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a full body portrait photo of a person wearing a dress with long hair and glasses
             PartComposer: hair, glasses, dress

A photo of a yellow warbler
PartComposer: beak → a hens beak

a photo of a white swan, 8k, full hd
PartComposer: crown → a crown of a peacock

A young woman sits at a table in a beautiful, lush garden, painting by claude monet
PartComposer: dress → a dress in Ukiyo-e style

Figure 1. Base Generation (left) Comparison with Methods for Generations with Parts Details (right). PartComposer allows the
generation of object images with specified attributes (color, style etc.) of parts for the chosen object in the base text prompt. StableDiffusion
and Rich-Text [18] methods with part details either ignore the part instructions or generate inconsistent ojects.

Abstract

Image composition and generation are processes where the
artists need control over various parts of the generated
images. However, the current state-of-the-art generation
models, like Stable Diffusion, cannot handle fine-grained
part-level attributes in the text prompts. Specifically, when
additional attribute details are added to the base text prompt,
these text-to-image models either generate an image vastly
different from the image generated from the base prompt
or ignore the attribute details. To mitigate these issues, we
introduce PartComposer, a training-free method that enables
image generation based on fine-grained part-level attributes
specified for objects in the base text prompt. This allows
more control for artists and enables novel object composi-
tions by combining distinctive object parts. PartComposer
first localizes object parts by denoising the object region
from a specific diffusion process. This enables each part
token to be localized to the right region. After obtaining part
masks, we run a localized diffusion process in each part re-
gion based on fine-grained part attributes and combine them
to produce the final image. All stages of PartComposer are
based on repurposing a pre-trained diffusion model, which

enables it to generalize across domains. We demonstrate
the effectiveness of part-level control provided by PartCom-
poser through qualitative visual examples and quantitative
comparisons with contemporary baselines.

1. Introduction

Image generation with large generative diffusion models
like StableDiffusion [40], DALLE [38], etc., has become
prevalent due to their superior quality and extensive world
knowledge. These models are trained on large image-caption
datasets and are trained to generate images based on a given
text prompt (description). As image composition and cre-
ation are creative processes where the artists need control
over various parts of the image being generated. However,
adding additional details for controlling part appearance in
the text prompt either changes the generated image entirely
or ignores the part instructions [9] (Fig. 1).

Various works aim to provide improved spatial controls
to image generation, as they allow image generation condi-
tioned on segmentation masks [5], edge maps [55], bound-
ing boxes [10, 27] etc. Popular methods such as Control-
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Net [55], GLIGEN [27], etc. require specifying training of
these conditional modules, which allows for the controllabil-
ity of these large generative models. Further, there has been
some development of training-free approaches [9, 10] which
enable controlled generation of objects by modulating the
internal cross-attention activations in the diffusion process.
This demonstrates that these pre-trained generative models
contain information about the spatial parts of the image, and
modulating them effectively can lead to image compositions.

However, despite several attempts [6, 55], the seman-
tic controllability of the image generation is still restricted
to specifying details at the object level. The object level
details can be restrictive, as often creative designers syn-
thesize object parts (e.g. shirt, trouser etc.) and then com-
pose them [23]. Further, variations in semantic parts are
often very distinctive and are uniquely used to identify ob-
jects [12, 30]. For example, we usually identify species of
birds by their unique beak. Due to this, semantic understand-
ing and recognition of parts have been widely studied as a
topic in computer vision [12, 13, 21, 31]. Hence, providing
controllability for image synthesis at the object semantic part
level can enable a large variety of image compositions [23].
Towards this goal, we introduce PartComposer, which pro-
vides users with an interface through which they can select
the object in the scene and provide a semantic part-level de-
scription with fine-grained details for the object generation.

In PartComposer, we develop a scheme to extract part-
level localization masks from the Diffusion model. We intro-
duce a parallel part diffusion process that generates masks
for the object parts. The core idea of the approach is that by
forcing the part diffusion model to specifically denoise only
the object region in the image, it is possible to understand
the locations of various parts in the object. After denoising
just the object through the part model, the information inside
the part diffusion model present in attention maps can be
used to generate the masks for various object parts. In the
following Part Generation stage, PartComposer utilizes the
part masks and attributes of each part the user provides. We
enable users to provide a highly expressive specification of
parts by using a Rich-Text [18] interface, which allows the
specifying attributes, such as style, color, etc., for each part.
For the final image generation, taking inspiration from recent
studies like Rich-Text Generation [18], Multi-Diffusion [5]
etc., we compose the various object parts, by running paral-
lel masked diffusion process for each part while combining
them periodically into the image. This combination enables
harmonious composition of parts, and also masking ensures
only local modifications to the regions corresponding to each
part of the object specified. In the PartComposer method,
we only use the pre-trained StableDiffusion model, making
it a generalizable and training-free approach.

We extensively test the proposed PartComposer approach
for the zero-shot object part segmentation, which is a chal-

lenging setup in computer vision. We evaluate the part seg-
mentation approach on DeepFashion [29] and CUB200 [50]
datasets, where our method significantly outperforms the
baseline StableDiffusion (SD). Further, to evaluate the Part-
Composer image composition abilities, we also provide
quantitative results along with a user preference study, where
our method significantly outperforms the baselines in gener-
ating images consistent with the described parts (Fig. 1). We
summarize the core contributions of our paper below:
1. We introduce PartComposer, a training-free method that

enables the generation of object images by using pro-
vided fine-grained details for the parts of the object. For
example, while generating a bird image we can specify a
detailed description of its beak.

2. In PartComposer, we introduce a novel Part-Diffusion
process, which localizes and provides masks for parts of a
base object generated by the Diffusion model (Fig. 3). To
localize object parts, we introduce a novel segmentation
scheme that uses the attention maps of the base diffusion
and part diffusion process to obtain accurate masks for
localized parts.

3. In PartComposer, after localization, we enable the gener-
ation of parts from the pre-trained diffusion model based
on the Rich-Text description for the parts provided by
the user. PartComposer then composes the image to har-
moniously blend all object parts with the background by
combining localized diffusion paths (Fig. 2).

2. Related Works
Text-to-Image Generative Models. The text-to-image mod-
els synthesize images by following a textual description
provided as a prompt. These models have recently become
mainstream due to their superior image generation quality
and significant knowledge base. This is an outcome of the
availability of large-scale image caption datasets [42] and
highly parallelized GPU clusters. Almost all kinds of gener-
ative models, such as GANs [22], Autoregressive [41, 53],
and Diffusion models [38, 40], have shown significant im-
provements in quality with training on these large image
caption datasets. Among these models, the StableDiffusion
(SD) [40] models, based on denoising diffusion in latent
space are popular due to their open-source nature, which we
also utilize for experiments in our work.
Text-to-Image Models for Downstream Tasks. Generative
models, in general, have been useful for various downstream
tasks, particularly ones based on per-pixel prediction like
Segmentation [1, 11], Depth Estimation [7], etc. As layers
near the image generation output have features that capture
the pixel-pixel relation [7]. With the large-scale text-to-
image generative models, these models often perform very
competitively [46, 52] to discriminative methods, on tasks
like segmentation. However, one commonality among most
of these segmentation methods is that they operate at the
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Figure 2. PartComposer takes the input of a base prompt, the selected object o, and a Rich-Text description ( i.e., footnote, colors, etc.) of
the parts. The Part Diffusion process generates the object masks for the specified parts. Then, PartComposer runs a parallel Region Diffusion
process to generate attributes of the specified parts, guided by base generation’s intermediate outputs.

granularity of object or instance level. Text-to-image models
here are at an advantage as the usual image captions describe
the scene at an object level. In this work, we take a step
further in exploring the object part-level knowledge of these
text-to-image diffusion models.
Part Discovery and Segmentation. Part Discovery and At-
tribution were an integral part of computer vision pipelines
classically, as these approaches were robust to viewpoint vari-
ations [24, 31, 48]. In deep learning, the unsupervised (self-
supervised) approaches for part discovery like SCOPS [21]
and Unsup-Parts [12] became popular as they generalize to
object parts across categories. In this work, we go one step
ahead and operate in a zero-shot unsupervised part segmen-
tation setting, generating part masks from T2I models.
Controllable Image Generation. Masks, bounding boxes,
edge maps, depth maps, etc., have been explored to control
the generations of text-to-image diffusion models [6, 14,
27, 35, 36, 55] in addition to text. Further, various other
approaches [2–4, 9, 34, 45, 49, 51] achieve control of image
semantics through modulating diffusion models. Despite
this, the text-to-image generation control at the object part
level is under-explored; a recent work [33] tries to do it in a
controlled supervised setup using part-masks. Contrary to
that, in our work PartComposer we explore a generalized
training-free zero-shot setting.

3. Method

In this section, we introduce PartComposer, our method to
synthesize objects based on the description of parts of the
objects. In PartComposer, we ask the user to specify a base
prompt and the token for the object for which it wants to
synthesize parts. Then, we provide the user a rich-text [18]
editor (Fig. 2) to specify the parts and their description. Part-
Composer involves two diffusion steps, a) Part Localiza-

tion: In the early diffusion stage, we get a mask for the
object we want to divide into parts. Then, we perform de-
noising in later stage from a U-Net condition on parts to fill
the masked region of the object, during which it learns to
denoise different object parts. Due to this, the attention maps
for various parts highlight the correct part region, which we
use to extract the part mask. The infilling process is the
major contribution of the PartComposer method (Fig, 3). b)
Part Generation: For generating parts, we combine region-
specific diffusion processes for various parts by iteratively
merging them inspired by MuliDiffusion [5], Rich-Text Gen-
eration [18] etc. However, till now, most of these works
have combined the diffusion process for generating objects;
for the first time, we have demonstrated its effectiveness
in generating object parts. We provide an overview of the
PartComposer pipeline in Fig. 2.

3.1. Problem Setup
We consider each span of tokens pi as indicative of describ-
ing one part of the object, with attributes ai describing its
overall appearance. Our design choices are based on the
rich-text generation [18], and we allow the user to specify
the following type of attributes for part generation (Fig. 2):
Part Description (i.e. footnote). It is an important attribute
that specifies the part of an object; for example, for the
part (pi) ‘crown’ of a bird, we can specify the attribute (api
= ‘a crown of a peacock’). This helps specify novel part
descriptions, which can lead to artistic novel compositions.
Font Color. It helps us specify the exact RGB values for the
color attribute aci we want for the object part pi. The exact
value of RGB allows fine-grained control over the color of
the desired part, whereby just specifying specific colors like
‘brick red’ leads to ignorance by Stable Diffusion [18].
Font Style. The font style is indicative of the specific artistic
style asi like ‘of Claude Monet’ and ‘of Van Gogh’ when
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Figure 3. Localization. We obtain the mask (Mo) for object in middle of diffusion process. We then denoise object in masked region, using
parts pi conditioned U-Net. Due to part denoising, the attention maps of pi can now localize parts as masks Mpi .

synthesizing images of paintings. This instructs the model
to generate a part following a specific style for the given
prompt and blend it with other parts of the object (Sec. 5).
Font Size. The font size controls the relative size of each
part in a generation [19]. We use the awi to denote size.

3.2. Part Localization
For part localization, we first run the base stable diffusion
model for the given text prompt and extract the token map
Mo for the object o specified by the user, by following
the technique of clustering the self-attention maps [18, 37].
We obtain the mask using this clustering after denoising be-
tween the initial step (T ) until a threshold time step Tth.
After obtaining the binary object mask Mo using atten-
tion masks [18, 37], we run two parallel diffusion processes
where one contains input from the base prompt and the other
contains input from the part prompts p̂ = [p1,p2, ...,pn], a
token pi for each of the parts specified in the part text prompt.
We denote the b̂ to denote the base text prompt and p̂ to
denote the part prompt. For the time t ≤ Tth (by default, we
use Tth ≈ T/2), we denoise the U-Net in the object region
by denoising it with both the combination of the Part Prompt
output and Base Prompt output. Due to this, the Part-Based
U-Net gets the information regarding various parts in the
object (Fig. 3). We now mathematically define the output
noise ϵt for the diffusion process with Part-Diffusion below:

ϵt = αMo ⊙D(xt, p̂, t) + (1− αMo)⊙D(xt, b̂, t) (1)

here, the α is the hyper-parameter controlling the strength
of the part prompt diffusion output, and D is the output of
the pre-trained U-Net of a text-to-image diffusion model.
The above denoising process is followed for t steps until the
last step to produce a base image corresponding to the given
prompt b̂. Keeping a high Tth and low α, makes minimal

changes in output as if the denoising diffusion was done with
original prompt b̂ (See Suppl. Sec.). With this part denoising
of object, we obtain attention masks, from which we extract
the localization information of part pt. We now describe the
process of obtaining the part masks.

Token Maps for Parts. We first take the part tokens p̂,
which are a concatenation of the part names (i.e. ‘beak crown
wings’), which may not make a meaningful text prompt.
Hence, we initialize text embeddings for all these tokens pi

by passing the meaningful text prompt having the following
template: “ A photo of pi of a o ” where pi is the object
part name and o is the object name. This serves two pur-
poses: first, it makes the text embedding meaningful, and
second, it introduces some invariance from the order of part
specification in part prompt. These embeddings are then
passed as text embeddings to the Part U-Net for denoising.
After running the denoising process, we aggregate the self-
attention maps across multi-heads and time steps (from 32
× 32 resolution) for both the base and part U-Net diffusion
branches, taking inspiration from works that demonstrate
that attention can localize objects [9, 18, 30, 44]. We then
perform spectral clustering on these attention maps to form
k segmentation maps M̂ (32 × 32), based on pixel-pixel
similarity. To attribute these K-segments to the part spec-
ified by the user, we aggregate the cross attention of Part
U-Net diffusion process. For each token pj , we obtain the
cross-attention score as follows: m̂j =

cj∑
k ck

, where cj
is the cross attention score for each token. We proceed by
aggregating the attention heads to obtain the average cross-
attention scores and resizing them to 32 × 32, obtaining m̂.
We remove the start of text (⟨sot⟩) token for cross-attention
and re-normalize it [9]. In other works [18, 37], as the tokens
correspond to the objects being generated in the image, it’s
sure that token maps will be meaningful. However, this is
not true for parts, as Part U-Net might not localize some
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parts. For determining if the part is localized, we propose to
look at the max value of cross attention map spatially across
the pixels; if we find that the following condition is met, the
part is localized:

L(j) = 1{max(m̂j) ≥ (1− δ)
1

K
}. (2)

Here δ is a hyperparameter, and K is the number of parts. is
This condition is robust in finding the localized parts (See
Sec. 5 for ablation). For the parts pi, which are localized,
we normalize the cross-attention map:

m̂j = L(j)
m̂j −min(m̂j)

max(m̂j)−min(m̂j)
+ (1− L(j)) m̂j .

We follow a dot-product-based protocol to assign each K
cluster in the self-attention masks to a part, unlike the aver-
age attention protocol in the previous works [18, 37]. We
find that dot product of normalized cross attention scores m̂j

for each token with self-attention masks M̂j works better,
as the attention maps in Part U-Net are noisy. Still, they are
often correct for the regions that are localized in one specific
area only (Suppl. Fig. 14). Hence, the dot product protocol
favors those maps that are only localized in some areas of
the image and don’t have high attention values across all
parts of the object. After obtaining the dot product scores
for each part, we assign M̂j to pi with the highest scores.
The mask for the part pi is finally given as the following:

Mpi
= {∪j M̂j | argmaxi M̂j ·m̂i = i and M̂j ·m̂i ≥ ϵ, }

(3)
Here ϵ is the hyperparameter which controls the minimum
similarity required between the attention mask and the part
token. We combine the additional attention masks unas-
signed to any token, and name them as the background
(other) token Mb.

3.3. Part Generation
We follow a similar protocol for the generation of part seg-
ments as in Rich-Text Generation. We tailor the rich text
generation to compose the part regions of the object in the
image in place of the original scene composition. We de-
scribe the part generation protocol below briefly and refer
readers to Rich-Text Gen [18] for more details. For each part
pi we run a region diffusion process, which runs in parallel
for all the parts. We then combine the region diffusion pro-
cesses to obtain the final noise prediction ϵt as the masked
Mpi

sum of the denoiser outputs:

ϵt =
∑
i

Mpiϵt,pi =
∑
i

Mpi ⊙D(xt, f(pi,ai), t) (4)

where D is the pre-trained U-Net model, and f(pi,ai) is the
text description of the part pi constructed using the following

Localized
Part Masks

Figure 4. Segmentation masks for the parts that are localized by
Part Diffusion for DeepFashion (above) and CUB200 (below).

process using the part tokens pi and attributes ai. Intially
the the text f(pi,ai) = pi, is set to part token itself. In
case the part description (i.e. footnote) is available we set
the f(pi,ai) = api , further if the style attribute is available
we do f(pi,ai) = f(pi,ai) + in style of + asi . In case
the color attribute is also specified, the nearest named color
âci (e.g. red) for the specific RBG color aci is found, and
f(pi,ai) = âci + ‘ ’ + f(pi,ai). The string f(pi,ai) is the
text input for the Diffusion to generate the part pi. We use
the base prompt b̂ as f(pi,ai) for the background masked
region Mb. Combining different diffusion outputs at every
time t helps generate a harmonious image after blending the
defined parts of the object.

Following Rich-Text [18], we also utilize the gradient
guidance [16, 20] by taking the gradient of MSE loss be-
tween the estimated original image and the color value aci
specified by the user. The gradient guidance helps gener-
ate the exact RGB color for part pi, which is impossible
with just text guidance [18]. Further, as we use the base
text framework of Rich-Text, we also can specify font size
attribute to afi to control the relative importance of each part
in the object image.
Preservation of Other Parts. As we only intend to modify
the object o from the original prompt, we also use the Self-
Injection techniques from Plug and Play [47] to maintain
the overall structure of the background from base prompt
generation. Further, to ensure that our diffusion trajectory
follows the same path as the base, the background region is
also blended with base noise generation outputs.

xt = Mb ⊙ xbase
t + (1−Mb)⊙ xt (5)

In our case, the attention maps out of the object Mask Mo

and all the object parts not assigned to any part token com-
prise the background Mb, and we start this blending process
at t = Tblend. We find this to be very useful in preserving the
structure of the other parts of the image and just generating
the described parts in the localized region. We provide an
overview of the complete process in Fig. 2.

4. Experimental Analysis
4.1. Evaluation of Part Localization
We first evaluate the part localization module, which is based
on the novel idea of denoising only the object region with
the part-based diffusion outputs.
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Table 1. Comparison to Prior Works for the unsupervised part segmentation task. We follow Unsup-Part [12] for evaluation protocols and
baseline results for (K=4) parts. We report clustering-based NMI and ARI metrics, which are higher for better segmentation outputs.

DeepFashion Dataset CUB200 Dataset

Method FG-NMI FG-ARI NMI ARI FG-NMI FG-ARI NMI ARI

Unsupervised Learning

SCOPS [21] 30.7 27.6 56.6 81.4 39.1 17.9 24.4 7.1
Unsup-Parts [12] 44.8 46.6 68.1 90.6 46.0 21.0 43.5 19.6
DFF [11] - - - - 32.4 14.3 25.9 12.4

Unsupervised Zero-Shot

Rich-Text [18] 16.0 5.2 48.3 58.7 3.1 0.3 3.1 0.3
StableDiffusion 12.0 3.5 40.6 70.9 8.0 0.6 3.3 0.6
PartComposer(Ours) 24.7 18.0 48.0 73.4 20.5 9.2 18.5 7.7

Implementation Details. We use the StableDiffusion (SD)
version 2.1 for our experimentation purposes. We use the
DDIM Scheduler [43] with 50 steps to generate results for
SD2.1 to evaluate the part localization process. As ground
truth is not available for the part masks of the generated
images, we use test sets of the commonly used DeepFash-
ion [29] and CUB-200 [50] datasets for evaluation. These
datasets are the standard datasets used for the evaluation of
the unsupervised part segmentation approaches. The Deep-
Fashion dataset contains images along with their part seg-
mentation masks, divided into 14 categories of labels. The
CUB200 dataset contains the key point annotations for the
14 key points specified for the bird categories. We provide
further details in Suppl. Section.

Baselines and Problem Setting. As we operate in the
setting of Zero-shot (i.e. no training) Unsupervised Part Seg-
mentation, there are no previous works that report results in
such a challenging setting. Hence, we provide results for the
unsupervised learning approaches to facilitate comparison.
We provide results for the SCOPS [21], which utilizes the
internal features of the VGG model to train a model based on
self-supervised loss functions to predict parts robustly across
categories. The other stronger self-supervised baseline is
Unsup-Parts [12], which uses contrastive loss functions to
train a network based on equivariance and other vision prop-
erties to cluster the object regions into semantic parts. In
addition to this, we also report results for the DFF [11] as
they also operate in the same setting. We want to highlight
that these unsupervised approaches require either training
a neural network or performing clustering on the complete
training data to segment parts. In contrast, our approach is
training free and operates in a zero-shot fashion. Hence, the
performance of zero-shot approaches is not directly compa-
rable to unsupervised methods.
Zero Shot Unsupervised Part Segmentation. As there
is no benchmark to evaluate the part localization for gener-
ated images, we use the existing dataset of DeepFashion and
CUB200 to obtain our results. To obtain segmentation for

each image, we first invert the image into the diffusion latent
space using Null-Text Inversion [32] method (see Sec. 5 for
ablation). We use the BLIP-V2 [25] captioner provided in
Diffusers to obtain approximate text prompts for inversion.
After providing the desired image and prompt, the Null-Text
inversion provides us with inverted latent and unconditioned
time embeddings to reconstruct the image of the dataset. We
then construct a StableDiffusion baseline in which, in addi-
tion to the prompts, we append the list of part tokens p to the
prompt. We then use the segmentation algorithm described
above in Sec. 3.2 to extract token maps corresponding to
the part tokens pi. We also evaluate a Rich-Text [18] base-
line segmentation algorithm for the same. For the proposed
part-denoising approach based on parallel diffusion in Part-
Composer, we first get the inverted latents and embeddings.
Then, we generate a base diffusion process to reconstruct
the image and use Part Diffusion to fill the parts of the im-
age. To very fairly compare the StableDiffusion performance
with part-denoising, we keep all things the same except the
part diffusion process to get masks. Further across these
baselines, we use low classifier guidance to ensure proper
reconstruction of the dataset images (See Suppl. for details).

Evaluation Protocol. We use the standard experimental
protocol as used by earlier works [12] to facilitate the right
point of comparison. We want to point out that in our work,
the part name (e.g., beak, etc.) is associated with the local-
ized mask, but the unsupervised approaches produce (K=4)
parts without any part names. Hence, to make a fair com-
parison, we create 4 clusters of parts based on their locality,
and finally generate segmentation masks with a maximum
of 4 clusters. We provide the exact mapping of the part
names to cluster labels in the Suppl. Section. We compare
the specifically designed metrics [12] of NMI (Normalized
Mutual Information) and ARI (Adjusted Rand Index) of the
predicted cluster labels with part masks in the case of Deep-
Fashion and key points in case of the CUB dataset. We report
the metrics along with their foreground variants (FG-NMI
and FG-ARI) for a holistic comparison of performance.
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Figure 5. Qualitative Comparison for PartComposer. (above) We provide base prompt ‘a photo of a flamingo’ and part prompt as ‘beak -
a pelicans beak’. (below) We generate a photo of a man, with part prompt as ‘black jacket and blue jeans’. We find that other baselines either
ignore instruction or change the entire composition. On the contrary, PartComposer can correctly localize parts and generate details.

Results. We tabulate the results for all the baselines in Ta-
ble 1. Our approach, PartComposer, significantly improves
over the baselines by ≥ 5 points in NMI and ARI across
most metrics in the Unsupervised Zero-Shot setting. Fur-
ther, in some cases our methods, NMI and ARI, are near
the unsupervised learning approaches. This demonstrates
that non-trivial part masks can be generated by harnessing
the power of the pre-trained diffusion models, and they can
serve as a good initial prior for learning part segmentation
approaches by using them as base pre-trained models. We
provide qualitative results for PartComposer, where we ob-
serve that PartComposer can associate the right part with the
correct label (Fig 4). On the contrary, in the StableDiffusion
baseline, the parts often get assigned to the wrong part to-
kens, which is the cause of degraded performance (Suppl.
Fig. 16). We also observe that in the case of our algorithm, if
the part gets localized based on the max condition defined in
the segmentation algorithm, the part mask found is usually in
the right region (See Fig. 4 and Table 2). This demonstrates
the effectiveness of our part segmentation procedure, which
often sides with not localizing objects rather than performing
arbitrary assignments.

4.2. PartComposer Image Generation Evaluation
We now evaluate the object composition ability of the pro-
posed approach, PartComposer, compared to the baselines.
In this section, we use the base generation model as a Sta-
bleDiffusion (SD) 1.5 model to do a fair comparison with the
Rich-Text baseline. We used the same generation setting of a
PNDM [28] scheduler with 41 steps and suggested classifier
guidance 8.5. To perform a fair comparison, we keep all the
parameters same as that of the Rich-Text [18] baseline.
Baselines. For the task of generating the object image based
on part-level details of the specified object, we use the strong
baselines of Rich-Text Generation and InstructPix2Pix [8].
The Rich-Text Generation method generates the base image
itself, whereas the InstructPix2Pix method requires us to

generate the base image. We also evaluate the standard
StableDiffusion baseline in which we add all the part details
in the text prompt to generate the desired image. We compare
all these baselines with our proposed method, PartComposer,
while ensuring that the base parameters and seed are the same
for the base image generation. A recent work [33] regarding
part generation operates in a fully supervised setup using
part masks and cannot be used to create novel parts based on
text instruction, making it incomparable. We defer specific
details for the baselines to the Suppl. Section.

Visual Comparison. We provide a visual comparison for
the baselines for the a) bird image distinctive part generation
and b) human image part generations. Across both cases
(Fig. 5), our proposed method, PartComposer, only modifies
the desired beak region and replaces it with the iconic peli-
can beak. The StableDiffusion baseline modifies the image
completely while ignoring instructions (Supp. Fig. 12). In
the Rich-Text generation, the full region corresponding to
the bird gets modified instead of only the specified prompt
in base generation. For the editing-based InstructPix2Pix
method, we observe that it modifies the base image at a
global level and cannot localize modification to the desired
part region (Fig. 5). We further compare and find that re-
cent models like SD3.5, Inpainting [17] and recent SotA
editing methods [15, 26, 47, 54] can still not follow exact
part instructions as seen in Supp. Fig. 8, 9 and 10. In con-
trast,observe that PartComposer-generated images are novel
aesthetic compositions that follow the part-level instructions.

Quantitative Evaluation. As the part-specific generation is
fine-grained, we perform the both automatic and user-study
evaluations. We performed a user study by inviting 50 par-
ticipants (28 responded with a full survey). We evaluate the
model by asking questions and evaluating metrics on three
orthogonal aspects i.e., a) Localization of part generation
in comparison to the base image (through LPIPS [56]), b)
Text-Consistency of generated parts by measuring CLIP
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Table 2. Ablation Analysis of PartComposer for Part Localization,
showing performance improvement with each component.

PartComposer (Ablations)

Method FG-NMI FG-ARI

PartComposer 35.4 11.0
w/o Null-Text Inversion 23.1 5.2
w/o Max Localization 21.3 2.8
w/o Dot Product Localization 23.7 5.0
w/o Independent Text 31.2 8.9

PartComposer (Clustering)

PartComposer (K = 9) 35.4 11.0
PartComposer (K = 4) 20.4 2.8
PartComposer (K = 14) 35.2 10.3

Base Generation
(Claude Monet)

PartComposer: dress 
(Claude Monet)

PartComposer: dress 
(Van Gogh)

PartComposer:  dress
(Ukiyo-e)

Base Generation
(Woody) PartComposer: shirt PartComposer: shirt PartComposer: shirt pants

Figure 6. PartComposer generalizes over domains as shown by
Claude Monet’s painting style (above), where we specify the dress
part of women to follow styles like Van Gogh and Ukiyo-e. We
perform similar modifications to Woodie’s image.

similarity of the part detailed text prompt with the gener-
ated image and c) Aesthetic Quality of the generated image
through LAION-5B [42] CLIP Aesthetic scorer. In total, we
collect about 3.5k opinions. In Fig. 7, we summarize the re-
sults in which we observe that PartComposer is significantly
preferred over the other baselines in terms of localized and
consistent Part Generation. The automated evaluation results
are provided in the table below, which also follow a similar
trend as in the user study, demonstrating the effectiveness of
PartComposer in a localized part generation while ensuring
the aesthetics score is similar to that of the base model.

5. Analysis and Discussion

Part Diffusion Based Localization. We ablate the compo-
nents we have introduced in the PartDiffusion process of
PartComposer (Sec. 3.2). We provide an analysis of the ef-
fect of using a) null-text inversion, b) max-based localization
c) usage of dot product-based protocol in the part assign-
ment, and d) independent text embeddings. We have used a
subset of CUB-200 images to perform all evaluations, which
is kept fixed across ablations. We tabulate the ablations in

Figure 7. User Study and Quantitative Results for part-based
image generation baselines.

PartComposer (Ours) StableDiffusion InstructPix2Pix RichTextGen
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Human Study for Part Detail Consistent Image Generation
Localization
Text Consistency
Aesthetic Quality

PartComposer StableDiffusion InstructPix2Pix Rich-Text
LPIPS 0.168 0.467 0.189 0.243
CLIP 0.201 0.183 0.193 0.187
Aesthetic 5.66 5.68 5.63 5.65

Table 2. We observe that all the components introduced in
PartComposer contribute significantly to the performance.

Generalization of PartComposer. In Fig. 6, above a paint-
ing in Claude Monet style generated by the base StableDiffu-
sion method. We then use PartComposer to specify the dress
part of the women’s token, to dark green color in Monet
Style, orange color dress in Van Gogh Style (middle), and
green color dress in Ukiyo-e style. In Fig. 6, we provide
results for the ‘Woody’ character from Toy Story. These re-
sults show that PartComposer can generate shirt, pants, and
dress color variations, leading to aesthetic image combina-
tions in synthetic and natural (Supp. Fig. 13) domains . This
zero-shot generalization across domains demonstrates the
creative activities that can be enabled with PartComposer.

6. Conclusion

In this work we introduce PartComposer, a method to gener-
ate object images with fine-grained attribute details specified
at the part level, using an expressive Rich-Text interface.
The PartComposer method introduces a novel part diffusion
process, which is responsible for denoising objects using
the part features, and then utilizes a region-specific diffusion
process to generate part details and compose the final image.
PartComposer serves as initial work enabling rich-text-based
training-free part-level control for SD models.
Limitations. We find that part generation is bottlenecked
with the part understanding. If the part is localized correctly,
the text-to-image model can generate specified details in
PartComposer. Hence, improving the part-level localization
of these models is a good direction for future works.
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