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Abstract

As a globally celebrated sport, soccer has attracted
widespread interest from fans all over the world. This pa-
per aims to develop a comprehensive multi-modal frame-
work for soccer video understanding. Specifically, we make
the following contributions in this paper: (i) we intro-
duce SoccerReplay-1988, the largest multi-modal soccer
dataset to date, featuring videos and detailed annotations
from 1,988 complete matches, with an automated annota-
tion pipeline; (ii) we present an advanced soccer-specific
visual encoder, MatchVision, which leverages spatiotempo-
ral information across soccer videos and excels in various
downstream tasks; (iii) we conduct extensive experiments
and ablation studies on event classification, commentary
generation, and multi-view foul recognition. MatchVision
demonstrates state-of-the-art performance on all of them,
substantially outperforming existing models, which high-
lights the superiority of our proposed data and model. We
believe that this work will offer a standard paradigm for
sports understanding research.

“Football is one of the world’s best means of communi-
cation. It is impartial, apolitical, and universal.”

—— Franz Beckenbauer (1945 - 2024)

1. Introduction
Soccer, celebrated worldwide for its significant commercial
value, has recently seen great research interest in integrating
artificial intelligence (AI) for soccer video understanding.
This is primarily motivated by the sport’s complexity and
the growing demand for enhanced analytics and improved
viewing experiences. AI systems facilitate tactical analy-
sis [49], allowing coaches to devise better strategies by un-
covering patterns not apparent to the naked eye. In addition,
it also supports automated content generation and enriches
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“[PLAYER] ([TEAM]) shakes off the attention 
of a defender and from mid-range lets fly 
towards the middle of the goal, but [PLAYER] 
is well positioned to make a comfortable save.”

MatchVision

Classification

Commentary

Videos in SoccerReplay-1988

“Shot Saved”

Figure 1. Overview. We present SoccerReplay-1988, the largest
soccer dataset to date, and a powerful soccer-specific visual en-
coder, MatchVision, capable of excelling in various tasks such as
event classification and commentary generation.

fan engagement through interactive and personalized con-
tent [34, 36, 40]. These capabilities promote a deeper un-
derstanding of soccer, simplify content creation, and foster
a more engaging experience for fans and professionals.

Existing research in soccer video analysis primarily re-
volves around the SoccerNet series datasets [7, 10, 15],
which comprise 500 full-match videos for benchmarking
various tasks, such as action spotting [10, 15] and com-
mentary generation [34, 36, 40]. Despite this extensive
coverage, the focus has predominantly been on designing
specialized models for task-specific applications, leading to
fragmented and incompatible solutions. Such fragmenta-
tion underscores the need for a unified framework capable
of integrating diverse demands, enabling more holistic and
scalable advancements in soccer video understanding.

In this paper, we introduce SoccerReplay-1988, the
largest and most comprehensive multi-modal soccer video
dataset to date, featuring 1,988 complete match videos with
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rich annotations, such as event labels and textual commen-
taries. This dataset offers a solid foundation for develop-
ing advanced soccer understanding models and establishes
a challenging new benchmark for the field. Additionally,
we have harmonized existing datasets to be compatible with
ours, further expanding the available data resources.

Leveraging this dataset, we develop MatchVision, an
advanced soccer-specific visual encoder tailored for diverse
soccer understanding tasks. It employs the cutting-edge
visual-language foundation model as the backbone, e.g.,
SigLIP [58]. We further extend framewise visual fea-
tures into spatiotemporal representations with temporal at-
tentions [3], by training on diverse visual-language tasks
on SoccerReplay-1988, as depicted in Figure 1. As a re-
sult, MatchVision exhibits strong adaptability across vari-
ous tasks, such as event classification and commentary gen-
eration, serving as a universal and unified framework for
comprehensive soccer video understanding.

To summarize, we make the following contributions in
this paper: (i) we construct SoccerReplay-1988, the largest
and most diverse soccer video dataset to date, featuring
videos of 1,988 soccer matches with rich annotations, sup-
ported by an automated curation pipeline. This provides
a solid foundation for developing robust and comprehen-
sive soccer understanding models; (ii) we present a pow-
erful soccer-specific visual encoder, termed MatchVision,
which effectively leverages spatiotemporal information in
soccer videos, and can adapt to various tasks such as event
classification and commentary generation, serving as a uni-
fied framework for soccer understanding; (iii) we establish
more comprehensive and challenging benchmarks based on
our dataset, enabling more professional evaluation of soc-
cer understanding models; (iv) extensive experiments and
ablation studies demonstrate the superiority of our data and
model across various downstream tasks, achieving state-of-
the-art performance on both existing benchmarks and our
newly established ones. We believe this work offers a vi-
able paradigm for future sports video understanding.

2. Related Works
Sports Understanding [44] is an evolving field that en-
compasses multiple research topics and integrates diverse
data modalities, covering various tasks such as action spot-
ting [10, 15, 16], commentary generation [34, 37, 40, 51,
52, 57], athlete analysis [41, 55], tactical planning [49],
sports health [39], and intelligent refereeing [22, 23]. Fur-
thermore, with the rapid development of multimodal large
language models (MLLMs), recent efforts [26, 50, 53, 54]
have attempted to build more generalized frameworks to
uniformly handle a variety of sports understanding tasks.
Visual-Language Models [1, 27, 28, 38, 58] have exhibited
remarkable performance across extensive applications like
classification, segmentation, image-text retrieval, and image

captioning. Recent efforts have ventured into more chal-
lenging video understanding [29, 30, 42, 59, 60] tasks, such
as temporal alignment [17, 31], dense captioning [5, 56, 62],
and audio description [18–20]. However, these efforts typ-
ically focus on general scenarios, limiting their adaptabil-
ity to specific professional fields. Thus, this paper aims to
bridge this gap by advancing visual-language models tai-
lored for comprehensive soccer understanding.
Soccer Game Analysis [9] has primarily focused on tasks
such as action spotting [15], replay grounding [10, 61],
commentary generation [34, 36, 40], player tracking [8],
state reconstruction [43], camera calibration [6, 8, 10] and
foul recognition [22, 23], as facilitated by the Soccer-
Net [7, 10, 14, 15] series datasets, with 500 full-match
videos from 2015 to 2017. Unlike existing methods that
target designing specific models for distinct tasks, this paper
aims to design a unified multi-modal framework that lever-
ages spatiotemporal information within videos, serving as a
specialized visual encoder for soccer video understanding.

3. SoccerReplay-1988 Dataset

To establish a solid foundation for soccer understanding, we
construct SoccerReplay-1988, the largest soccer dataset to
date. Here, we first outline our data collection details and an
overview of the dataset in Sec. 3.1; followed by elaborating
on our automated data curation pipeline in Sec. 3.2; lastly,
in Sec. 3.3, we present the data statistics and discussion.

3.1. Dataset Collection
To construct the SoccerReplay-1988 dataset, we have col-
lected untrimmed, full-match videos from the Internet, en-
compassing a total of 1,988 matches from six European ma-
jor soccer leagues and championships1, spanning the 2014-
15 to 2023-24 seasons. For each match, we acquire textual
commentaries with second-level timestamps from a sports
text live website2, with part of them annotated with spe-
cific event types such as corner and goal. Additionally,
we also incorporate extensive metadata, including detailed
background information about the games, players, coaches,
referees, and teams, providing a solid foundation for future
soccer understanding research.

We partition the SoccerReplay-1988 dataset into train,
validation, and test sets, containing 1,488, 250, and 250
full-match videos with diverse and comprehensive anno-
tations, respectively. These sets provide rich training data
for downstream tasks, such as event classification and com-
mentary generation, while establishing comprehensive and
challenging benchmarks for soccer understanding, as fur-
ther discussed in subsequent sections.

1Premier (England), Laliga (Spain), Bundesliga (Germany), Serie-a
(Italy), League-1 (France) and UEFA Champions League.
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“Goal! [PLAYER] ([TEAM]) neatly controls a decent pass 
from [PLAYER]. He looks up and smashes an unstoppable 
drive into the bottom left corner from the edge of the box. 2:2.”

87:09 87:17

Temporal Alignment

Event Summarization

Anonymization Mask
“Goal! Lei Wu (Espanyol) 
neatly controls a decent pass 
from Matias Vargas. He 
looks up and smashes an 
unstoppable drive into the 
bottom left corner from the 
edge of the box. 2:2.”

Timestamp: 87:17
Commentary text:

Dense Commentaries

Crop from Kick-off moment

87:09

“Goal”

Figure 2. Automated Data Curation Pipeline. The collected soc-
cer video data are automatically processed for temporal alignment,
event summarization, and anonymization by our curation pipeline.

3.2. Automated Data Curation
Given the potential noise in raw data, such as irrelevant
video content, inaccurate timestamps, and incomplete event
annotations, we design an automated data curation pipeline,
comprising (i) temporal alignment, (ii) event summariza-
tion, and (iii) anonymization, as illustrated in Figure 2.
Temporal Alignment. Here, we divide match videos into
two halves, each starting at kick-off, and adopt the tempo-
ral alignment model from MatchTime [40], to synchronize
textual commentary timestamps with those of video frames.
Event Summarization. For samples without event anno-
tations, we leverage LLaMA-3-70B [12] to summarize the
events based on textual commentaries. Concretely, we have
expanded the event categories from 17 in SoccerNet [10]
to 24 types, for finer-grained soccer understanding, for ex-
ample, categorizing penalties into scored and missed, and
integrating modern soccer regulations like VAR. The re-
sulting 24 event labels include: ‘corner’, ‘goal’, ‘injury’,
‘own goal’, ‘penalty’, ‘penalty missed’, ‘red card’, ‘second
yellow card’, ‘substitution’, ‘start of game (half)’, ‘end of
game (half)’, ‘yellow card’, ‘throw in’, ‘free kick’, ‘saved by
goal-keeper’, ‘shot off target’, ‘clearance’, ‘lead to corner’,
‘off-side’, ‘var’, ‘foul (no card)’, ‘statistics and summary’,
‘ball possession’, and ‘ball out of play’. More details on the
used prompts are provided in the Appendix.
Anonymization. Similar to [34], we extract all person and
team entity names from the metadata of SoccerReplay-
1988, and replace them in textual commentaries with place-
holders, such as “[PLAYER]”, “[TEAM]”, “[COACH]”,
and “[REFEREE]”, ensuring consistency across tasks.

Moreover, our data curation pipeline can seamlessly
extend to existing datasets, converting the SoccerNet se-
ries [10, 34] into our unified data format, termed SoccerNet-
pro. This expansion further enlarges the standardized

Existing Datasets

# Game Duration(h) # Event # Anno. # Com.

SoccerNet-v1 [15] 500 764 7 6.7k -
SoccerNet-v2 [10] 500 764 17 110k -
MatchTime [40] 471 716 14 14k 37k
GOAL [36] 20 25.5 - - 8.9k

Our Curated Datasets

# Game Duration(h) # Event # Anno. # Com.

SoccerNet-pro 500 764 24 102k 37k
SoccerReplay-1988 1,988 3,323 24 150k 150k

Integrated 2,488 4,087 24 252k 187k

Table 1. Statistics of Soccer Datasets. Our SoccerReplay-1988
significantly surpasses existing datasets in both scale and diversity.
Here, # Anno. and # Com. refer to the number of event annotations
and textual commentaries, respectively.

datasets available for soccer understanding tasks.

3.3. Statistics & Discussion

Dataset Statistics. As shown in Table 1, our dataset encom-
passes 3,323 hours of footage from 1,988 soccer matches,
with an average duration of 100.3 minutes per match. The
videos range in resolution from 360p to 720p and frame
rates between 25 and 30 FPS.

For textual annotations, this dataset features approxi-
mately 150K commentaries, averaging 76 per match, pre-
cisely temporal-aligned by the robust alignment model from
MatchTime [40]. These commentaries cover 4,467 unique
words, significantly surpassing the 2,873 words in existing
datasets [34, 40], greatly enriching textual diversity. Au-
tomated event summarization based on these commentaries
has yielded about 150K event annotations. Notably, a ran-
dom sampling of 2% of the data yields 98% manual verifi-
cation accuracy, ensuring high-quality automated labeling.

SoccerReplay-test Benchmark. To facilitate a more
comprehensive evaluation of soccer understanding mod-
els, we integrate 250 matches from SoccerReplay-1988
with 50 matches from the curated SoccerNet-pro, estab-
lishing SoccerReplay-test, a more challenging benchmark
for event classification and commentary generation. This
benchmark features nearly four times larger than existing
datasets and comprises finer-grained event labels, richer
textual commentaries, and up-to-date soccer regulations.

Discussion. To summarize, SoccerReplay-1988 exhibits
advancements in three aspects: (i) it is the largest soccer
video dataset to date, with nearly four times more videos
than existing datasets; (ii) it features more professional
and diverse annotations, more suitable for fine-grained and
comprehensive soccer understanding tasks; (iii) It employs
an automated curation pipeline for annotations and is thus
scalable to provide a solid data foundation for future re-
search. All data from SoccerReplay-1988, including videos
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Figure 3. Overview of MatchVision. (a) The model architecture and its spatiotemporal feature extraction process; (b) Details of visual
encoder pretraining, including supervised classification and video-language contrastive learning; (c) Implementation details of specific
heads for various downstream tasks, including commentary generation, foul recognition, and event classification.

and annotations, are open-source for non-commercial use.

4. Method
In this paper, we aim to develop a soccer-specific visual en-
coder, MatchVision, tailored for diverse soccer video anal-
ysis tasks. We start by outlining our problem formulation
in Sec. 4.1. Next, in Sec. 4.2, we detail the architecture of
MatchVision. The training procedures are thoroughly dis-
cussed in Sec. 4.3. Finally, we describe the configurations
for downstream tasks in Sec. 4.4, demonstrating the practi-
cal applications and effectiveness of our model.

4.1. Problem Formulation
In this work, we tackle the challenge of analyzing soccer
video segments, denoted as V ∈ RT×3×H×W . Our goal is
to utilize the visual encoder (ΦMatchVision) to extract spa-
tiotemporal features from these segments, which are then
processed by multiple task-specific heads, formulated as:

E,C,F = Ψ(ΦMatchVision(V))

Here, Ψ = {Ψcls,ΨCmt,ΨFoul} represents the task-specific
heads, with E, C, and F denoting the output event types,
textual commentaries, and foul types, respectively. This
unified framework effectively learns relevant spatiotempo-
ral features, and enables seamless integration across various
downstream tasks for comprehensive soccer understanding.

4.2. Architecture
MatchVision comprises three key components: (i) Token
Embedding, (ii) Spatiotemporal Attention Block, and (iii)

Aggregation Layer, as depicted in Figure 3.
Token Embedding. In accordance with the convention in
Vision Transformer [11], each frame (Ii) from the video
segment (V = {I1, I2, · · · , IT }) is divided into M non-
overlapping patches of size P×P that span the entire frame.

These patches are flattened into vectors (xp
i ), where p

and i denote the spatial and temporal positions, respectively.
Each vector is transformed via an embedding layer (ΦEmb)
into a token vector of size R1×D, and then added with a spa-
tial position embedding (eposs ∈ RM×D). Subsequently, we
concatenate a [cls] token along with each frame. Finally,
a temporal positional embedding (epost ∈ RT×D) is added
across features of all frames, as formulated below:

yi = [xcls
i , ΦEmb([x

1
i , · · · ,xM

i ]) + eposs ]

z = [y1, · · · ,yT ] + epost

Here, [·, ·] denotes concatenation, and yi ∈ R(M+1)×D rep-
resents the frame-wise features. The embedded features (z)
will then serve as input for spatiotemporal attention blocks.
Spatiotemporal Attention Block. Similar to TimeS-
former [3], we utilize interleaved temporal and spatial at-
tention to integrate spatiotemporal information in soccer
videos. Concretely, each spatiotemporal attention block
comprises a temporal self-attention layer and a spatial self-
attention layer, i.e., ϕt(·) and ϕs(·), respectively.

Given a video feature (z ∈ RT×(M+1)×D), we alternate
temporal and spatial attention: temporal attention facili-
tates interactions among tokens at the same spatial positions
across distinct frames, while spatial attention enables inter-
actions among tokens within the same frame. Residual con-
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nections are employed in each layer. After passing through
a total of K spatiotemporal attention blocks, the resulting
feature (F) captures both intra-frame and inter-frame rela-
tionships, i.e., F = [ϕs(ϕt(z))]

K ∈ RT×(M+1)×D.
Aggregation Layer. To obtain video-level features, we
employ an aggregation layer on the frame-wise spatiotem-
poral features. Specifically, for the i-th frame, we uti-
lize spatial self-attention to aggregate information into its
[cls] token, denoted as F̂cls

i = ΦAgg(Fi). Concatenat-
ing the [cls] tokens of all frames yields the final video
feature (FV ), that effectively encapsulates spatiotemporal
characteristics of soccer video segments, thus enabling it to
be applicable for various downstream soccer understanding
tasks. This process can be formulated as:

FV = ΦMatchVision(V) = [F̂cls
1 , · · · , F̂cls

T ] ∈ RT×D

4.3. MatchVision Pretraining
In this part, we aim to pretrain the visual encoder with
triplet samples ({V,E,C}), comprising videos, event la-
bels, and textual commentaries. Concretely, we investigate
two distinct pretraining strategies: supervised classification
and video-language contrastive learning.
Supervised Classification. One way to pretrain the visual
encoder is supervised learning on event classification. To be
specific, the extracted visual features (FV ) are aggregated
by a temporal self-attention layer into a learnable [cls]
token, denoted as Fcls

V , similar to the spatial-wise aggrega-
tion mentioned above. This token is then fed into a linear
classifier, and trained with a cross-entropy loss for event
classification. The objective is denoted as Lsup.
Video-Language Contrastive Learning. As an alterna-
tive, we can also pretrain our visual encoder with video-text
contrastive learning. Specifically, we adopt simple average
pooling on the video feature to get the aggregated visual fea-
ture (FAvg

V ), and encode the textual commentary (C) with
a text encoder (ΦText). We train the model with sigmoid
loss (Lsigmoid), as used in SigLIP [58]. Note that, some
video clips may have highly similar commentaries, for ex-
ample, ‘start of the game’, we treat the commentaries with
high similarity in the same batch as positive samples when
calculating loss functions. This can be expressed as follows:

Lcontra = Lsigmoid(FAvg
V ,ΦText(C))

4.4. Downstream Tasks
After the pretraining mentioned above, MatchVision can
now serve as a versatile visual encoder, to map the soc-
cer video segments into visual features (FV ), for training
task-specific heads Ψ = {Ψcls,ΨCmt,ΨFoul} across differ-
ent downstream tasks, including: (i) event classification, (ii)
commentary generation, and (iii) foul recognition.

Event Classification. Similar to supervised classification
above, we concatenate a learnable [cls] token to aggre-
gate frame-wise visual features via temporal self-attention.
This token is then fed into a linear classifier for event classi-
fication. The event classification head (Ψcls) is trained with
a cross-entropy loss while freezing the visual encoder.
Commentary Generation. We follow the paradigm in
MatchTime [40] to generate anonymized textual commen-
tary for soccer video clips. Concretely, the commentary
generation head (ΨCmt) employs a Perceiver [25] aggre-
gator to consolidate visual features, which are then pro-
jected by a trainable MLP, serving as prefix embeddings for
a large language model (LLM). Subsequently, an off-the-
shelf LLM decodes these embeddings into textual commen-
tary. We adopt the negative log-likelihood loss, commonly
used for auto-regressive next-token prediction.
Foul Recognition. As outlined in [22], the foul recogni-
tion task takes multi-view videos from the same scene as
inputs, with each sample annotated with a foul class (8
types) and severity (4 levels). We encode these multi-view
videos with MatchVision, and aggregate the extracted fea-
tures into a single feature vector, via either max or average
pooling, following the common practice. Subsequently, the
foul recognition head (ΨFoul) employs a shared MLP and
two task-specific linear classifiers, to predict foul type and
severity, respectively. Similar to event classification, we use
the combination of cross-entropy losses on the foul type and
severity classification to jointly train ΨFoul.
Discussion. Pretraining MatchVision on large-scale soccer
data equips it with substantial domain-specific knowledge,
enabling it to serve as a universal visual encoder adaptable
to various downstream soccer understanding tasks.

5. Experiments
This section begins with implementation details in Sec. 5.1;
followed by quantitative evaluations across downstream
tasks in Sec. 5.2; then, we conduct ablation studies on our
SoccerReplay-test benchmark to analyze the effectiveness
of the proposed dataset and model in Sec. 5.3; finally, we
provide qualitative results for comparison in Sec. 5.4.

5.1. Implementation Details
In our experiments, video segments are sampled at 1FPS
around annotated timestamps, capturing a 30-second win-
dow for each sample. Frames are resized to 224×224 pixels
as inputs. We initialize the embedding layer, spatial atten-
tion layers, aggregation layer, and text encoder of MatchVi-
sion with pretrained weights from SigLIP Base-16 [58] and
adopt LLaMA-3 (8B) [12] as the off-the-shelf LLM decoder
for commentary generation. All experiments are conducted
on 4× Nvidia H800 GPUs with the AdamW [33] optimizer.
Next, we elaborate on the training and evaluation details
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Visual Encoder Dataset Classification (%) Commentary

SN MT SR Acc.@1 Acc.@3 Acc.@5 B@1 B@4 M R-L C

Off-the-shelf Models

I3D [4] ✗ ✗ ✗ 45.4 82.5 93.2 26.77 5.57 24.17 23.12 18.73
C3D [45] ✗ ✗ ✗ 47.8 85.1 95.0 28.13 6.64 24.52 24.23 27.88
ResNet [21] ✗ ✗ ✗ 47.2 84.6 94.4 27.34 6.57 24.72 24.43 27.29
CLIP [38] ✗ ✗ ✗ 48.5 85.5 95.2 26.25 6.51 24.27 24.75 28.17
InternVideo [48] ✗ ✗ ✗ 49.9 87.0 95.9 27.12 6.54 25.02 24.82 29.90
SigLIP [58] ✗ ✗ ✗ 50.2 86.7 95.6 27.85 6.98 25.16 25.03 31.38

Pretrain with Supervised Classification

Baidu [61] ✓ ✗ ✗ 56.4 91.9 97.3 31.20 8.88 26.56 26.61 38.93
SigLIP ✓ ✗ ✗ 55.9 89.6 94.9 28.51 7.39 25.96 25.94 35.71
SigLIP ✓ ✓ ✓ 57.9 91.7 97.5 30.95 8.56 25.79 26.17 38.24
MatchVision ✓ ✗ ✗ 82.5 96.6 98.8 29.45 7.92 26.01 26.21 36.15
MatchVision ✓ ✓ ✓ 84.0 97.3 99.2 31.05 9.06 26.94 27.93 42.20

Pretrain with Visual-Language Contrastive Learning

SigLIP ✗ ✓ ✗ 55.4 88.8 97.0 28.72 7.72 25.91 26.17 32.27
SigLIP ✗ ✓ ✓ 66.8 93.7 98.6 30.35 8.12 26.05 26.38 39.41
MatchVision ✗ ✓ ✗ 58.9 89.0 97.1 30.33 7.97 25.48 26.33 33.87
MatchVision ✗ ✓ ✓ 67.9 93.9 98.6 31.94 9.12 26.24 27.56 40.76

Pretrain with Hybrid Supervised-Contrastive Training

SigLIP ✓ ✓ ✗ 71.2 94.5 98.7 28.63 7.82 25.74 25.35 34.09
SigLIP ✓ ✓ ✓ 67.1 93.2 98.1 30.71 8.78 26.26 26.74 41.82
MatchVision ✓ ✓ ✗ 76.4 96.0 99.0 30.65 8.33 25.28 26.31 37.23
MatchVision ✓ ✓ ✓ 80.1 97.1 99.1 33.58 9.14 26.82 28.21 44.18

Table 2. Quantitative Results on Event Classification and Commentary Generation. Here, SN, MT, and SR represent finetuning with
curated SoccerNet-v2 [10], MatchTime [40], and SoccerReplay-1988, respectively. B, M, R-L, and C refer to BLEU, METEOR, ROUGE-
L, and CIDEr metrics, respectively. Within each unit, we denote the best performance in RED and the second-best performance in BLUE.

about visual encoder pretraining and downstream tasks.
Visual Encoder Pretraining. For both pretraining strate-
gies, we use a batch size of 40 for 15 epochs. The learning
rate for all randomly initialized modules, including the tem-
poral attention layers, aggregator layer, and linear classifier,
is set to 1×10−4. Meanwhile, the learning rate for modules
initialized with pretrained parameters (including the text en-
coder) is set to 5 × 10−5. In contrastive training, we adopt
a multi-positive strategy where each textual commentary,
based on its event label, considers closely related categories
(e.g. “start of game” and “offside”) as positive samples.
Downstream Tasks. In all downstream tasks, unless oth-
erwise specified, we use the frozen visual encoder for fea-
ture extraction and only train the task-specific heads with
a learning rate of 1 × 10−4 for 30 epochs. The batch
sizes for event classification, commentary generation, and
foul recognition are set to 40, 32, and 8, respectively. We
adopt specific evaluation metrics for these three tasks: (i)
For event classification, we use the top-1/3/5 classifica-
tion accuracy; (ii) For commentary generation, we em-
ploy several commonly-used language evaluation metrics,
including BLEU [35], METEOR [2], ROUGE-L [32], and

CIDEr [47]; (iii) For foul recognition, we follow the com-
mon practice, and report top-1/2 and top-1 accuracy for the
foul type and severity classification, respectively.
Benchmarks & Baselines. To ensure fair and reliable com-
parisons with existing work, we evaluate event classifica-
tion (24 types) on 100 matches from curated SoccerNet-
v2 [10] test set; commentary generation on 49 matches from
SN-Caption-test-align benchmark manually aligned in [40];
and foul recognition on MVFoul [22]. We consider various
baselines: for the first two tasks, this includes off-the-shelf
general visual encoders such as ResNet [21], C3D [45],
I3D [4], CLIP [38], SigLIP [58], and InternVideo [48],
along with Baidu [61] and SigLIP finetuned with soccer-
specific data. For foul recognition, we follow previous
work [22, 23] and adopt ResNet [21], R(2+1)D [46], and
MViT [13] jointly finetuned with classifiers, as baselines.

5.2. Quantitative Evaluation
As depicted in Table 2, we draw two observations on event
classification and commentary generation: (i) visual en-
coders trained on soccer data substantially outperform off-
the-shelf general encoders (ResNet, C3D, I3D, CLIP, and
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Visual Encoder Foul Class Severity

Backbone Train Agg. Acc.@1 Acc.@2 Acc.@1

ResNet [21] ✓
Mean 0.31 0.56 0.34
Max 0.32 0.60 0.32

R(2+1)D [46] ✓
Mean 0.31 0.55 0.34
Max 0.32 0.56 0.39

MViT [13] ✓
Mean 0.40 0.65 0.38
Max 0.47 0.69 0.43

MatchVision ✗
Mean 0.44 0.53 0.58
Max 0.35 0.70 0.46

Table 3. Quantitative Results on Multi-view Foul Recognition.
Our frozen MatchVision encoder can achieve comparable perfor-
mance with other jointly finetuned visual encoders.

InternVideo), underscoring the necessity of building spe-
cialized models for soccer understanding; (ii) almost all
visual encoders, across all training settings, benefit from
SoccerReplay-1988, emphasizing the value of construct-
ing large-scale, high-quality data for soccer understanding.
Next, we will delve into each task to discuss the results.
Event Classification. With identical training strategies and
data, MatchVision considerably outperforms other methods
in classification accuracy, demonstrating the superiority of
its architecture, which effectively leverages spatiotempo-
ral features within soccer videos. For example, MatchVi-
sion achieves a Top-1 accuracy of 82.5%, significantly sur-
passing SigLIP’s 55.9% under the same training conditions.
Moreover, models trained via supervised classification ex-
cel others, primarily because the pre-training task shares the
same objectives as the downstream event classification task.
Commentary Generation. Visual encoders trained with
visual-language contrastive learning exhibit better com-
mentary generation performance than those trained with su-
pervised classification, as this strategy better captures cor-
relations between visual and textual features. Additionally,
while MatchVision trained solely on SoccerNet slightly un-
derperforms Baidu [61], incorporating SoccerReplay-1988
enables it to outperform on most metrics. This demon-
strates that MatchVision can take advantage of large-scale
datasets. Finally, a hybrid training approach, starting with
supervised classification followed by visual-language con-
trastive learning, enables MatchVision to achieve optimal
performance. This indicates that learning coarse-grained
tasks such as classification provides a foundation for fine-
grained tasks like commentary generation, and fully lever-
aging data unlocks the potential of soccer understanding.
Foul Recognition. As demonstrated in Table 3, MatchVi-
sion achieves performance comparable to jointly finetuned
state-of-the-art methods in foul recognition, even with a
frozen visual encoder. This highlights that MatchVision ef-
fectively learns substantial knowledge from large-scale soc-

Pretrain Classification(%)

Sup. Contra. SR Acc.@1 Acc.@3 Acc.@5

✓ ✗ ✗ 62.67 83.00 89.81
✓ ✗ ✓ 68.03 86.90 92.38

✗ ✓ ✗ 46.97 75.53 85.85
✗ ✓ ✓ 57.41 83.13 91.00

✓ ✓ ✗ 56.86 80.30 88.09
✓ ✓ ✓ 63.59 85.21 91.63

Table 4. Ablations on Event Classification. We explore the im-
pact of various training settings of our MatchVision encoder on the
SoccerReplay-test benchmark. Here, Sup., Contra., and SR refer
to supervised classification, visual-language contrastive learning,
and the SoccerReplay-1988 dataset, respectively.

cer data and adapts seamlessly to downstream tasks. Com-
parisons with additional baselines from the SoccerNet foul
recognition challenges [9] are provided in the Appendix.

5.3. Ablation Studies

We conduct ablation experiments on event classification
and commentary generation using our SoccerReplay-test
benchmark. These experiments validate the effectiveness of
our proposed dataset and model, while establishing a base-
line for future evaluations on this benchmark.
Event Classification. We evaluate event classification on
300 matches from our SoccerReplay-test benchmark us-
ing the MatchVision visual encoder pretrained with various
strategies. Features are extracted by MatchVision and pro-
cessed with a learnable aggregation layer and a linear clas-
sifier. The default training set is our curated SoccerNet-pro.
As shown in Table 4, integrating SoccerReplay-1988 for
training results in significant performance improvements
across all pretraining strategies, yielding the significance of
our dataset. Additionally, supervised classification outper-
forms visual-language contrastive learning and hybrid pre-
training. This is due to its closer alignment with down-
stream event classification task, and the scale of event anno-
tations is far larger than that of textual commentaries, fur-
ther confirming the substantial benefits of data scaling for
boosting soccer understanding.
Commentary Generation. With the pretrained MatchVi-
sion encoder, we train the commentary generation head on
the MatchTime [40] and SoccerReplay-1988 datasets us-
ing various training strategies. By default, only the Per-
ceiver [25] aggregation layer and projection layer within the
head are trained. For joint training with the LLM decoder,
considering computational costs, we incorporate LoRA [24]
layers while freezing the original LLM layers. As shown
in Table 5, incorporating SoccerReplay-1988 significantly
improves performance on all metrics, confirming substan-
tial advantages of our proposed dataset. This performance
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Play continues despite the shouts by some [TEAM] players for a penalty. Wait! Referee [REFEREE] 
interrupts the game right now and he will review that decision using VAR! Let's see what happens.
[PLAYER] ([TEAM]) receives a yellow card from the referee for a foul that he committed a little earlier.
Referee [REFEREE] makes the VAR signal and is going to check whether it’s a penalty for [TEAM]. Let’s 
see what happens!

Goal! [PLAYER] ([TEAM]) puts the ball into the top left corner past the outstretched arm of [PLAYER].
[PLAYER] ([TEAM]) is going to take the penalty!
Goal! [PLAYER] ([TEAM]) wins the battle of wills and sends an unstoppable penalty past [PLAYER] into 
the top left corner.

What a save from [PLAYER]! [PLAYER] ([TEAM]) jumps high to meet a cross and glances a promising 
header from close range, but the goalkeeper pulls off a brilliant stop to keep it out.

[PLAYER] ([TEAM]) takes the resulting free kick from outside the box. He sends a nice cross into the box, 
but his intention is well anticipated by the goalkeeper who comes out to collect the ball.

[PLAYER] ([TEAM]) whips in the corner, but one of the defending players gets a head on it and intercepts.

[PLAYER] ([TEAM]) connects with a pass but sees his shot from the edge of the box blocked.

[PLAYER] ([TEAM]) fires a shot at goal from a very promising position outside the penalty area, but it is 
blocked by a self-sacrificing defender.

[PLAYER] ([TEAM]) makes a yard for himself on the edge of the box after picking up a pass, but produces 
a poor effort that sails high over the bar.

Soccer Videos Events Commentaries

[TEAM] take a short corner kick.

[PLAYER] ([TEAM]) works the corner short instead of sending the ball into the penalty area.

[PLAYER] ([TEAM]) takes the corner but only sends it into a huddle of the defenders and one of them 
makes a good clearance.

GT:

GT:

GT:

GT:

GT:

PenaltyGT:
w/o SR:

w/ SR:
Penalty ( )
Penalty ( )

Lead to CornerGT:
Lead to Corner ( )
Saved by Goal-keeper ( )

ClearanceGT:
Shot off Target ( )
Clearance ( )

VARGT:
Yellow Card ( )
VAR ( )

CornerGT:
Corner ( )
Corner ( )

a

b

c

d

e

w/o SR:
w/ SR:

w/o SR:
w/ SR:

w/o SR:
w/ SR:

w/o SR:
w/ SR:

w/o SR:

w/ SR:

w/o SR:

w/ SR:

w/o SR:
w/ SR:

w/o SR:

w/ SR:

w/o SR:
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Figure 4. Qualitative Results for Event Classification and Commentary Generation. Here, “w/o SR” and “w/ SR” indicate models
trained without and with the SoccerReplay-1988 dataset, respectively. Incorporating SoccerReplay-1988 improves event classification
accuracy. Moreover, this enriched training data enables the model to demonstrate several advantages in commentary generation: (a) more
detailed descriptions, (b) greater linguistic variety, (c) higher event depiction accuracy, (d) better adherence to updated rules, and (e)
improved specificity in scenario response.

Trainable Commentary Metrics

V L B@1 B@4 M R-L C

Trained on MatchTime

✗ ✗ 21.65 3.27 21.02 17.79 12.90
✓ ✗ 27.62 7.02 24.03 23.51 30.77
✗ ✓ 27.04 6.41 24.15 23.88 31.91
✓ ✓ 27.49 6.96 24.50 23.33 30.81

Trained on MatchTime & SoccerReplay-1988

✗ ✗ 24.17 4.09 20.51 20.70 15.70
✓ ✗ 28.98 8.39 24.45 25.35 45.85
✗ ✓ 27.54 7.76 24.50 24.70 42.79
✓ ✓ 29.21 8.22 25.25 25.54 43.18

Table 5. Ablations on Commentary Generation. We investigate
the impact of different training strategies and datasets on MatchVi-
sion using the SoccerReplay-test benchmark. ‘V’ and ‘L’ denote
the visual encoder and the LLM decoder, respectively.

gap also reflects the challenges of our established bench-
mark, which features diverse vocabulary, richer semantics,
and updated soccer rules. Additionally, jointly finetuning
the visual encoder and the LLM decoder provides a feasible
approach for further improvements.

5.4. Qualitative Comparisons
As depicted in Figure 4, we present qualitative results of
MatchVision on the SoccerReplay-test benchmark, com-
paring models pretrained with and without SoccerReplay-
1988. For event classification, incorporating our data im-
proves accuracy, and even in misclassified cases, the results

remain contextually relevant. For commentary generation,
hybrid training on SoccerReplay-1988 enables MatchVi-
sion to produce richer, more detailed textual commentary,
reflecting a deeper understanding of soccer dynamics. More
qualitative results are available in the Appendix.

6. Conclusion

In this paper, we establish a unified, scalable multi-modal
framework for soccer understanding. Specifically, we in-
troduce SoccerReplay-1988, the largest and most compre-
hensive soccer video dataset to date, annotated by an au-
tomated curation pipeline. This provides a solid founda-
tion for developing soccer understanding models and serves
as a more challenging benchmark. Built upon this, we
develop MatchVision, an advanced soccer-specific visual
encoder, which effectively leverages spatiotemporal infor-
mation within soccer videos and can be applied to various
tasks such as event classification and commentary genera-
tion. Extensive experiments demonstrate the superiority of
our model, with MatchVision achieving state-of-the-art per-
formance on both existing benchmarks and our newly estab-
lished one. We believe this work will set a viable, universal
paradigm for future research in sports understanding.
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Tomašev, Laurel Prince, Michael Kaisers, Yoram Bachrach,
Romuald Elie, Li Kevin Wenliang, Federico Piccinini, et al.
Tacticai: an ai assistant for football tactics. Nature Commu-
nications, 15(1):1–13, 2024. 1, 2

[50] Dekun Wu, He Zhao, Xingce Bao, and Richard P Wildes.
Sports video analysis on large-scale data. In Proceedings of
the European Conference on Computer Vision, 2022. 2

[51] Zeyu Xi, Ge Shi, Xuefen Li, Junchi Yan, Zun Li, Lifang Wu,
Zilin Liu, and Liang Wang. A simple yet effective knowl-
edge guided method for entity-aware video captioning on a
basketball benchmark. Neurocomputing, 2025. 2

[52] Zeyu Xi, Ge Shi, Haoying Sun, Bowen Zhang, Shuyi Li, and
Lifang Wu. Eika: Explicit & implicit knowledge-augmented
network for entity-aware sports video captioning. Expert
Systems with Applications, 2025. 2

[53] Haotian Xia, Zhengbang Yang, Yuqing Wang, Rhys Tracy,
Yun Zhao, Dongdong Huang, Zezhi Chen, Yan Zhu, Yuan-
fang Wang, and Weining Shen. Sportqa: A benchmark for
sports understanding in large language models. In Proceed-
ings of the Conference of the North American Chapter of the
Association for Computational Linguistics, 2024. 2

[54] Haotian Xia, Zhengbang Yang, Junbo Zou, Rhys Tracy,
Yuqing Wang, Chi Lu, Christopher Lai, Yanjun He, Xun

Shao, Zhuoqing Xie, et al. Sportu: A comprehensive sports
understanding benchmark for multimodal large language
models. In Proceedings of the International Conference on
Learning Representations, 2025. 2

[55] Jinglin Xu, Yongming Rao, Xumin Yu, Guangyi Chen, Jie
Zhou, and Jiwen Lu. Finediving: A fine-grained dataset
for procedure-aware action quality assessment. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2949–2958, 2022. 2

[56] Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, An-
toine Miech, Jordi Pont-Tuset, Ivan Laptev, Josef Sivic, and
Cordelia Schmid. Vid2seq: Large-scale pretraining of a vi-
sual language model for dense video captioning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 10714–10726, 2023. 2

[57] Huanyu Yu, Shuo Cheng, Bingbing Ni, Minsi Wang, Jian
Zhang, and Xiaokang Yang. Fine-grained video captioning
for sports narrative. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 2

[58] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In Proceedings of the International Conference on Computer
Vision, pages 11975–11986, 2023. 2, 5, 6

[59] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An
instruction-tuned audio-visual language model for video un-
derstanding. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2023. 2

[60] Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi
Yang, Yongping Xiong, Bo Zhang, Tiejun Huang, and Zheng
Liu. Mlvu: A comprehensive benchmark for multi-task
long video understanding. arXiv preprint arXiv:2406.04264,
2024. 2

[61] Xin Zhou, Le Kang, Zhiyu Cheng, Bo He, and Jingyu
Xin. Feature combination meets attention: Baidu soccer em-
beddings and transformer based temporal detection. arXiv
preprint arXiv:2106.14447, 2021. 2, 6, 7

[62] Xingyi Zhou, Anurag Arnab, Shyamal Buch, Shen Yan,
Austin Myers, Xuehan Xiong, Arsha Nagrani, and Cordelia
Schmid. Streaming dense video captioning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2024. 2

8394


	Introduction
	Related Works
	SoccerReplay-1988 Dataset
	Dataset Collection
	Automated Data Curation
	Statistics & Discussion

	Method
	Problem Formulation
	Architecture
	MatchVision Pretraining
	Downstream Tasks

	Experiments
	Implementation Details
	Quantitative Evaluation
	Ablation Studies
	Qualitative Comparisons

	Conclusion

