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Abstract

Reconstructing the 3D shape of an object from a single-view
image is a fundamental task in computer vision. Recent ad-
vances in differentiable rendering have enabled 3D recon-
struction from image collections using only 2D annotations.
However, these methods mainly focus on whole-object re-
construction and overlook object partonomy, which is es-
sential for intelligent agents interacting with physical en-
vironments. This paper aims at learning partonomic 3D
reconstruction from collections of images with only 2D an-
notations. Our goal is not only to reconstruct the shape
of an object from a single-view image but also to decom-
pose the shape into meaningful semantic parts. To han-
dle the expanded solution space and frequent part occlu-
sions in single-view images, we introduce a novel approach
that represents, parses, and learns the structural compo-
sitionality of 3D objects. This approach comprises: (1)
a compact and expressive compositional representation of
object geometry, achieved through disentangled modeling
of large shape variations, constituent parts, and detailed
part deformations as multi-granularity neural fields; (2) a
part transformer that recovers precise partonomic geome-
try and handles occlusions, through effective part-to-pixel
grounding and part-to-part relational modeling; and (3) a
2D-supervised learning method that jointly learns the com-
positional representation and part transformer, by bridging
object shape and parts, image synthesis, and differentiable
rendering. Extensive experiments on ShapeNetPart, Part-
Net, and CUB-200-2011 demonstrate the effectiveness of
our approach on both overall and partonomic reconstruc-
tion. Code, models, and data are avaliable at https:
//github.com/XiaoqianRuan1/Partonomic_
Reconstruction.

1. Introduction
Reconstructing the 3D shape of an object (e.g., a triangle
mesh) from a single-view image is a fundamental task in
computer vision with a wide range of applications, includ-
ing virtual and augmented reality, robotics, and 3D print-

Figure 1. This paper aims at learning partonomic 3D reconstruc-
tion from an image collection with only 2D annotations. Our goal
is not only to reconstruct the shape of an object from a single-view
image but also to decompose the shape into meaningful semantic
parts. The first and fourth columns are single-view input images.
The other columns are partonomic 3D reconstruction results ob-
tained by our proposed approach.

ing. Deep neural networks have achieved excellent perfor-
mance in single-view 3D reconstruction [12, 39, 54], but
their training requires extensive 3D shape and/or pose anno-
tations, which are costly and sometimes impossible to ob-
tain. Thanks to advancement in differentiable rendering, a
significant line of recent research [13, 15, 17, 20, 21, 26, 36]
has shown promise in learning single-view 3D reconstruc-
tion from a collection of images with only 2D annotations,
e.g., keypoints [19] and masks [13], following an analysis-
by-synthesis paradigm. However, these works focus on re-
constructing entire objects and ignore their parts.

An object is composed of various parts, which is also
known as partonomy [44]. Understanding the partonomy of
3D objects is crucial for intelligent agents interacting with
the physical world, as it is often the parts that define an
object’s functionality and affordances. For example, con-
sidering an assistant robot serving at home or in an office,
it needs to understand that the top of a table can hold other
objects when looking for a suitable place to deliver items.
Similarly, to assist someone sitting down, a robot must un-
derstand that the seat of a chair is for sitting, while the back-
rest provides support for the user’s back. Some 3D recon-
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struction methods regress the configurations of predefined
primitives, such as cuboids [23, 25, 38, 49] or superquardics
[1, 28, 41], from an image to abstract object shapes, but they
typically rely on 3D supervision for training. In addition,
the geometry of shape and parts is largely restricted by the
chosen primitives, resulting in limited expressiveness.

This paper investigates learning partonomic 3D recon-
struction from a collection of images, as shown in Figure
1. It means to not only reconstruct the shape of an object
from a single-view image but also decomposes the shape
into semantic parts. For broader applicability, we assume
the only available annotations are 2D object and part masks,
and there is no access to any form of 3D annotations (shape,
pose, multi-view images, depth, etc) during training.

One naive solution to partonomic 3D reconstruction is
to simply extend the self-supervised object reconstruction
methods [13, 17, 20, 26, 36] by modeling the part class of
each mesh vertex, and comparing rendered and ground truth
part masks for learning. However, this approach ignores the
intrinsic part-whole structure of objects, and thus faces two
significant challenges. On one hand, the variability of ob-
ject shape is further complicated by the challenge of part de-
composition, leading to an even larger solution space. On
the other hand, the visual input is often deficient and am-
biguous, e.g., parts are frequently occluded in a single-view
image. As a result, learning a direct mapping from the 2D
input image to 3D partonomic reconstruction is extremely
difficult, especially with only limited 2D supervision.

To address these challenges, we propose an approach
that leverages the part-whole structure of objects, by repre-
senting, parsing, and learning the structural compositional-
ity of 3D objects. It consists of three main components. (1)
A Compact and Expressive Compositional Representation.
We represent the object geometry as a hierarchical composi-
tion of a conditional shape template (CST) and multiple part
deformation fields (PDFs), both of which are neural fields
but defined at different granularities. The CST models large
shape variations and constituent parts, while the PDFs cap-
ture the detailed deformation of each part based on finer ob-
servations. This decoupling makes the compositional repre-
sentation both compact and expressive. (2) Robust Parsing
with Part Transformer. Based on the compositional repre-
sentation, we introduce a part transformer that reconstructs
both the shape and parts of an object from a single-view
image. Unlike existing transformers, it employs a set of
learnable part tokens to gather pixel-level features relevant
to each part from the image and model their interactions,
thereby effectively recovering part details and handling oc-
cluded parts. (3) 2D-Supervised Learning Partonomic 3D
Reconstruction. Our compositional representation and part
transformer are learned end-to-end with only 2D mask su-
pervision, by bridging object shape and parts, image syn-
thesis, and differentiable rendering.

Altogether, our proposed approach is able to infer the
partonomy of 3D objects from a single-view image, with-
out costly 3D annotations. Moreover, it is robust to high-
dimensionality of object-part geometry and ambiguity of
visual input. Our contributions are summarized as follow:
• We investigate partonomic 3D reconstruction from image

collections, an important yet largely underexplored task.
An effective solution is proposed for this task, by repre-
senting, parsing, and learning the structural composition-
ality of 3D objects.

• We introduce a compact and expressive compositional
representation of object geometry, achieved through dis-
entangled modeling of large shape variations, constituent
parts, and detailed part deformations as multi-granularity
neural fields.

• We propose a part transformer that recovers precise parto-
nomic geometry and handles occlusion, via effective part-
to-pixel grounding and part-to-part relation modeling.

• We develop a 2D-supervised learning method that learns
our compositional representation and part transformer
end-to-end, by bridging object shape and parts, image
synthesis, and differentiable rendering.

• Extensive experiments on ShapeNetPart [11], PartNet
[35], and CUB-200-2011 [52] demonstrate the effective-
ness of our approach.

2. Related Work

Single-view 3D Shape Reconstruction. Reconstructing
3D shape from a single-view RGB image is an ill-posed
problem due to the lack of explicit depth information. Pre-
vious 3D shape reconstruction methods rely on shape an-
notations [7, 12, 20, 24, 34, 46, 53–56, 58], which are very
costly. Recent single-view 3D shape reconstruction meth-
ods address this problem by applying additional supervi-
sions, such as the multi-view images [27, 49, 50, 57], the
silhouettes [15, 17, 20], the camera viewpoints [10] and
keypoints [19]. CMR [19] estimates three 3D attributes,
namely the camera pose, the shape, and the texture. It then
minimizes the distance between the rendered masks, im-
ages, and keypoints and their corresponding ground truth.
U-CMR [13] follows a similar pipeline as CMR and recon-
structs 3D shapes by removing the keypoints annotations.
Unicorn [36] is the first fully unsupervised 3D shape re-
construction method by predicting four attributes, includ-
ing the shape, the texture, the pose and the background.
AST [17] improves shape reconstruction and texture gen-
eration through two transformer arhictectures. However,
these methods focus on reconstructing the entire objects and
ignore objects’ part-whole structures. In contrast, this paper
aims to learn partonomic 3D reconstruction by modeling the
structural compositionality of 3D objects.

Shape Abstraction. Shape abstraction aims to decompose
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3D objects into primitives, such as cuboids [23, 23, 25, 38,
49], superquadrics [1, 28, 41, 42], convexes [8], CSGtree
[62, 63] and shape programs [18]. Because of the sim-
plification and limited expressiveness of primitives, recent
methods learn effective neural mapping to combine prim-
itives. Neural Parts [43] implements this mapping by an
Invertible Neural Network (INN). Other methods apply im-
plicit primitives to boost the capacity [9, 16, 31]. ProGRIP
[9] improves the representation capacity by using the im-
plicit functions to represent the parts. An alternative line
is part-based modeling, which segments the semantically
meaningful parts [48]. Latent Partition Implicit (LPD) [6]
represents the whole shape and the parts as Signed Distance
Function (SDF) [40]. LPD [6] is able to partition a shape
into different numbers of parts. However, this line of re-
search typically relies on 3D shape and/or pose annotations
for training.

Part Discovery. The object parts can be discovered by us-
ing volumetric cuboids, clustering 3D point clouds, and part
priors [48]. Latent Part Discovery (LPD) [59] learns part
priors with Part-VAE based on a collection of geometric
primitives, reconstructs the parts, and composes the whole
object based on these parts. The discovered parts may not
be semantically meaningful. LASSIE [60] optimizes the
articulated and part shapes based on a shared 3D skeleton
and the input images. To enforce the semantic consistency
between different instances, LASSIE [60] leverage the fea-
tures extracted by DINO-ViT [4]. Following LASSIE [60],
Hi-LASSIE [61] removes the skeleton templates and esti-
mates the class-specific skeleton automatically. LEPARD
[29] maps the input image to a set of primitive parame-
ters and then uses them to reconstruct the 3D articulated
shape. However, these works focus on learning articulated
shape and motion rather than reconstructing semantic parts
of common objects.

3. Method

We propose a novel compositional framework for learning
partonomic 3D reconstruction from image collections. It
means to not only reconstruct the shape of an object from
a single-view image but also decompose shape into seman-
tic parts, without any form of 3D or multi-view supervision.
At the core to our framework are new mechanisms for rep-
resenting (Sec. 3.1), parsing (Sec. 3.2), and learning (Sec.
3.3) the structural compositionality of 3D objects.

3.1. Compositional 3D Object Representation
The 3D geometry of an object instance observed in an image
is determined by its pose and shape. The pose includes rota-
tion R ∈ SO(3) and translation t ∈ R3 w.r.t. the canonical
pose, e.g., a chair that is horizontal and facing the camera.
The shape is represented as a hierarchical composition of a

Figure 2. Illustration of the conditional shape template (CST) and
part deformation fields (PDFs). The inference of latent vectors
will be described in Sec. 3.2.

conditional shape template (CST) and multiple part defor-
mation fields (PDFs), as illustrated in Figure 2. Both the
CST and PDFs are neural fields defined on the object shape
but at different granularities. The CST models large shape
variations and constituent parts, while the PDFs model the
detailed deformation of each part based on finer observa-
tions. This decoupling makes our compositional represen-
tation both compact and expressive.

Conditional Shape Template (CST). The CST models
large shape variations across instances and constituent parts.
Let {ui ∈ R3 : i = 1, . . . ,M} denote the vertices of a fixed
sphere mesh, which is coarser than the target object mesh.
The CST is formulated as:

(v̄i, w̄i) = MLP(ui,h
obj;Θcst), i = 1, . . . ,M (1)

where MLP is a multi-layer perceptron, hobj is a latent vector
encoding the coarse shape (inferred in Sec. 3.2), M repre-
sents the number of vertices, and Θcst is parameters. Condi-
tioned on hobj, the CST maps the sphere mesh to the coarse
object shape {v̄i ∈ R3 : i = 1, . . . ,M} and its (soft) de-
composition into K parts: {w̄i ∈ [0, 1]K : i = 1, . . . ,M}.
Part Deformation Fields (PDFs). The PDFs model the
detailed deformation of each part and obtain the fine object
shape in two steps:

{(v̂i, ŵi)}Ni=1 = CSTUpsampling({(v̄i, w̄i)}Mi=1) (2)

vi = v̂i +
∑
k

ŵi,kMLP(v̂i,h
part
k ; Θpdf

k ), i = 1, .., N (3)

Eq. (2) upsamples the CST via subdivision [32], where
N > M . It adds a vertex to the midpoint of every edge and
connects every pair of added vertices in the same triangle.
The location and part assignment of a new vertex are re-
spectively calculated by averaging those of the two original
vertices on the corresponding edge, which is differentiable.
Based on the upsampled CST, Eq. (3) deforms each part to
obtain the final shape, where hpart

k is a part latent vector en-
coding the kth part’s deformation (inferred in Sec. 3.2), and
Θpdf

k is parameters of the kth PDF. As each vertex is softly
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Figure 3. Illustration of the part transformer.

assigned to the parts, we model its deformation as a linear
combination of the offsets predicted by all PDFs, weighted
by ŵi = [ŵi,k : k = 1, . . . ,K].

Discussion. As the CST is defined on a coarse shape and
conditioned on the latent vector that encodes the whole ob-
ject, it will focus on the shape’s major characteristics rather
than the subtle ones, and can easily switch between different
shape subconfigurations that exhibit large variations, e.g.,
sedan, SUV, and pickup truck. Afterward, it is intuitive
for the PDFs to zoom in and deform each part based on
finer observations, i.e., part latent vectors. As a result, our
compositional representation is both compact and expres-
sive. On one hand, the combinatorial complexity of shape
subconfigurations and deformations is disentangled through
the CST and PDFs, which are much simpler to model. On
the other hand, they are expressive enough to capture both
large shape variations and detailed part deformations.

3.2. Part Transformer

Inferring the compositional 3D object representation from
an image poses two main challenges. First, recovering the
detailed deformation of a part necessitates grounding the
part to pixel-level features relevant to it, but the part loca-
tions are unknown. Second, parts are frequently occluded
in a single-view image. We propose a part transformer to
address these challenges.

The input is an image and K learnable D-dimensional
part tokens Qpart ∈ RK×D (fixed after training). A con-
volutional backbone encodes the image into a feature map
of height H and width W : F img ∈ RH×W×D. As il-
lustrated in Figure 3, there are four decoders. We follow
previous works [17, 36] to design the pose and texture de-
coders, which will be detailed in Sec. 4.3. Our CST de-
coder predicts the coarse shape latent vector hobj through
an MLP. Our PDFs decoder takes as input the feature map
F img and the part tokens Qpart to infer the part latent vectors
Hpart = [hpart

k : k = 1, . . . ,K]. It includes cross-attention

and self-attention layers:

Qpart ← ϕ(Qpart,F img +Epos,F img +Epos;Θca) (4)
Hpart ← ϕ(Qpart,Qpart,Qpart;Θsa) (5)

ϕ(Q,K,V ;Θ = {W query,W key,W value})

= softmax(QW query(KW key)T /
√
D)V W value (6)

where Epos is the pixel-wise positional embeddings, and
W query,W key,W value ∈ RD×D are parameters of the
scaled dot-product attention ϕ. Following the common
practice in (vision) transformers [51], we use multi-head at-
tention [51], skip connection [14], layer normalization [2],
and dropout [47] within the decoder.

Discussion. The core idea of the attention mechanism is
to calculate the alignment probabilities between each query
in Q and a set of keys K and use them to retrieve relevant
information from the values V : a more relevant value will
contribute more to updating the query. By taking part tokens
as queries and image features as keys and values, Eq. (4)
updates each part token by focusing on its relevant region in
the image, which is crucial to recovering part deformation.
Eq. (5) performs self-attention [51], where queries, keys,
and values are from the same entity, i.e., the updated part
tokens, and models the relationship between different parts,
which handles occluded parts. Based on the compositional
representation in Sec. 3.1, the inferred latent vectors hobj

and {hpart
1 , . . . ,hpart

K } respectively determine the CST and
PDFs and thus the object shape and parts.

3.3. Learning from 2D Supervision
Our compositional representation and part transformer are
learned end-to-end on a collection of images with only 2D
object and part mask annotations. We use a differentiable
renderer to render the estimated object pose, shape, parts,
and texture into an image I ′, an object mask M ′, and a part
mask P ′. Our learning objective comprises four terms:

L = Lrgb + λobjLobj + λpartLpart + λregLreg (7)

where λ denotes a balancing hyper-parameter.
The image synthesis lossLrgb compares the rendered im-

age I ′ and the input image I:

Lrgb = ∥I ′ − I∥22 (8)

The object mask loss Lobj uses the intersection-over-
union loss between the rendered object mask M ′ and the
true object mask M :

Lobj = 1− ||M ⊙M ′||1
||M +M ′ −M ⊙M ′||1

(9)

The part mask loss Lpart is a pixel-wise multi-class cross-
entropy loss comparing the rendered part mask and the
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ground truth part mask:

Lpart = −
∑
i

pi · log p′
i (10)

where pi and p′
i are the ground truth and rendered part class

vectors at pixel i, and · denotes dot product.
The regularizer Lreg follows previous works [17, 36] and

enforces smoothness and consistency priors on the recon-
struction. The detailed formulas can be found in the supple-
mentary material.

4. Experiments
We first introduce the datasets (Sec. 4.1), the evalua-
tion metrics (Sec. 4.2), and the implementation details
(Sec. 4.3). Sec. 4.4 shows the comparisons between our
proposed method and the state-of-the-art methods. We vi-
sualize the partonomic reconstruction based on the real im-
ages in Sec. 4.5. Finally, we conduct ablation studies to
show the influence of different modules and supervisions in
Sec. 4.6. The details of dataset generation and more exper-
imental results are included in the supplementary material.

4.1. Datasets
Among commonly used shape datasets, only two provide
3D part-level annotations: ShapeNetPart [11] and PartNet
[35]. Therefore, we use these datasets for quantitative eval-
uation. Additionally, we present qualitative results on CUB-
200-2011 [52], a real-world image dataset without any 3D
annotations.

ShapeNetPart. The ShapeNetPart [11] comprises 16,881
3D shapes spanning 16 categories, with each instance an-
notated into 2 to 5 distinct part labels. In our experiments,
we adopt five categories (airplane, car, chair, lamp, and ta-
ble) that overlap with the rendered images provided by Soft-
Ras [30]. Part masks are rendered under the same settings
as Soft-Ras [30], with a resolution of 64 × 64. We adopt
the official training and testing splits. Note that ShapeNet-
Part [11] has much fewer samples than the commonly used
ShapeNet [5], which is detailed in the supplementary mate-
rial.

PartNet. The PartNet [35] contains 26,671 3D models
across 24 categories, with fine-grained, instance-level, and
hierarchical 3D part annotations. We focus on five common
categories (bottle, bowl, display, knife, and mug) and the
coarsest-level parts in our experiments. Part masks are ren-
dered under the same setting as Soft-Ras [30]. We adopt the
official training and testing splits.

CUB-200-2011. The CUB-200-2011 [52] is composed of
11,788 images of 200 sub-categories of birds. Each image
has detailed annotations, including one class label, 15 part
locations, 312 binary attributes, and one bounding box. In

our experiments, we use the first 70 categories for training
as their 2D part annotations are available.

4.2. Evaluation Metrics

We evaluate our proposed methods using four key met-
rics: Chamfer-L1 distance, Part Chamfer-L1 distance,
Part Classification Accuracy, and Part mIoU (mean
Intersection-over-Union). The Chamfer-L1 distance [33,
37] is used to assess the overall shape reconstruction. To
evaluate part-level reconstruction, we introduce the Part
Chamfer-L1 distance, which computes the mean Chamfer-
L1 distance [33, 37] between the predicted shape and the
ground truth based on different parts. This metric is defined
as 1

K

∑K
k=1 dk, where dk is the Chamfer-L1 distance be-

tween the prediction and the ground truth of the kth part,
and K is the total number of part classes for each object
category based on part masks. Additionally, the Part Clas-
sification Accuracy is computed as the proportion of cor-
rectly classified vertices in the 3D space. The Part mIoU
metric quantifies segmentation performance by averaging
the IoU scores across all part classes. Following standard
practice [17, 36], we pre-align the predicted shape with the
ground truth using a gradient-based variant of the Iterative
Closest Point (ICP) algorithm [3], incorporating anisotropic
scaling.

4.3. Implementation Details

Since no prior work has addressed the same task as this pa-
per, we construct two strong baselines by extending latest
state-of-the-art methods [17, 36] that learn whole object re-
construction from image collections. Concretely, we extend
Unicorn [36] and AST [17] by modeling the part class of
each mesh vertex, and adding the part rendering loss for
learning. We denote these two extensions as Unicorn* and
AST*. All models are trained per object category.

The initial sphere mesh in our model consists of 162 ver-
tices and 320 faces, which is subsequently upsampled to a
higher resolution, containing 642 vertices and 1280 faces.
The resolution of the input images and part mask is set as
64 × 64. Our backbone architecture is a U-Net [45] which
contains 4 encoder layers and 4 decoder layers. The weights
for object mask loss, part mask loss, and regularizer are 0.1,
0.1, and 1, respectively. Following the baselines [17, 36],
we use a camera multiplex-based pose decoder to generate
multiple hypotheses of the object pose and their probability
distribution. Our texture decoder follows AST [17], which
is based on a transformer architecture, and generates a tex-
ture map with 32 × 32 resolution, and upsampled to 64 ×
64. Training is conducted with the Adam optimizer [22]
using a learning rate of 1× 10−4.
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Chamfer-L1 ↓ Part Chamfer-L1 ↓
Method Avg Airplane Car Chair Lamp Table Avg Airplane Car Chair Lamp Table

Unicorn* 0.249 0.099 0.157 0.243 0.499 0.247 0.446 0.227 0.355 0.425 0.898 0.325
AST* 0.217 0.090 0.151 0.222 0.393 0.229 0.459 0.293 0.332 0.417 0.777 0.477
Ours 0.197 0.082 0.148 0.227 0.340 0.189 0.379 0.183 0.308 0.410 0.683 0.311

Part Classification Accuracy ↑ Part mIoU ↑
Method Avg Airplane Car Chair Lamp Table Avg Airplane Car Chair Lamp Table

Unicorn* 0.595 0.642 0.263 0.745 0.599 0.727 0.458 0.464 0.161 0.557 0.462 0.646
AST* 0.610 0.602 0.332 0.756 0.610 0.752 0.446 0.410 0.215 0.534 0.523 0.550
Ours 0.675 0.698 0.441 0.765 0.663 0.807 0.514 0.532 0.241 0.591 0.543 0.662

Table 1. Quantitative results on ShapeNetPart. Unicorn [36] and AST [17] are state-of-the-art methods for learning whole object
reconstruction from image collections. We extend them for partonomic reconstruction.

Figure 4. Qualitative results on ShapeNetPart. For each input, reconstruction results in two different viewpoints are shown. Unicorn [36]
and AST [17] are state-of-the-art methods for learning whole object reconstruction from image collections. We extend them for partonomic
reconstruction (Sec. 4.3). More qualitative comparisons can be found in the supplementary material.

4.4. Main Results

Evaluation on ShapeNetPart. Quantitative results are re-
ported in Table 1. This table shows that our proposed
method consistently outperforms both Unicorn* and AST*
on almost all categories. The results indicate that our pro-
posed method is particularly effective in handling complex
shapes and preserving part boundaries, making it a robust
choice for high-quality partonomic reconstruction. The
lamp category demonstrates the strengths of our proposed
method in handling objects with challenging shapes. By
achieving the best performance in both overall and parto-
nomic shape, our proposed method shows effectiveness in
accurately preserving boundaries and differentiating parts
within complex structures.

We visualize and compare the qualitative results of all
three methods with five categories, shown in Figure 4. We
can see that our proposed method generates better parto-
nomic reconstruction with superior boundary preservation

and accurate part distinction. Compared with Unicorn* and
AST*, our proposed method consistently maintains clear
part segmentation without color bleeding, particularly in
challenging areas where parts are closely connected, such as
the wings and body of airplane. This robustness in handling
diverse object geometries and preserving fine details high-
lights the method’s effectiveness for applications requiring
high-quality part segmentation and reconstruction.

Evaluation on PartNet. Table 2 shows the quantitative
comparison between our proposed method with the two
state-of-the-arts approaches. The comparison suggests that
our proposed method is capable to reconstruct better over-
all shapes along with the parts in most situations. Specif-
ically, our proposed method achieves the lowest average
Chamfer-L1 (0.209) and Part Chamfer-L1 (0.403), outper-
forming Unicorn* (0.223 for Chamfer-L1 and 0.480 for
Part Chamfer-L1), and AST* (0.224 for Chamfer-L1 and
0.414 for Part Chamfer-L1), indicating superior accuracy in
both whole shape reconstructions and part decompositions.
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Chamfer-L1 ↓ Part Chamfer-L1 ↓
Method Avg Bottle Bowl Display Knife Mug Avg Bottle Bowl Display Knife Mug

Unicorn* 0.223 0.218 0.361 0.241 0.0721 0.222 0.480 0.340 0.625 0.688 0.206 0.541
AST* 0.224 0.215 0.359 0.236 0.0772 0.232 0.414 0.275 0.439 0.673 0.201 0.483
Ours 0.209 0.205 0.336 0.228 0.0714 0.207 0.403 0.291 0.419 0.666 0.200 0.438

Table 2. Quantitative results on PartNet. Unicorn [36] and AST [17] are state-of-the-art methods for learning whole object reconstruction
from image collections. We extend them for partonomic reconstruction (Sec. 4.3).

Chamfer-L1 ↓ Part Chamfer-L1 ↓
Method Avg Airplane Car Chair Lamp Table Avg Airplane Car Chair Lamp Table

Base Model 0.239 0.084 0.148 0.243 0.502 0.216 0.667 0.238 0.414 0.465 1.844 0.376
+Deform 0.228 0.085 0.151 0.228 0.480 0.198 0.633 0.184 0.387 0.411 1.847 0.337

Ours 0.197 0.082 0.148 0.227 0.340 0.189 0.379 0.183 0.308 0.410 0.683 0.311

Table 3. Quantitative ablation study on ShapeNetPart. The base model uses the CST representation and predicts a global latent vector
for partonomic reconstruction. +Deform means to extend the base model with the PDF representation but predict object and part latent
vectors through MLPs.

Figure 5. Qualitative results on CUB-200-2011. For each in-
put image (seen species on the left and unseen species on the
right), our 3D partonomic reconstruction results in two differ-
ent viewpoints are shown. Our approach can reconstruct diverse
bird species consistently with part decomposition, such as body
(green), wings (red), head (blue), and tail (purple).

For the mug category, our proposed method achieves a Part
Chamfer-L1 of 0.438, compared to Unicorn* (0.541) and
AST* (0.483), reflecting the superior part-level precision.
Similarly, for the bowl category, our Chamfer-L1 is 0.336,
which is significantly better than Unicorn* (0.361) and
AST* (0.359), showing a notable improvement in global
shape accuracy.

4.5. Results on In-the-Wild Images
Figure 5 visualizes the qualitative results (both seen and un-
seen species) of our model trained on the CUB-200-2011
[52]. Each row corresponds to a sampled instance from
the dataset, including both the input bird image and the
partonomic reconstruction. These results show our pro-
posed method is capable to reconstruct various bird species
with consistent semantic parts, such as body (green), wing
(red), head (blue), and tail (purple), across different poses
and viewpoints. For example, the first instance (top-left)

shows the good representation for the elongated body and
slender beak.

We also visualize the sampled partonomic reconstruction
from the unseen species (instances on the right in Figure 5).
Despite from the unseen species, our proposed method is
capable to generate bird-like shapes with coherent semanti-
cal segmentation and realistic poses. For example, the fifth
instance (top-right) shows our method captures the details,
such as the long wing and slightly-raised head.

4.6. Ablation Studies
Component analysis. To validate the effectiveness of
our proposed compositional representation and part trans-
former, we conduct an ablation study by comparing three
configurations. All the experiments are based on the same
setting in Sec. 4.4. The base model uses the CST repre-
sentation and predicts a global latent vector for partonomic
reconstruction. +Deform means to extend the base model
with PDF representations but predict object and part latent
vectors through MLPs.

Table 3 and Table 4 show the quantitative ablation study
on ShapeNetPart [11] and PartNet [35] respectively. Table
3 demonstrates our proposed method significantly outper-
forms both the base model and +Deform in terms of the
overall and partonomic reconstruction quality, proving the
necessity of both our compositional representation and the
part transformer. Achieving an average overall Chamfer-L1

(0.197) and Part Chamfer-L1 (0.379), our proposed method
consistently generates better performance across all cate-
gories, particularly in complex shapes, such as lamp.

Figure 6 visualizes the qualitative results of our proposed
method compared to the base model and +Deform. Our
proposed method generates the most accurate partonomic
reconstruction with clear boundary, minimal color bleed-
ing, and close alignment with the ground truth across all
categories, especially for complex shapes like airplane and
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Chamfer-L1 ↓ Part Chamfer-L1 ↓
Method Avg Bottle Bowl Display Knife Mug Avg Bottle Bowl Display Knife Mug

Base Model 0.241 0.226 0.370 0.311 0.0862 0.213 0.518 0.342 0.617 0.853 0.206 0.573
+Deform 0.229 0.219 0.342 0.291 0.0843 0.209 0.498 0.315 0.609 0.842 0.212 0.511

Ours 0.209 0.205 0.336 0.228 0.0714 0.207 0.403 0.291 0.419 0.666 0.200 0.438

Table 4. Quantitative ablation study on PartNet. The base model uses the CST representation and predicts a global latent vector for
partonomic reconstruction. +Deform means to extend the base model with the PDF representation but predict object and part latent vectors
through MLPs.

Figure 6. Qualitative ablation study on ShapeNetPart. The base
model uses the CST representation and predicts a global latent vec-
tor for partonomic reconstruction. +Deform means to extend the
base model with the PDF representation but predict object and part
latent vectors through MLPs.

Mask Method Avg Airplane Car Chair Lamp Table

None
Unicorn 0.267 0.099 0.172 0.279 0.527 0.257

AST 0.242 0.099 0.167 0.268 0.438 0.238
Ours 0.219 0.089 0.161 0.247 0.389 0.211

Object
Unicorn 0.258 0.1 0.168 0.255 0.515 0.252

AST 0.230 0.095 0.162 0.249 0.415 0.230
Ours 0.208 0.087 0.151 0.240 0.362 0.199

Object
& Part

Unicorn 0.249 0.099 0.157 0.243 0.499 0.247
AST 0.217 0.090 0.151 0.222 0.393 0.229
Ours 0.197 0.082 0.148 0.227 0.340 0.189

Table 5. Quantitative comparison using different mask super-
visions on ShapeNetPart. The Chamfer-L1 performance is re-
ported.

elongated structures like the lamp.

Different mask supervisions. Table 5 shows quantitative
results using different mask supervisions on ShapeNetPart
[11]. The 3D reconstruction accuracy of all methods de-
creases with reduced supervision. Our model consistently
outperforms Unicorn [36] and AST [17].

Mesh subdivision. Following the Unicorn [36] and AST
[17], all models in our experiments output a mesh with 642
vertices. When using PDFs, the initial sphere mesh has 162

Method Avg Airplane Car Chair Lamp Table
w/o subdiv 0.204 0.082 0.163 0.234 0.349 0.192

Ours 0.197 0.082 0.148 0.227 0.340 0.189

Table 6. Impact of mesh subdivision. The Chamfer-L1 perfor-
mance is reported.

Regions Method Avg Airplane Car Chair Lamp Table

Visible Base 0.238 0.094 0.149 0.253 0.476 0.217
Ours 0.207 0.095 0.135 0.238 0.362 0.207

Invisible Base 0.246 0.091 0.163 0.258 0.502 0.217
Ours 0.210 0.090 0.140 0.245 0.361 0.214

Table 7. Quantitative ablation study on visible and invisible re-
gions. The Chamfer-L1 performance is reported on ShapeNetPart.

vertices, which Eq. (2) subdivides into 642 vertices. Other-
wise, the initial sphere mesh is directly set to 642 vertices.
The ablation study in Table 6 shows that removing the sub-
division in PDFs and using 642 input vertices degrade the
Chamfer-L1 performance from 0.197 to 0.204.

Visible and invisible regions. We identify visible and in-
visible regions on the ground truth mesh for each image
during the data generation process. Table 7 compares the
reconstruction accuracies in visible and invisible regions
achieved by our model with those of base model (without
part deformable and part tokens).

5. Conclusion
This paper aims at learning partonomic 3D reconstruction
from collections of images with only 2D annotations. Our
goal is to not only reconstruct the shape of an object from
a single-view image but also decompose it into meaning-
ful semantic parts. This is an important yet largely under-
explored task. To handle the expanded solution space and
frequent part occlusions in single-view images, we intro-
duce a novel approach that represents, parses, and learns
the structural compositionality of 3D objects. Experimental
results on ShapeNetPart [11], PartNet [35], and CUB-200-
2011 [52], demonstrate the effectiveness of our method.
Acknowledgements. This work was supported in part
by the National Science Foundation (NSF) grant ECCS-
2400900, the National Artificial Intelligence Research Re-
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