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Abstract

Diffusion models dominate the space of text-to-image gen-

eration, yet they may produce undesirable outputs, includ-

ing explicit content or private data. To mitigate this, con-

cept ablation techniques have been explored to limit the

generation of certain concepts. In this paper, we reveal

that the erased concept information persists in the model

and that erased concept images can be generated using the

right latent. Utilizing inversion methods, we show that there

exist latent seeds capable of generating high quality images

of erased concepts. Moreover, we show that these latents

have likelihoods that overlap with those of images outside

the erased concept. We extend this to demonstrate that for

every image from the erased concept set, we can generate

many seeds that generate the erased concept. Given the

vast space of latents capable of generating ablated concept

images, our results suggest that fully erasing concept infor-

mation may be intractable, highlighting possible vulnera-

bilities in current concept ablation techniques.

1. Introduction

Diffusion models have emerged as a prominent tool for text-

to-image tasks, extending their importance beyond the re-

search community. Researchers have developed methods

to utilize diffusion models for text-guided image editing,

increasing their popularity even further. However, it has

been demonstrated [38] that these models can generate un-

desirable content, such as violent and explicit material. This

highlights the importance of ablating (i.e., forget or erase)

specific concepts (e.g., objects, styles).

A plethora of studies have focused on erasing concepts

from diffusion models. Erased concepts are described

by text, and the weights of the model are steered away

from generating images that are associated with these texts.

Then, the ablated model is expected to generate images that

do not belong to the population of the erased concept, when

*Equal contribution.

introduced with the text describing the erased concept. But,

does this mean the concept is erased? Can the model still

generate images of the erased concept in some other way?

In our work, forgetting an image means the ablated

model can no longer generate it (e.g., a specific church im-

age) with a reasonable likelihood. A more interesting ex-

tension is forgetting a concept, which means that an ablated

model can no longer produce images that are categorized

as belonging to the ablated concept (say, the model can no

longer produce any image containing any church) with a

reasonable likelihood. Here we take memory to mean that

the model can generate an image or a concept, regardless of

whether that image was part of the training process, or part

of the generalization capabilities of the model.

To date, the analysis of ablated models is mainly done

on the output image, as shown in Fig. 1(left). Given an ab-

lated text (i.e., “Starry Night”) and a random seed, a model

devoid of Van Gogh’s style produces an image that is not

in the style of Van Gogh. Analysis done on this image will

confirm that this is indeed the case. In contrast, we test the

following hypothesis:

Hypothesis: An ablated model should not have a high

likelihood seed vector that can be used to generate a high-

quality ablated image.

This paper deals with ways to analyze this hypothesis. In

our analysis, we assume that both the ablated text prompt

and the target ablated image are given. We then measure

both the likelihood, in latent space, of the corresponding

seed, and the quality of the generated image (Fig. 1(right)).

For an effectively erased model, it should not be possible to

identify a latent seed that is both likely and yields a high-

quality ablated image. However, our analysis shows that

the opposite holds true. Models that were ablated using

state-of-the-art methods can still generate high-quality ab-

lated images from high-likelihood seeds (Fig. 5).

Technically, to do that, we use diffusion inversion to find

a latent seed vector that corresponds to the ablated image.

We further analyze the identified seed vectors and find that

they are as likely, in latent space, as seeds of normal (i.e.,

non-ablated) images. This suggests that ablated models do
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Figure 1. Evaluation of concept erasure models: Left part (prior art) analyzes the image generated by an ablated model using the input

text (or textual embeddings) and a random seed. Instead, in the right part (our analysis) we assume that both text and ablated image are

given as input and analyze the likelihood of the corresponding seed, in the latent space of the model, as well as the quality of the generated

image. We find that ablated models contain seeds with high likelihood that can be used to generate high quality ablated images.

not forget ablated concepts. We also find that multiple, dis-

tinct, seed vectors can be used to generate an ablated image.

We show that by using multiple random support images,

it is possible to obtain seed vectors with a high likelihood

that can generate a given query image. These observations

suggest that information about the ablated concept persists

within the latent space, thereby questioning the effective-

ness of concept ablation in these models.

To summarize, we make the following contributions:

• Introduce a metric to analyze how much an ablated model

remembers erased concepts and images. We demonstrate

it on 9 recently published methods and 6 different con-

cepts.

• Show that diffusion inversion of ablated images recovers

latent seed vectors with high likelihood and generates im-

ages with high PSNR scores.

• Show that a single image can be inverted to multiple dis-

tant seeds, suggesting that erasing is harder than it looks.

2. Background

2.1. Diffusion models concept erasure

Diffusion models [16, 39] have recently made significant

advances in image generation. Further improvements [3,

14, 32, 32] allowed high fidelity text-to-image generation.

These models are trained on large-scale datasets contain-

ing images from a wide variety of categories. Trained on

large-scale datasets spanning diverse categories, these mod-

els may later exhibit issues. For example, they can generate

not-safe-for-work (NSFW) content, copyrighted images, or

private data present in the training set.

A possible way to remove the effect of certain training

data on the model is to retrain the model from scratch ex-

cluding that data. However, as these issues can recur multi-

ple times on large-scale models, often retraining is infeasi-

ble. Moreover, problematic images might be generated even

if they are not part of the training set [5].

These concerns raise the need for techniques that can

edit a diffusion model to change its outputs w.r.t. given data.

Given a pre-trained model, the process of removing the ef-

fect of training data from it is referred to as machine un-

learning [1]. This has been explored vastly for discrimina-

tive tasks [2, 11, 12, 41, 43], as the effect of data samples

on models prediction is more direct in this case.

As generative models have gained vast popularity re-

cently, many unlearning issues and concerns arise for these

models too, e.g., privacy regulations [30] and generation of

NSFW content [38]. For image generation tasks, earlier

architectures have been examined [18, 24], with more re-

cent studies focusing on diffusion models [4, 7, 8, 13, 20,

23, 38, 44–46]. Schramowski et al. [38] propose modifying

a model’s inference behavior to limit generation of certain

data. Other methods [4, 7, 8, 20, 22, 23, 44–46] suggest to

finetune the model to reach this goal, or focus on changing

the textual embeddings [28, 48].

Recently, there have been works that question and quan-

tify the erasing concepts and abilities that these methods

possess. Zhang et al. [50] show an attack method against

these models, using adversarial prompts that lead to the gen-

eration of an erased concept. Unlike this work, we do not

propose an attack on concept erasing methods, nor do we

aim to find specific prompts that generate concept images.

Instead, we invert a concept image to find a suitable latent,

showing that the image still lies in the plausible region of

the distribution, even after the erasure process.

The closest work to ours is Pham et al. [27], examining

different concept erasing methods by using textual inver-

sion [6] to find a suitable textual embedding for generating

given erased concept images. As opposed to their work, we

focus on retrieving zT latents that can produce the concept

image and analyze their likelihood.

2.2. Latent Diffusion Models

Diffusion models [16, 39] are generative models that map

Gaussian noise xT to an image x0 in a gradual denoising
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process over multiple timesteps t ∈ [0, T ]. This is done

by training a learnable neural network ϵθ(·, ·) that learns to

reverse a known forward Markov chain with Gaussian noise

transitions with predefined parameters αt. This means that

given ϵ ∼ N (0, I), xt can be parameterized as:

  \label {eq:diffusion_from_x_0} x_t = \sqrt {\alpha _t}x_0 + \sqrt {1 - \alpha _t}\epsilon . 




  (1)

And for generation, xt−1 can be expressed using the net-

work’s output:

  x_{t-1} = \sqrt {\frac {\alpha _{t-1}}{\alpha _t}} \cdot x_t - \gamma _t(\alpha _t, \alpha _{t-1}) \cdot \epsilon _\theta (x_t, t), 







        (2)

where γt(αt, αt−1) is a noise variance parameter. Dur-

ing training, the model learns to predict the added noise ϵ.

This means the loss is:

  \label {eq:dm_loss} \mathcal {L}_{\mathrm {DM}}:= \displaystyle {\mathop {\mathbb {E}}_{x, \epsilon , t} \left [ \Pnorm {\epsilon - \epsilon _\theta (x_t, t)}{2}^2 \right ]}.  




 


 (3)

Further advancements [3, 15] have allowed conditioning

the generation on textual prompts, allowing the model to

receive an additional text c as an input, i.e. ϵθ(xt, t, c).
For faster computing in space with lower complexity than

the image space, Rombach et al. [32] showed that using

a VAE [17] encoder and decoder, denoted as Enc(·) and

Dec(·), respectively, the memory efficiency of the diffu-

sion process can improve. Instead of training the diffusion

process on the high dimensional image x0, we encode the

image to a lower latent space, i.e., Enc(x0) = z0, with

dim(z0) << dim(x0). Then, the diffusion process is done

in this lower space. This model is denoted as a Latent Dif-

fusion Model (LDM). The loss term for training LDMs is

thus:

  \label {eq:ldm_loss} \mathcal {L}_{\textrm {LDM}} := \displaystyle {\mathop {\mathbb {E}}_{\textrm {Enc}(x),\epsilon , t} \left [ \Pnorm {\epsilon - \epsilon _\theta (z_t, t, c)}{2} \right ]}.  


    (4)

Generation is done by sampling a latent seed zT ∼ N (0, I)
and using the denoising network ϵθ(·, ·, ·) to iteratively

compute z0. Then, the output image is produced by the de-

coder, i.e., Î = Dec(z0). In our work, we specifically focus

on LDMs, as we use the decoder in some of our analyses.

We refer to the process of generating an image from a latent

zT as diffusion inference.

2.3. Diffusion model inversion

For diffusion models, inversion is the procedure of finding

the latent seed that can be used to generate a given image.

As the generation nature of diffusion models is iterative,

simple optimizations are too computationally heavy to per-

form on SOTA models. As DDIM sampling [40] can be

used deterministically, DDIM inversion [3] was proposed

as a simple way to invert. Subsequent work [26] has shown

that this simple method can produce inferior results and pro-

posed a method to invert an image by optimizing for a better
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Figure 2. NLL histogram: For a model that erased the concept

Nudity (EraseDiff [45]), the likelihood distribution fits different

Gaussians (NLL→zT(E), NLL→zT(R)), that are different from

the sampling distribution of the LDM which is standard normal

distribution (NLL(N )).
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Figure 3. Visualizing our distance measure: Our relative dis-

tance measure is the ratio of EMD(E,N )) to EMD(R,N )),
where E is the erased set, R is the reference set, N is the normal

distribution, and EMD is Earth Movers Distance. As can be seen,

the erased model E1 is much farther than E2, suggesting that the

model that forgot E1 did a much better job.

null text token embedding. Additional studies [25, 36, 42]

have also proposed alternative inversion methods, showing

results with very low reconstruction errors. Garibi et al. [10]

proposed a method that inverts an image by using itera-

tive steps of refinement between the diffusion steps, termed

Renoise.

3. Analysis

Basic setup. To evaluate a model that erased a given con-

cept c, we require the following:

1. White box access to the LDM model that erased c, de-

noted ϵcθ.

2. An erased set E of (image, caption) pairs with images

containing the concept c.

3. A reference set R of (image, caption) pairs with images

that do not contain the concept c.

Our goal is to analyze and quantify the erasing effect of

ϵcθ w.r.t. the concept c. This is done by retrieving a latent

vector that, along with ϵcθ, can be used to generate images
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Figure 4. Memory of an ablated image: Given an ablated query image Iq , our goal is to find a likely latent zT that can accurately

reconstruct the image when processed through an ablated diffusion model. We start by encoding Iq into a latent z0 with the encoder, then

apply diffusion inversion to obtain a seed latent vector zT . This seed is fed into the LDM to generate the image Îq . Finally, we evaluate

the likelihood of zT and the quality of the reconstructed image Îq compared to Iq .
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Figure 5. A concept erased model remembers: We report the mean reconstruction PSNR (a) and our proposed relative distance (b)

for six concept datasets {Nudity, Van Gogh, Church, Garbage Truck, Parachute, Tench} across nine different concept ablation methods

{EraseDiff [45], ESD [7], FMN [47], Salun [4], Scissorhands [44], SPM [23], UCE [8], AC [19], AdvUnlearn [49]}, along with one

“Vanilla” SD 1.4 [31] model. These results validate that, at the dataset level, there exists at least one latent per image that can reconstruct

the image with high quality (PSNR ≥ 25 dB) from a reasonable likelihood using the concept erased model.

containing c. We require that the images have a low recon-

struction error, i.e., high PSNR, and analyze the likelihood

of the latent vector.

3.1. How do we measure memory?

Given a latent seed zT , we are interested in examining its

likelihood. As the distribution that was used to train the

model is Gaussian (see Sec. 2.2), i.e., N (0, I) or N in

short, computing the likelihood is straightforward via the

closed-form probability density function (PDF). We report

our results in Negative Log Likelihood (NLL) units, denot-

ing the NLL of a given normal distribution with parameters

(µ, σ2I) as NLL(N (µ, σ2I)). We follow the Central Limit

Theorem to approximate NLL(N (µ, σ2·I)) as 1D Gaussian

(see Appx. D for a detailed analysis).

For a set of images, we invert them to latent seeds zT
(see Secs. 3.2 and 3.3) and compute their NLL. We de-

note this function as NLL→zT(·). We perform this on the

erased and reference sets, denoting these distributions as

NLL→zT(E) and NLL→zT(R), respectively. These distri-

butions are shown as histograms in Fig. 2, illustrating the

separation of latent likelihoods across populations.

We found it difficult to have a clear understanding based

on the NLL values alone (as in Fig. 2). Therefore, we opt

for a unit-less number that conveys information in relative

terms. From a likelihood perspective, a model that erases a

concept should ideally map it to a low-likelihood region in

zT space, while preserving non-erased concepts. Therefore,

we measure the distance of images in the erased set E to the

normal distribution in terms of the distance of the reference

set R. Specifically, we use the ratio of the Earth Mover’s

Distance (EMD) [35] to obtain this measure, denoted Rela-

tive Distance:

  \label {eq:relative_similarity} d_{\mathcal {N}} (E, R) := \frac {\text {EMD}\left ( \nllzt (E) ,\text {NLL}(\mathcal {N})\right )}{\text {EMD}\left (\nllzt (R),\text {NLL}(\mathcal {N})\right )}.  
 

 
 (5)
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The measure dN (·, ·) should approach 1 if the two dis-

tances are roughly the same (a value smaller than 1 suggests

the erased set is closer to the Normal distribution than the

reference set, which indicates that something is wrong with

the model). A high dN (·, ·) means the reference set is far

more likely than the erased set, which is what we hope for.

Fig. 3 illustrates the two different outcomes of dN (·, ·)
for the distributions of different sets, E1, E2, R, along

with N for a standard normal distribution (NLL(N )).
For simplicity, we use different normal distributions for

NLL→zT(E1),NLL→zT(E2),NLL→zT(R). We see that

E1 is far from both R and N , with very high relative

distance of dN (R,E1) = 43.02. In contrast, E2 is closer

to both these distributions, overlapping R with a low

relative distance of dN (R,E2) = 2.49. The high score of

dN (R,E1) suggests that the images in E1 are much less

likely for generation while preserving a small distance be-

tween the reference set and the standard normal distribution.

Experimental setup. We now show that the information

of ablated concepts persists in erased models. To achieve

this, we inquire into six different concepts: Nudity, Van

Gogh, Church, Garbage Truck, Parachute and Tench. We

choose a set of nine different erasure methods, each accom-

panied by the models used to erase the concepts above, as

reported in their original publications: ESD [7], FMN [47],

SPM [23] and AdvUnlearn [49] on all concepts. Salun [4],

Scissorhands [44], and EraseDiff [45] on all concepts apart

from Van Gogh. UCE [8] on Nudity and Van Gogh. AC [19]

only on Van Gogh. All models ablate the base Stable-

Diffusion v1.4 [33]. The latent space dimension for this

model is 4× 64× 64. We follow the evaluation protocol of

Zhang et al. [50] and collect the datasets in the same man-

ner. For NSFW content, we use the I2P dataset [38].

For the reference set R in our analysis, we use images

from the COCO [21] dataset. We use Renoise [10] as our

primary inversion method, using image captions for guid-

ance with 50 inversion and 5 renoising steps. See Appx. E

for details on parameter selection and generalization across

architectures and inversion methods.

We consider two types of analyses. The first inquires

about the memory of an ablated concept, by aiming to re-

trieve a single latent to every given query image. The sec-

ond, exploring many memories of an ablated image, aiming

to find multiple seeds that correspond to the same query

image. Following previous works in the field, we also

report additional metrics regarding the generated images

in Appx. C, including CLIP [29] score for prompt-image

alignment and concept detection scores.

3.2. Memory of an ablated concept

Equipped with our Relative Distance measure, we show

that on a dataset level, concept erasure models can generate

Nudity Garbage Truck

S
P

M
F

M
N

Figure 6. Erased concepts generations. Arbitrary latents (odd

columns) vs. our retrieved latents (even columns). Each row cor-

responds to a different ablation method. For all ablation methods,

we find some latent that recovers images from the ablated concept.

the erased concepts with high PSNR and high likelihood.

Namely, for every image in the dataset, we can find a likely

latent that recovers that image.

Given the erased set with images that depict con-

cept c (e.g., various images of churches), namely E =
{(Ii, pi)}ni=1, we use it to analyze a model that was fine-

tuned to erase this concept, ϵcθ (see Sec. 3.1).

For every query image (Iq, pq) ∈ E, we perform dif-

fusion inversion to retrieve a latent seed z
q
T . This latent is

later used for diffusion inference, leading to a reconstructed

image Îq . Fig. 4 illustrates this procedure. z
q
T and Îq are

both used for our analysis.

Results. The results, summarized in Fig. 5, demonstrate

how all current concept erasing methods can generate im-

ages containing the erased concept. This is suggested by

the high PSNR values for reconstruction among all the dif-

ferent methods. Concepts with finer texture details such as

Van Gogh and Church, tend to have lower PSNR, while

smoother concepts such as Nudity and Parachute, achieve

higher reconstruction. For example, Van Gogh’s images

contain many brushstrokes, while Church’s images feature

many bricks with distinct contours. In contrast, Nudity im-

ages have smooth surfaces, while Parachute images have

large areas of background with similar color values.

The right panel of Fig. 5 shows the relative distance

(dN (·, ·)) of different concepts and concept erasing meth-

ods. First, we see that the highest distance, meaning the best

distance in terms of erasing, is achieved by ESD [7] on the

concept c = Parachute, with a distance of dN (Ec, Rc) =
2.49. This score indicates that there exists a non-negligible

overlap between the distribution of the erased concept and

the reference dataset. Please refer to Fig. 3 for a visualiza-

tion of a 2.49 distance.

Moreover, compared to the Vanilla model which did not

erase the given concept, many methods achieve a similar

relative distance dN (·, ·). This suggests that while these
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Figure 7. The many memories of an ablated image: (Left) The latent seed z
q

T of the query image Iq can be obtained from various support

images: Is1 , ..., Isk . For support image Isi , we apply the sequential inversion block shown on the right to map it to the seed z
(si→q)
T . We

show in Fig. 5 that seeds {z(si→q)
T }ki=1 are likely enough and can be used to generate the query image Iq . (Right) Recovering the seed of

a query image Iq when starting with support image Isi .

Support Images Reconstructions

PSNRmin = 19.98[dB], PSNRavg = 24.66[dB], PSNRmax = 26.42[dB]

Figure 8. Reconstruction from different seeds: Each support image on the left was used to reconstruct via the Sequential Inversion Block

(see Sec. 3.3) the image in the corresponding location on the right. As can be seen, vastly different support images lead to (almost) the

exact same reconstructed image. These images were generated from an ESD [7] model that ablated the Van Gogh concept.

methods exemplify that it is harder to generate images of

the erased concept using text prompts that describe it, the

generation of such images in the latent space is still plau-

sible. Observe that in some scenarios the distance is lower

than 1, which seems to suggest that these models erased a

concept via a text proxy but did not actually forget it.

Fig. 6 shows images of multiple erasing methods and

concepts, comparing generation with a fixed seed to one

retrieved from our analysis. Although generation with ar-

bitrary latents may indicate forgetting, we show that for all

model ablation techniques, there exists a likely latent that

recovers images from the ablated concept. A complete com-

parison of all models and concepts is presented in Appx. C.

3.3. The many memories of an ablated image

In the previous subsection, we analyzed the case of erasing

a concept using multiple images, by finding a feasible la-

tent zT that can be used to generate an image that depicts

the concept. However, this raises the question: for a given

image Iq , is there more than one distinct latent seed z
q
T that

can generate an image that resembles Iq? Specifically, we

are interested in whether we can find several zT latents with

a sufficiently large cosine distance between them, that all

can be used to generate the query image Iq . These latent

vectors should satisfy two main requirements: they should

be likely (in terms of the model’s probability distribution)

and should be well-separated from each other. Specifically,

we are interested in distant memories of the query image,

and not adjacent ones. Fig. 7 illustrates our approach.

Sequential Inversion Block. We seek distinct “memories”

of the same query image. To do that, we start with random

support images. (A detailed analysis of alternative initial-

ization choices beyond images can be found in Appx. B.)

For each support image, we invert the VAE decoder Dec(·),
to obtain an initial latent vector z0 which is then used for

an optimization process w.r.t. the query image. Similarly

to Sec. 3.2, the reconstructed query images are fed to the

diffusion inversion to produce the desired zT seeds, which

we call distinct “memories”.

Formally, we introduce the Sequential Inversion Block,

which maps support images Isi from the image space to the

latent space. This is done using the following sequential
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Figure 9. Distant latents reconstruct erased images: We report the mean reconstruction PSNR (a) and our proposed relative distance

(b), across models and concepts (see Fig. 5 for more details), obtained using our sequential inversion block process resulting in different

distant latents for each image.
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Figure 10. Average Pairwise Cosine Distance: For each model

that ablated each concept, and for each target image Iq , we av-

erage the pairwise cosine distance (1− cosine similarity) between

all the produced z
(si→q)
T seed latents. Then, we average the results

over all target images per each model and concept.

inversion steps:

1. Initial Decoder Inversion:

Find an initial latent, z
(si)
0 , in the decoder’s latent space,

that will serve as a starting point for the next step in the

block. Specifically, invert the VAE decoder Dec(·), start-

ing from Enc(Isi), and optimize the following:

  \label {eq:vae_decoder_inversion_init} z_0^{(s_i)} = \argmin _{z} \left [\text {Dist}\left (\textrm {Dec}\left (z\right ), \mathcal {I}_{s_i}\right )\right ] , 

 



      (6)

where Dist(·, ·) is the euclidean distance.

2. Decoder Inversion Towards the Query Image: Next,

starting from an initial latent z
(si)
0 (which corresponds to

the support image Isi ), we optimize to find a latent that

reconstructs the query image Iq:

  \label {eq:vae_decoder_inversion_towards} z_0^{(s_i \rightarrow q)} = \argmin _{z} \left [\text {Dist}\left (\textrm {Dec}\left (z\right ), \mathcal {I}_q\right )\right ] . 

 



      (7)

3. Latent Diffusion Inversion: We use z
(si→q)
0 as a start-

ing point for a diffusion model inversion process, result-

ing in a latent seed z
(si→q)
T which is the output of the

Sequential Inversion Block.

The retrieved z
(si→q)
T latent will also be used to generate

an image Îq that resembles Iq for reconstruction quality

analysis. In addition, we analyze the likelihood of z
(si→q)
T

and measure the average pairwise cosine distances between

the generated z
(si→q)
T , for all support images Isi , to ensure

we found distant seed vectors in latent space that represent

the same Iq image.

Experimental Setting: We extend the experimental setup

in Sec. 3.1. We randomly select support images from the

COCO [21] dataset. For each concept, we randomly choose

five query images and validate that for every query image,

there are at least ten distinct latents. Each of these latents

is initialized using a different support image. We set the

number of VAE decoder optimization steps to 3,000.

Results: A qualitative example of reconstructed images that

were produced from this procedure is presented in Fig. 8,

demonstrating how different latents can generate images of

an erased concept. Fig. 9 demonstrates the results, show-

ing that for all methods and all concepts we were able to

recover likely latent seed vectors, i.e., low relative similar-

ity (Eq. (5)) that lead to a high-quality reconstruction (high

PSNR). However, compared to the concept level forgetting,

(see Fig. 5), we see a lower PSNR value and lower dN (·, ·)
values, when multiple diverse zT seeds are searched for. We

conjecture that the search for multiple latents seeds is sub-

optimal to finding a single latent in an unconstrained setting

Additionally, we measure the distances between all la-

tents within a concept. Specifically, we evaluate the cosine
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distance and euclidean distance (in Appx. C) between all

z
(si→qj)
T latents associated with a given concept. This

metric provides insight into the distribution of latents.

These distances are presented in Fig. 10.

Geometric interpretation of the retrieved memories: To

better understand how the retrieved z
(si→q)
T seeds are dis-

tributed geometrically in space with respect to the original

target z
q
T seed, we compute the average euclidean distance

between all z
(si→q)
T and z

q
T . Specifically, we refer to the

illustration presented on the left part of Fig. 7. We observe

that all these distances are tightly spread around the mean

distance. Concretely, the mean is 152.14 and the standard

deviation is 2.72. This leads to a coefficient of variation

of 2%. We extend the computation of the coefficient of

variation to all query images in all of our experiments, and

observe that the mean and standard deviation of the coeffi-

cients are 2% and 1%, respectively. Together with the ob-

servation that there exists a substantial cosine distance be-

tween these seeds (Fig. 10), we conclude that for each tar-

get image, our procedure produces memories that lie (with

a high probability) on a sphere centered around a zT seed

that corresponds to that image.

Following this geometric insight, one could choose any

number of NS support images, and retrieve NS seeds using

SIB. This raises following questions for future forgetting

work: Will re-mapping all these possible seeds into images

that do not resemble Iq , be sufficient for forgetting? Is it

necessary for forgetting? in Appx. F, we explore this ques-

tion in more detail.

(a) 0.3245 (b) 0.1879 (c) 0.1737 (d) 0.2906

Figure 11. Ablated models generalize to shuffled images: For a

diffusion model that ablates the concept Church, we take a church

image in (a), split it to patches of shape 8× 8 and shuffle them to

obtain image (b). Then, we invert the image in (b) and regenerate

it to obtain the reconstructed image in (c). Finally, we revert the

shuffle of patches to obtain the image at (d). Below each image we

report the CLIP score of that image w.r.t. the text “church”.

4. Limitations

The analysis in this paper assumes a white-box setting, as-

suming access to the model’s weights and the ability to in-

verse it. Although this may limit the generalization of our

findings, it enables a controlled exploration of how well-

erased concepts can be reconstructed within the model.

In Fig. 11, we show that even when an image associ-

ated with the ablated concept Church is scrambled, inverted,

and then reassembled, the model retains certain associations

with the original concept. Starting with a church image

(Fig. 11a), we shuffle its patches to create (Fig. 11b), in-

vert the scrambled version to produce (Fig. 11c), and then

reassemble the patches in (Fig. 11d). Although the concept

classifier score for “church” drops significantly (from 0.99

to approximately 10−4), the CLIP similarity to the caption

“church” decreases by only 10%.

While models are not expected to “forget” scrambled

versions of erased concepts, this result highlights a signif-

icant concern: diffusion models may generalize well even

to unusual, pixelated images (such as Fig. 11b), success-

fully inverting them despite their atypical structure. This

generalization ability appears to conflict with concept era-

sure, as models may inadvertently retain latent representa-

tions of ablated concepts. While it may seem that inversion

is too powerful for this task (see Appx. A for further de-

tails), we notice that applying our analysis gives coherent

results, as the likelihood of the seed that results from the

shuffled image is lower, and the PSNR is worse. Specif-

ically, the NLL of the retrieved zT seed for the shuffled

image (Fig. 11b) is 23.89K, compared to 23.05K for the

original church image (Fig. 11a). The recovered noise has

low reconstruction quality (Fig. 11c), with a PSNR of only

15 dB relative to the shuffled image. When reconstruction

deviates from the query, the likelihood analysis reflects re-

construction statistics rather than the original query. Thus,

reconstruction PSNR aligns with the successful evaluation

of retrieved images’ likelihoods.

5. Conclusions

As diffusion models become more accessible and common

to the public, the importance of the safety and privacy of

these models increases. Recent papers address this concern,

developing essential methods for editing diffusion models’

outputs to ensure a safer and more controlled generation.

Previous methods sought to limit the generative capabili-

ties of specific concepts by disrupting the ability to gener-

ate these concepts through descriptive text. In this work,

we hypothesize that an ablated model should not have a

high likelihood seed vector that can be used to generate a

high-quality ablated image. We show, across many meth-

ods and different categories, that previous attempts did not

truly erase concepts. We do so, by introducing an analy-

sis on the reconstruction quality of images from the erased

concepts, and on the likelihood of its corresponding latent

seeds. We hope our proposed analysis encourages further

research on reliable concept erasure evaluation.
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