generation order as well as
explicit disentanglement of different parts to enable struc-
tural coherent and attribute following results. Though some
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works introduce manual efforts to alleviate the above is-
sues, their quality is unstable and highly reliant on manual
information. To tackle above problems, we propose a auto-
mated method Hierarchical-Chain-of-Generation (HCoG).
It leverages a large language model to analyze the long
description, decomposes it into several blocks representing
different object parts, and organizes an optimal generation
order from in to out according to the occlusion relationship
between parts, turning the whole generation process into
a hierarchical chain. For optimization within each block,
we first generate the necessary components coarsely, then
bind their attributes precisely by target region localization
and corresponding 3D Gaussian kernel optimization. For
optimization between blocks, we introduce Gaussian Ex-
tension and Label Elimination to seamlessly generate new
parts by extending new Gaussian kernels, re-assigning se-
mantic labels, and eliminating unnecessary kernels, ensur-
ing that only relevant parts are added without disrupting
previously optimized parts. Experiments validate HCoG’s
effectiveness in handling complex attributes 3D assets and
witnesses high-quality results. The code is available at
https://github.com/Wakals/GASCOL.

1. Introduction
In the field of 3D vision, the development of user-friendly
generation of 3D assets with complex attributes has re-
ceived gaining attention. It allows users to achieve the ex-
pected personalized 3D asset generation with few manual
efforts. For example, Shap-e [9] uses the transformer to
achieve direct 3D generation. Later works such as Dream-
Fusion [24] and SJC [30] propose to lift prior information
in text-to-2D model to 3D, which greatly improves the gen-
eralization and detail of the generated results. Since the
prior knowledge of 2D diffusion is pervasive, the 2D-based
method has stronger generalization and is not limited by the
small size of 3D data. Therefore, our work focuses on the
method of generating 3D with the help of 2D text-to-image
diffusion.

Though significant progress for text-to-3D models, when
encountering objects with complex attributes, the results
quality of previous approaches like LucidDreamer [15] and
MVDream [27] still lag behind with attributes deviation,
like shown in Fig. 1a, the cross-attention maps fail to at-
tend to the correct object regions. We claim two primary
reasons for such difficulty in complex attributes text-to-3D
generation: Firstly, the widely used CLIP [25] text encoder
struggles to accurately encode long descriptions, as noted
in prior research [36], and may overlook crucial informa-
tion, leading the cross-attention maps fail to correctly align
attribute descriptions with their corresponding image re-
gions. For instance, as shown in Fig. 1a, the attention of
black principally clusters on the head and the shirt, not the
coat. Such deviated attentions finally result in wrong at-

tribute binding in generated 3D objects. Secondly, objects
with complex attributes naturally exhibit occlusion relation-
ships between different object parts, which requires a rea-
sonable generation order as well as explicit disentangled op-
timization for these parts to enable structural-coherent and
attribute-following results. Some more recent works like
Progressive3D [5] propose to handle such complex attribute
objects by introducing user-defined generation order as well
as bounding boxes as guidance. But such manual efforts in-
troduction hinder the generation automation, and the qual-
ity of the result heavily relies on user-provided generation
order, where an incorrect order of generation will reveal se-
rious consequences as shown in Fig. 1b. Such failure orig-
inates from prioritizing the generation of the external part
with less occlusion, during the subsequent generation of the
internal part with more occlusion, the surface of the previ-
ously generated external part was affected. Thus such man-
ual information-guided generation is also not optimal for
complex attributes text-to-3D generation task.

To tackle the above problems and enable high-quality
complex attributes text-to-3D generation, we introduce
Hierarchical-Chain-of-Generation (HCoG), which gener-
ates complext attributes 3D assets in the representation of
3D Gaussian Splatting [10] (3DGS). Three key designs un-
derpin our HCoG framework: (1) Hierarchical Blocks:
we employ a LLM to analyze the text description and de-
compose the whole object into different parts with shorter
descriptions as hierarchical blocks for separate generation.
It ensures the quality is not limited by the comprehension
ability of text encoder. Further, we propose a In-n-out or-
der of generation strategy, which decides the generation
order by parts’ occlusion relationships, and prioritize to
generation inner blocks, which not only can fully expose
the inner parts that are occluded for better optimization,
but also facilitates the structural integrity of outer parts,
yielding more structural coherent results. We also intro-
duce a generate coarsely-to-precisely paradigm within each
block, which first utilizes coarse-grained attribute-agnostic
text for necessary component generation, then applies fine-
grained attribute-aware text for detailed attributes editing,
improving generation efficiency. (2) Part-optimization:
within each block, after necessary components are gener-
ated, we target the fine-grained attribute editing for these
components. We first adopt part segmentation to pre-
cisely locate the target region, choosing the corresponding
3D Gaussian kernels for subsequent fine-grained optimiza-
tion to optimize and bind the attributes, during which we
introduce MVDream[27] and ControlNet[37] to facilitate
shape control and multi-view consistency for generation.
(3) Gaussian Extension and Label Elimination: to gen-
erate new parts based on previous optimized parts, we first
adopt gaussian extension to densify the Gaussian kernels to
form new parts. To further exclude the affection for previ-
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ous optimized parts like changing their appearance during
such densification process, we introduce label elimination,
which re-assigns semantic labels for densified new Gaus-
sian kernels, removing unnecessary kernels and only keep
kernels that belong to the new part. Notably, our Gaussian
Extension and Label Elimination avoid manual input in-
formation like user-provided bounding boxes, enabling to-
tally automated generation of HCoG. Besides, HCoG can
serve as a plug-and-play generation paradigm for diverse
text-to-3D models, showing high scalability. Our main con-
tributions are summarized as follows:
• We propose Hierarchical-Chain-of-Generation (HCoG),

a framework that automates the generation of 3D assets
with complex attributes via decomposing the object into
hierarchical blocks ordered by occlusion relations for se-
quential generation.

• We propose a coarse-to-fine optimization approach to
achieve faithful attribute binding within each hierarchical
block. Further, we introduce a Gaussian Extension and
Label Elimination strategy between blocks, which elimi-
nates the requirements for manual input guidance for gen-
eration and ensures the new-part generation will not affect
the optimized parts.

• Experiments show that HCoG can automatically generate
high-quality 3D assets with complex attributes, especially
with strong occlusion relationships, outperforming previ-
ous automatic text-to-3D methods. By applying HCoG
on different text-to-3D models, we verify its scalability.

2. Related Work

2.1. Text-to-3D Generation

The generation of 3D objects has garnered significant at-
tention from researchers, with an increasing number of
studies[9, 13, 22, 33] focusing on this area. Though great
progress, the low quality and scarcity of 3D available
data remains a significant challenge to these 3D genera-
tion methods. To tackle it, DreamFusion [24] introduced
Score Distillation Sampling (SDS) loss, which distills 2D
prior knowledge from a pre-trained diffusion model into
the 3D domain, optimizing a 3D representation for each
input text. Since then, an increasing number of works
[2, 4, 7, 14, 16, 18, 28, 30, 31, 35] have been focusing on
utilizing some methods to facilitate the process and gener-
ate high-fidelity objects. Such as LucidDreamer [15], Pro-
lificDreamer [32] and SDS-Bridge [20] modify SDS loss
function to generate higher-quality objects. Among these
methods, Progressive3D [5] have made a contribution on
the generation of 3D assets with complex attributes. How-
ever, it needs plenty of manual work and will fail if users
make mistakes about the order of generation and the loca-
tion of bounding boxes when there is obvious occlusion in
target generated asset.

2.2. 3D Editing
When we need more customized 3D assets and 3D data
or want to optimize some 3D data, 3D Editing is an es-
sential tool. However, there are certain challenges in edit-
ing 3D data precisely. EditNeRF [17] is an early proposal
for editing 3D data, which uses coarse 2D user scribbles
to edit the neural radiance field. After this work, a large
plenty of effort has been put into editing the neural radiance
field. SINE [1], TextDeformer [6], CLIP-NeRF [29], ED-
NeRF [23] propose one-stage method to edit neural radi-
ance field based on the given text or the reference image. On
editing 3D Gaussian Splatting, the pioneering work Gaus-
sianEditor [3], Gaussctrl [34] and [19] edit 3D Gaussian
Splatting using text prompt or referred images. All these
works directly edit 3D scenes based on simple input texts
or images. Different from these works, our work aims to
decompose complex long input text and leverage the insight
of editing to optimize test-to-3D assets with careful consid-
eration of optimization order , which ensures the accurate
generation of objects with complex attributes.

3. Preliminaty Knowledge
3.1. 3D Gaussian Splatting
Gaussian Splatting utilizes a set of 3D Gaussian kernels to
fit the 3D scene or object, serving as one powerful 3D repre-
sentation with high-quality. Formally, Gaussian kernels can
be parameterized as θ. For each θi = {xi, si,qi, ci, αi},
where xi ∈ R3 represents the coordinate of the center of
the i-th Gaussian in Cartesian coordinate system, si ∈ R3

represents the scaling size, qi ∈ R4 is the rotation of the
i-th Gaussian which is represented as a quaternion, ci ∈ R3

contains the RGB of this Gaussian kernel and the αi ∈ R is
the opacity value. The whole space is served as tile list to be
projected onto the screen plane by a sample camera, and the
color C(p) of each point p on the projection screen is calcu-
lated with the formula:C(p) =

∑
i∈N ciα

′
i

∏i−1
j=1(1− α′

j),

where α′
i = αie

− 1
2 (p−xi)

TΣ−1
i (p−xi), Σi is the covariance

of the i-th Gaussian which can be arrived by si and qi, and
N denotes the number of Gaussians in this tile. Since 3D
Gaussian Splatting is a display expression, we can use the
characteristics of the display expression to map each kernel
to the corresponding part of the 3D asset, making it easier
to optimize a certain part separately.

3.2. Score Distillation Sampling (SDS)
Score Distillation Sampling proposed in DreamFusion [24]
aims to distill the prior knowledge in 2D diffusion models
for 3D generation. A key advantage of this technology is
its independence from 3D data. In the absence of 3D data,
SDS technology demonstrates enhanced generalization ca-
pabilities and can produce a wider range of diverse results,
making it especially beneficial for users seeking to gener-
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…

(more occluded) (less occluded)

Figure 2. Overview of Hierarchical-Chain-of-Generation. a) In the Hierarchical Blocks stage, LLM analyzes the input text and based
on the order from more occlusion to less occlusion, creating the order of generation. b) Part-optimization is applied to the parts in blocks,
using Lang-SAM [21] to segment specific parts and utilizing MVDream [27] and ControlNet [37] in fine-grained optimization stage to
enable corresponding attributes binding for each part with shape and multi-view consistency. c) Gaussian Extension is applied between
blocks, extending new parts for the next block. d) Label Elimination aims to generate new parts by extending new Gaussian kernels (red-
star-marked), re-assigning semantic labels (blue-star-marked), and eliminating unnecessary kernels finally, ensuring that only relevant parts
are generated without disrupting previously optimized parts.

ate personalized 3D assets with complex attributes. In this
paradigm, the parameter of the 3D scene θ is denoted as
differentiable image parameterization. Then, after render-
ing image IRGB according to a given camera pose pc, a
Gaussian noise ϵ(0, I) is added onto the image and passed
into the diffusion model ϕ. With the predicted noise ϵϕ at
timestep t, SDS loss optimize the 3D scene parameter θ by
calculating the difference between added noise ϵ(0, I) and
the predicted noise ϵϕ, which is formulated as,

∇θLSDS = Eϵ,t

[
w(t) (ϵϕ(IRGB ; y(pc), t)− ϵ) ∂IRGB

∂θ

]
(1)

where y(pcamera) is the text prompt related to the camera
pose pc and w(t) is a weight function. To speed up the
process of backpropagation, SDS loss simply skips the grad
of U-net.

4. Method
The framework of Hierarchical-Chain-of-Generation is
shown in Fig. 2, which comprises three main designs. We
first adopt Hierarchical Blocks (detailed in Sec. 4.1) to an-
alyze the text description and decompose the whole gener-
ation into sequential blocks. To yield more structural co-
herent results, in-n-out order strategy are further introduced
to generate these blocks from inner ones to outer ones ac-
cording to the occlusion relationships between them. Then
within each block, we propose Part Optimization (detailed

in Sec. 4.2) to first coarsely generate necessary compo-
nents, then precisely edit and bind corresponding attributes
through target region localization and fine-grained 3D gaus-
sian kernel optimization, yielding faithfully and accurate
attribute binding for each object part. Between blocks,
Gaussian Extension and Label Elimination (detailed in
Sec. 4.3) is introduced to generate new parts, which firstly
extend new Gaussian kernels through kernel densification,
then re-assign semantic labels for newly generated kernels,
and eliminate redundant ones according to labels, which
only eliminate the manual efforts to make whole generation
automatic, but also avoid negative affection like appearance
changing in previous optimized parts.

4.1. Hierarchical Blocks
As shown in Fig. 2, when faced with complex 3D objects
with multiple constituent parts and distinct attributes, it
is highly probable that certain parts may occlude others,
resulting in only partial visibility of some elements from
any given viewpoint, thereby confusing 2D diffusion model
and complicating the generation of 3D assets. To address
the issue of attribute binding and ensure a fully automated
pipeline, we propose Hierarchical Blocks, which consist of
two key design principles: (1) In-n-out order of genera-
tion: We first extract all object parts from the long compli-
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cated input text and organize them into hierarchical layers
according to their occlusion relationships. The most oc-
cluded parts are placed in the initial layer and generated
first, while the least occluded parts are assigned to the final
layer and generated last. Parts that do not occlude one an-
other are grouped within the same layer, allowing for paral-
lel generation. (2) Generate coarsely-to-precisely: Within
each hierarchical block, all constituent parts are first gener-
ated by the initial input text, and then are refined as attribute
binding by the fine-grained input texts. Specifically, the ini-
tial input text includes only the parts in this block, such as
“a man in shirt, shoes and trousers is waving” shown in
session a) of Fig. 2, is coarsely initial input text, omitting
detailed attributes and generating parts in this block. Pro-
gressively, “yellow shirt” is the precise optimization input
text, enhancing the attribute “yellow” bound to “shirt”.

In-n-out order of generation. Adopting our generation
order ensures more structurally coherent results. Specif-
ically, heavily occluded parts are often entirely or par-
tially invisible in the final rendered image, making post-
generation optimization nearly impossible. Therefore, it
is crucial that these occluded parts are generated and op-
timized before the outer parts are introduced. By ensuring
that the outer layers remain ungenerated during this process,
the system can fully expose the occluded components, al-
lowing them to be accurately reconstructed and optimized.
Moreover, the structural integrity of the outer parts depends
largely on the shape of the inner parts. Thus, a hierarchi-
cal generation strategy, which prioritizes inner (more oc-
cluded) parts before outer (less occluded) ones, ensures bet-
ter global consistency in the final 3D asset. For parts that do
not occlude each other, their generation order remains flex-
ible and they can be grouped within the same hierarchical
block to enable parallel processing.

Generate coarsely-to-precisely. The generation of all
parts in the same block is based on generating all new parts
coarsely and editing precisely. In each block, the initial in-
put text is responsible for generating all parts associated
with that block simultaneously. Since 3D generation is
computationally intensive, producing multiple components
in a single forward pass significantly improves efficiency
compared to sequential generation. To optimize the gen-
erative model’s performance, the initial input text excludes
attribute-level details, as minimizing textual complexity en-
hances the model’s ability to learn high-level structural in-
formation. Once the coarse representation of all parts is
established, subsequent fine-grained refinements are per-
formed, where each part’s attributes are explicitly defined
and serially incorporated into the generation process. An
illustrative example is presented in Fig. 1c. The hierarchi-
cal structure specifies the grouping of parts into different
blocks. The initial input text for each block captures a high-
level structural outline of all the parts within that block,

such as “A man in a shirt, shoes and trousers is waving”
contains all “shirt”, “shoes” and “trousers” in this block.
Meanwhile, it also provides precise descriptions of each
part along with its attributes, such as “yellow shirt”, to bind
attribute to the corresponding part.

To make this process totally automated, we use a large
language model to help us create Hierarchical Blocks.
Since many objects or parts in daily life have occlusion rela-
tionships, the large language model (LLM) has prior knowl-
edge of occlusion relationships, assisting us to analyze the
occlusion relationships of various parts in long complex
input texts, and further providing the order of generation
based on occlusion relationships. In addition, the LLM is
capable of extracting various parts and corresponding at-
tributes and providing simplified initial input texts, which is
shown in Fig. 1c.

4.2. Part-optimization
Within each hierarchical block, multiple parts coexist with-
out occluding one another. Once the coarse structures are
generated, each part undergoes precise optimization, which
first requires accurate localization and segmentation. To
achieve this, we employ SAM [11] to segment 2D rendered
images and lift the 2D to 3D. Subsequently, the fine-grained
optimization is based on the framework of MVDream [27]
which ensures multi-view consistency, adopting SDS loss
to optimize 3D assets which are formulated as Eq. 1.

Part Segmentation is the first stage, aiming to seg-
ment certain part that needs optimization and using lang-
SAM [21] to supervise the segmentation of the target part.
Specifically, we bind a new property on each Gaussian ker-
nel, labeled pseg , randomly initialized, which acts as a bi-
nary label, indicating the kernel’s possibility of belonging
to the target part. The goal of this stage is to optimize
pseg of all kernels so that it converges to a point where
the kernels belonging to the certain part have higher pseg .
For each time the 3D asset is rendered in a sampled camera
pose, the binary label pseg is rendered as a 2D tensor P2D,
which means the current binary label renders as 2D tensor
with segmentation possibility and needed optimization. In
the meantime, an RGB image IRGB is rendered based on
the same camera pose. Then, we apply lang-SAM[21] to
the rendered image to obtain a segmentation ground-truth
PIRGB

. The segment loss is formulated as:
Lsegment = CrossEntropy(P2D,PIRGB

) (2)
Through iterations of training, we yield the converaged bi-
nary classification labels pseg to group the Gaussian ker-
nels belonging to the target part. As shown in session b)
of Fig. 2, after multi-iteration, the Segment probability con-
verges on the trousers and this part is segmented out.

Fine-grained Optimization is the second step to opti-
mize the target part, aiming to bind correct attributes to new
corresponding parts. For each part, we only allow the Gaus-
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Input Text: A man in black coat, yellow shirt, pink trousers, blue leather shoes and green hat is waving
Progressive3D
A man with yellow shirt is 
waving

A man with pink trousers 
and yellow shirt is waving

A man with black coat, 
pink trousers and yellow 
shirt is waving

A man with blue leather 
shoes, black coat, pink 
trousers and yellow shirt is 
waving

A man with green hat, blue leather shoes, 
black coat, pink trousers and yellow shirt 
is waving

GaussianDreamer LucidDreamer MVDream HCoG + SD3 (Ours)

Input Text: A yellow dog wears a pink shirt, two pairs of pink shoes, and a blue collar

GaussianDreamer LucidDreamer MVDream HCoG + SD3 (Ours)

Input Text: A boy wears blue shirt with a yellow star on it, gray trousers, blue sport shoes, purple wizard hat and blue jacket, 
holding a magic stick

GaussianDreamer LucidDreamer MVDream HCoG (Ours)

Input Text: A cartoon girl with short hair wears gray shirt, blue skirt, yellow shoes, pink jacket and brown hat is dancing

GaussianDreamer LucidDreamer MVDream HCoG (Ours)

HCoG (Ours)

HCoG + SD3 (Ours)

HCoG (Ours)

HCoG + SD3 (Ours)

GaussianDreamer + SD3

Figure 3. Visual comparison with other methods. We compare our method with other well performed text-to-3D methods [15, 27, 35],
Progressive3D [5] which heavily relies on user-defined generation order and bounding boxes, and Stable Diffusion v3 [26] which is a more
powerful backend.

sian kernels belonging to the target part to receive gradients
while fixing the other Gaussian kernels. During the opti-
mization process, since the quality of generated assets may
not be optimal at the early stage and some parts show differ-
ences in sizes and shapes from prior knowledge of diffusion
models, we further introduce to combine ControlNet [37] to
provide the shape prior to the generated assets to diffusion,
which corrects the error caused by the gap between the gen-
erated Gaussian Splatting and the real Gaussian Splatting
data. Therefore, the segmented part is fed in to Control-
Net [37] for better shape consistency, applied SDS loss:

Loptim = LControlNet
SDS + LMVDream

SDS (3)
where LControlNet

SDS is the LSDS from ControlNet [37] and
LMVDream

SDS is from MVDream [27]. The formula of LSDS
is referred as Eq. 1.

4.3. Gaussian Extension and Label Elimination
In order to reduce manual efforts like precise user-defined
bounding boxes and not change the appearance of previous
optimized parts, we propose the Gaussian Extension oper-
ation to generate new parts without changing the original
Gaussian kernels and the Label Elimination to ensure new
parts not change the appearance of previous parts which
have been optimized.

Gaussian Extension. The goal of the Gaussian Exten-
sion operation is to generate the parts of the next block
while preserving the previous parts, and it does not depend
on the bounding boxes defined by the user. As shown in
Fig 2 Part c), we densify the original 3DGS and get some
new Gaussian kernels. For each new Gaussian kernel, it
is generated from a Gaussian kernel in the original 3DGS.
The properties of the new Gaussian kernel are copied from
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the original Gaussian Kernel, except for the position. The
position of new kernel xnew will be sampled on the distri-
bution of the original Gaussian kernel N(xorigin, sorigin)
and a small random perturbation will be added, which can
be formulated as:

xnew = xsample + xperturb (4)
where xorigin and sorigin denote the center and the scale of
the original gaussian kernel, xsample ∼ N(xorigin, sorigin)
denotes sampling a point on the distribution of original
Gaussian kernel and xperturb ∼ N(0, ϵ) means random per-
turbation and ϵ is a tiny noise covariance. We fix all the
original 3DGS and only allow the new 3DGS to accept gra-
dients, thus to ensure preserve the original parts. Then, we
use the simplified next-block text provided by LLM to opti-
mize all 3DGS via SDS loss, so that all the parts of the next
block can be optimised.

Label Elimination. Although the Gaussian Extension
method does not require the user to define the precise po-
sition of the bounding boxes, it leads to attribute deviation
within previous parts, which is shown in Sec. 5.4. The rea-
son is, during Gaussian Extension stage, the extended ker-
nels may be attached the the surface of the previous opti-
mized parts. Therefore, to preserve the appearance of these
optimized parts, we propose Label Elimination, a concise
and effective way to remove the influence of the parts in
the previous block and only keep the new parts in the next
block.

Specifically, as shown in Fig. 2, purple circles represent-
ing kernels and colorful stars representing marks, before the
Gaussian Extension step, all the original gaussian kernels
are orange-star-marked. After Gaussian Extension method,
the densified Gaussian kernels are red-star-marked. After
the optimization, we apply SAM [11] to segment the parts
that are novel in this new block. All Gaussian kernels that
are segmented as new parts are blue-star-marked. After this
operation, the blue-star-marked kernels contain the parts we
want to add, while the red-star-marked kernels are actually
not belong to the parts we want to add, which means they
are redundant. Subsequently, we only need to eliminate
the red-star-marked kernels to get a harmonious 3D asset
with new parts without negatively affecting the original op-
timized parts.

Besides, because different Gaussian kernels are required
as the size varies for each part, Label Elimination can help
remove redundant Gaussian kernels so that during the pro-
cess of Gaussian Extension, we only need to add a fixed
number of Gaussians.

5. Experiments
5.1. Implementation Details
Our hierarchical chain-of-generation (HCoG) framework
is designed to be compatible with various backbones. In

GSD [35] MVD [27] Pro3D* [5] Ours Ours+SD3
BLIP-VQA 0.4919 0.5519 0.6553 0.7295 0.8055
CLIP-Score 30.709 31.132 30.451 31.998 33.189
Table 1. Quantitative Comparison. Where GSD means Gaus-
sianDreamer, MVD denotes MVDream, and Pro3D* represents
Progressive3D. Our method outperforms other methods.

this paper, we implement HCoG on both GALA3D [38]
based on Stable Diffusion v2.1 and GaussianDreamer [35]
equipped with the advanced text-to-image model Stable
Diffusion v3. We use GPT-4o as the large language model.
During the process of Part Segmbentation, a threshold is
needed to identify which part a Gaussian kernel belongs to
and is set to 0.9. pseg is trained for 200 iterations where
the learning rate is set to 0.05. The camera’s sampling ra-
dius is set to the range of the scene in a spherical coordinate
system, while vertical angles are sampled uniformly from
−45◦ to 45◦ and horizontal angles are sampled uniformly
from 360◦. In the Process of Extend, the random perturba-
tion ϵ is set to 0.01.

5.2. Qualitative Comparisons
The comparison of visualized results with other methods is
shown in Fig. 3. We choose some well-performed text-to-
3D methods [5, 15, 27, 35] to compare with our method
(Ours). Besides, we upgrade the 2D diffusion model
used as SDS guidance to more advanced Stable Diffusion
v3, and compare GaussianDreamer [35] with our method
(Ours+SD3), both equipped with Stable Diffusion v3. For
testing, we selected challenging examples featuring com-
plex parts and attributes, including those with distinct oc-
clusion relationships, to evaluate the model’s performance
in complex attribute text-to-3D generation.

Compare with Progressive3D [5]. As shown in the
first row of Fig. 3, Progressive3D [5] performs generally
satisfactorily and shows competitive results when the input
text is complex. However, it needs plenty of manual effort.
Users is requested to define the generation order and bound-
ing boxes carefully, which makes it less practical. Besides,
if the order is not proper, the results may be a bad crash.
As shown in Fig. 1b, generating black coat first and yellow
shirt later will dye the coat yellow. In comparison, our ef-
fort has the ability to automatically decide the optimization
order and generate 3D assets without any manual effort.

Compare with SOTA text-to-3D methods. As shown
in Fig 3, we perform visual comparison of our method
with GaussianDreamer [35], MVDream [27] and Lu-
ciDreamer [15], which are all equipped on the same ver-
sion of Stable Diffusion as ours. In these cases, admittedly,
these methods are able to generate delicate and high-quality
results, while they are unable to tackle the task of 3D gen-
eration with such complex attributes. They usually bind the
parts with wrong attributes in the input text, such as bind-
ing the star on the magic stick instead of the shirt, while
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Inverse order Random order Ours
HCoG 0.5023 0.5961 0.7295
+SD3 0.6363 0.7033 0.8055

Table 2. Ablation of Generation order on BLIP-VQA.

Before Part-optimization w/o ControlNet w/ ControlNet

Figure 4. Ablation study of ControlNet. Input text: blue sports
shoes. Without shape control, the diffusion model will give wrong
guidance and the result will be bad.

Before Extend w/o Label Elimination w/ Label Elimination

Figure 5. Ablation study of Label Elimination. Previous op-
timized input text: A man in yellow shirt, pink trousers and
blue leather shoes is waving. Next input text: A man in coat
is waving. Without Label Elimination, when generating new part
coat, the optimized parts like yellow shirt, pink trousers and blue
leather shoes are changed.

sometimes missing some parts, such as the two pairs of pink
shoes in that dog. Meanwhile, our method have the ability
to tackle these situations.

Compare with GaussianDreamer [35] with Stable
Diffusion v3. When upgrading the 2D diffusion model
to the more advanced, recent Stable Diffusion v3 (as
shown in the right-most column), we observe that Gaussian-
Dreamer [35] demonstrates some improvement but remains
inadequate in attribute binding. It bind “yellow” to “coat”
by mistake. In contrast, when equipping Stable Diffusion
v3 to HCoG, our method enables more fine-grained details
and higher-quality outputs while maintaining the correct-
ness of attribute binding. Note that the order of operations
remains critical when upgrading 2D diffusion model to Sta-
ble Diffusion v3. Additional ablation studies can be found
in Sec. 5.4.

5.3. Quantitative Comparison
In order to quantitatively compare the results, we
adopted the BLIP-VQA [12] method proposed in T2I-
CompBench [8] and CLIP [25] similarity score to evaluate
the quality of the generated results. However, according to
the T2I-CompBench [8], the BLIP-VQA scores of each part
are multiplied to get the total score. However, due to our set-
up of “3D assets with complex attributes” being challeng-
ing, we empirically observed that the original BLIP-VQA
score of most methods is zero. Therefore, in order to enable
a more intuitive comparison, we changed the total score to

the average of the scores of each part, and finally obtained
the results shown in Tab. 1. As can be seen, our method
is better than many previous text-to-3D methods [27, 35],
and also outperforms Progressive3D [5] which targets for
complex attributes binding by 7.42% on BLIP-VQA and by
1.547 on CLIP-score, achieving the best score. The other
advantage is that our method needs no manual effort. Be-
sides, when we take Stable Diffusion v3 as our backend, the
score achieves 0.8055 on BLIP-vQA and 33.189 on CLIP-
score, which implies stronger 2D diffusion model provides
more reliable guidance.

5.4. Ablation Experiments
We conduct an ablation study to evaluate the effectiveness
of the order of generation, ControlNet [37] and Label Elim-
ination respectively.

Order of generation. We conduct an ablation experi-
ment on the order of generation and the results is shown
in Tab. 2, which reveals that generating in order from the
severely obscured to the lightest obscured ensures each part
can be well optimized. Even equipped with more advanced
SD3, the order of generation is still crucial in generating
high quality results.

ControlNet. We conduct experiments with and without
ControlNet [37] to verify its effectiveness. As shown in
Fig. 4, ControlNet provides shape and size information to
the diffusion model, ensuring stable optimization. Empiri-
cally, ControlNet [37] is essential for Part-optimization, as
it bridges the gap between real and generated data for Gaus-
sian Splatting, preventing issues with distorted shapes and
sizes that confuse the diffusion model.

Label Elimination. We conduct experiments with and
without Label Elimination to verify its effectiveness. As
shown in Fig. 5, which indicates that Label Elimination is
the key design to generate new parts without interfering
with the previous optimized parts by removing redundant
kernels attached to the surface of previous optimized parts.

6. Conclusion
We present a method Hierarchical-Chain-of-Generation
(HCoG) that targets complex attributes text-to-3D genera-
tion task. It utilizes a LLM to analyze the input text descrip-
tion, decomposes the object into hierarchical blocks with
different object parts to generate them sequentially with
the order decided by their occlusion relationships. Within
each block, a coarse-to-fine optimization process is con-
ducted to faithfully bind attributes for each part. Between
blocks, gaussian kernels extension and label elimination are
proposed to smoothly generate new parts without disrupt-
ing previously optimized ones.The entire pipeline is fully
automated, minimizing manual effort and enhancing user-
friendliness. Experiments demonstrate the effectiveness
and scalability of our method.
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