
Matrix-Free Shared Intrinsics Bundle Adjustment

Daniel Safari
Sony Semiconductor Solutions

Abstract

Research on accelerating bundle adjustment has focused
on photo collections where each image is accompanied
by its own set of camera parameters. However, real-
world applications overwhelmingly call for shared in-
trinsics bundle adjustment (SI-BA) where camera pa-
rameters are shared across multiple images. Utiliz-
ing overlooked optimization opportunities specific to SI-
BA, most notably matrix-free computation, we present
a solver that is eight times faster than alternatives while
consuming a tenth of the memory. Additionally, we
examine factors contributing to BA instability under
single-precision computation and propose mitigations.

1. Introduction
Structure from Motion (SfM)[37] is a cornerstone of
modern 3D reconstruction and view synthesis methods.
Novel downstream work such as Multi-View Stereo[34],
Neural Radiance Fields[19] and Gaussian Splatting[15]
has been facilitated by the existence of SfM pipelines.

Bundle Adjustment (BA) – the joint refinement of
image poses, landmark positions and camera intrin-
sics – is a core aspect of SfM. While ideally applied
frequently, the associated computational cost unfortu-
nately leads SfM pipelines to employ it conservatively.

Yet despite the existence of a large body of work
dedicated exclusively to accelerating BA [7, 27, 38–41],
major open-source SfM software such as COLMAP[33],
TheiaSfM[35], OpenMVG[20] and GLOMAP[23] all
use the same general-purpose non-linear least-squares
solver, Ceres[2], as their BA backend.

A contributing factor to this curious development is
the prominent status of the BAL[1] collection of SfM
models as the de facto standard for BA benchmarking.
Its models are generated from internet photo collec-
tions and thus share the distinctive property of every
image having its own set of camera parameters. As
a consequence, nearly all open-source BA implemen-
tations from academia – regardless of whether the un-
derlying algorithms theoretically necessitate it or not –

depend on aforementioned property to function at all.
Most SfM use cases do not involve photo collections.

Capturing hundreds to thousands of images from just
a few cameras is ubiquitous in practice. Refining SfM
models stemming from the common case configuration
calls for shared intrinsics bundle adjustment (SI-BA) –
a BA variant seldom addressed by the literature.

This work seeks to remedy the current dispar-
ity between academic focus and practical application
through the following contributions:
■ Detailing a method of representing the SI-BA sys-

tem suitable for exploiting its inherent structure
(Secs. 4 and 5).

■ Demonstrating that SI-BA facilitates matrix-free
methods outperforming conventional approaches
(Secs. 6 and 8).

■ Examining numerical issues arising when perform-
ing BA in single-precision and proposing mitigations
(Sec. 7).

■ Sharing our solvers with the community.

2. Related Work
Background and basic building blocks of modern BA
methods, such as the Preconditioned Conjugate Gra-
dient (PCG) method and the Reduced Camera System
(RCS), are detailed in the seminal work of [36].

Data structures and parallelization strategies for
large-scale bundle adjustment are discussed in depth by
[39]. To ease parallelization they bypass the augmented
Hessian by implementing relevant matrix-vector prod-
ucts through the Jacobian instead. Matrix-free meth-
ods are introduced but degrade performance on CPUs.
Our work is similar in theme yet takes the opposite ap-
proach. We circumvent the system Jacobian and focus
instead on the augmented Hessian.

A method of efficiently constructing the angular BA
normal equations by means of a compact lineariza-
tion is presented by [40]. Notably, they discuss cache
hit rates when constructing the RCS. Our work cov-
ers instead cache utilization when fetching image poses
and landmark positions in the context of matrix-free
matrix-vector products by the normal equations.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27017

Discussion of single-precision computation is limited
throughout the literature. Heuristics for improving nu-
merical stability are given by [39]. Nullspace marginal-
ization is shown by [7] to be a well-conditioned alter-
native to explicitly generating the RCS. To our knowl-
edge, this paper is the first attempt at explaining the
underlying causes of single-precision BA instability.

Power Bundle Adjustment by [38] is an alternative
to PCG. Their method uses the augmented Hessian in
a manner similar to PCG and therefore benefits equally
from our work on accelerating matrix-vector products.

Apero[25] contains an SI-BA implementation; it is
non-viable for large problem sizes due to solving the
RCS through sparse Cholesky factorization [1, 38, 39].

Orthogonal to efforts on optimizing core computa-
tions, research exploring efficient BA preconditioners
(e.g. [6, 14, 17]) and distributed computing through
decomposition (e.g. [27, 41, 42]) should be mentioned.

3. Bundle Adjustment Abridged
As prior work describes the photo collection case, we
must briefly introduce the shared intrinsics variant of
BA in order to facilitate the rest of this paper.

BA revolves around a collection of images each ob-
serving a subset of 3D points called landmarks. Im-
ages contain keypoints specifying expected projections
of observed landmarks. Camera parameters shared by
one or more images affect the projection. The goal is
to minimize the distance between landmark projections
and keypoints by perturbing image poses, landmark
positions and optionally camera parameters.

3.1. Normal Equations
The BA objective is min 1

2 ∥r∥2 where r is a vec-
tor containing all reprojection errors. This is a non-
linear least-squares problem customarily solved by the
Levenberg-Marquardt method, which in turn entails re-
peatedly solving the linear least-squares problem:

min
x

∥Jx + r∥2 + λ ∥x∥2
D (1)

where x is a perturbation of the system state and J is
the Jacobian of r w.r.t. x. The damping factor λ and
associated scaling matrix D = diag (JTJ) stabilizes the
system. The normal equations solving Eq. (1) are:Hcc Hcp Hcl

Hpc Hpp Hpl

Hlc Hlp Hll

xc

xp

xl

 = −

bc

bp

bl

 (2)

where b = JT r is the gradient of 1
2 ∥r∥2 w.r.t. x and

H = JTJ +λD is referred to as the augmented Hessian.
Camera, image and landmark components are denoted
by c, p, and l respectively. Matrix blocks Hcc, Hcp and
Hcl and associated transposes are unique to SI-BA.

3.2. Reduced Camera System
The Schur complement trick is used to generate the
reduced camera system (RCS) HS

(xc
xp

)
= − bS where:

HS =
(

Hcc Hcp

Hpc Hpp

)
−
(

Hcl

Hpl

)
H-1

ll

(
Hlc Hlp

)
(3)

bS =
(

bc

bp

)
−
(

Hcl

Hpl

)
H-1

ll bl (4)

The RCS is smaller and better conditioned than Eq. (2)
yet yields identical camera and image updates [1, 36].
Back-substitution gives the landmark update:

xl = − H-1
ll (bl + Hlcxc + Hlpxp) (5)

3.3. Preconditioned Conjugate Gradient Method
Solving the RCS for nontrivial problem sizes is done
through the preconditioned conjugate gradient (PCG)
method [36]. PCG is an inexact iterative method of
solving positive semi-definite linear systems [22]. While
PCG theory is complex, it is sufficient for the unini-
tiated reader to understand that the computationally
demanding tasks of each PCG iteration consist of:
• Executing the matrix-vector product HS y.
• Solving the preconditioning system M-1y.
Explicitly constructing the RCS is intractable for large
systems. Instead, the implicit Schur [1, 39] method may
be used to compute matrix-vector products involving
the RCS without having access to the matrix itself:

HS

(
yc

yp

)
=
(

Hcc

Hpc

)
yc +

(
Hcp

Hpp

)
yp −

(
Hcl

Hpl

)
y∗

l

y∗
l = H-1

ll (Hlc yc + Hlp yp)
(6)

where yc and yp are components of an arbitrary vector
relating to camera and image blocks respectively.

We utilize the preconditioner M = diag (Hcc, Hpp)
recommended by [39] for performing PCG on the RCS.

4. System Representation
Data structure selection is paramount to BA perfor-
mance. This section details a simple system repre-
sentation facilitating both canonical PCG on explicitly
stored normal equations (Sec. 5) as well as our pro-
posed matrix-free computation scheme (Sec. 6).

C P L

K

K̄SP

SK

SK̄

IC
IL

IP

Figure 1. Linkage between state and connectivity of Tab. 1.

27018

Symbol Shape Description
St

at
e

C nc×ni Camera intrinsics
P np×7 Image poses grouped by C
L nl ×3 Landmark positions
K no×2 Keypoints grouped by P
K̄ no×2 Keypoints grouped by L

C
on

ne
ct

iv
ity

SP nc+1 Slices of P from C
SK np+1 Slices of K from P

SK̄ nl +1 Slices of K̄ from L
IC np Indices into C from P
IL no Indices into L from K
IP no Indices into P from K̄

Table 1. Flat representation of all data required for BA.
Cameras are assumed to use the same projection model.
Poses have length 7 due to using quaternions for orientation.

State and associated connectivity is stored in flat
buffers as outlined in Tab. 1 and illustrated in Fig. 1.
Symmetry achieved through duplicated keypoint stor-
age (K and K̄) simplifies computations of Secs. 5 and 6.
Memory allocation can be done up front knowing only
the quantity of cameras nc (each with ni parameters),
images np, landmarks nl, and observations no.

Connectivity consists of slicing and indexing ar-
rays. Readers familiar with the compressed sparse row
(CSR)[28] matrix format may draw parallels to its row
and column indexing arrays. To exemplify, assume one
seeks the camera index k indicating where in C the
intrinsics used by image i are located. The relevant
camera index can be found at k = IC

i .
Slicing arrays designate ranges instead of entries. As

an example, for any camera index k all affiliated image
indices are given by the interval i ∈

[
SP

k , SP
k+1 − 1

]
.

Consequently, it follows that SP
0 = 0 and SP

nc
= np.

5. Canonical Computation
This section details the execution of all products
needed for a single PCG iteration when using precom-
puted normal equations. Sparse matrix storage and
matrix-vector product synthesis will be addressed. The
connectivity representation described in Sec. 4 will be
re-used for this task, thereby simplifying implementa-
tion and reducing memory consumption. See Tab. 2
for an overview of all matrices relevant to this section.

Matrices Hcc, Hpp, Hll and their associated inverses
are symmetric block-diagonal matrices. We store them
contiguously block by block. Symmetry is exploited by
only storing the upper triangular parts of Hpp and Hll.
Matrix-vector products by these matrices are trivially
parallelized due to their block-diagonal structure.

0 3 7 20 30

Figure 2. Sparsity of Hcp for SP = (0, 3, 7, 20, 30).

The matrix Hcp has the step-like sparsity struc-
ture depicted in Fig. 2. Blocks are stored contigu-
ously and connectivity is fully defined by SP alone.
Matrix-vector products are realized through nc dis-
patches of batch-reduce GEMM[11] kernels. Products
by the transposed variant Hpc are done by strided-
batch GEMM[8] kernels on the same underlying data.

Hpl is a block sparse row (BSR) matrix whose
row and column indexing arrays are SK and IL re-
spectively. Blocks are stored contiguously. Prod-
ucts are computed through a canonical multi-threaded
sparse matrix-vector multiplication (SpMV) kernel as
described in [9]. Handling of Hlp is identical except for
using indexing matrices SK̄ and IP instead.

Suitable representation of Hcl is challenging. Un-
like all other matrices of Tab. 2, its sparsity cannot
be determined purely from nc, np, nl and no. Spar-
sity varies by dataset but always lies within the range
[0, 1−1/nc], meaning it is fully dense for single-camera
datasets. We store it as a dense block matrix and ac-
cept the associated overhead on multi-camera datasets.
Products are implemented using batch-reduce GEMM
kernels as with Hcp. Products by Hlc are done through
strided-batch GEMM invocations on the same data.

A BA implementation using the methodology just
described was synthesized and profiled. Time spent on
each matrix-vector product is provided in Tab. 2.

Matrix
Product

Non-Zero
Blocks

Block
Size Time (%)

Hpl no 18 45.7
Hlp no 18 44.9
Hlc ? 3ni 2.3
H-1

ll nl 6 1.6
Hpp np 21 1.4
H-1

pp np 21 1.4
Hcl ? 3ni 1.4
Hcp np 6ni 0.6
Hpc np 6ni 0.6
Hcc nc ni

2 0.1
H-1

cc nc ni
2 0.1

Table 2. Relative time spent on each matrix-vector product
over 50 PCG iterations on EuRoC of Sec. 8.1.

27019

System Time (ms)
NOP SpMV

Laptop 2.24 2.36
Desktop 3.77 4.12
Server 5.03 5.45
Jetson 7.74 10.19

Table 3. Time spent on a product by Hpl (146 MB). A
canonical kernel (SpMV) is compared against an altered
copy of itself performing no arithmetic operations (NOP).

6. Matrix-Free Computation
Table 2 shows that products involving matrices Hpl and
Hlp take up the majority of every PCG iteration. This
is expected since both scale w.r.t. observation count
and have large block sizes. This section focuses on
accelerating these products via matrix-free methods.

High sparsity causes the products to be memory
bound. Table 3 shows that omitting floating point op-
erations entirely only marginally improves throughput.
We therefore propose to bypass storing the matrices
Hpl and Hlp by instead computing relevant matrix-
vector products on the fly. As an example, rows of
the product Hpl y can be computed directly as follows:

(Hpl y)i =
SK

i+1−1∑
k=SK

i

hijk yj where j = IL
k (7)

hijk = −wk

(
si I3×3[

pj −ti

]
×

)
JT

ij Jij RT

i (8)

where ti, Ri and si designate position, orientation and
numerical scale (see Sec. 7.2) of image i and pj is the
position of landmark j. The optional IRLS weight at-
tached to observation k is wk. The 2 × 3 matrix Jij

is the projection Jacobian w.r.t. landmark j and de-
pends on the camera parameters associated with im-
age i. Note that Eq. (8) assumes pose perturbations
are applied in the local frame of each image. Explicit
construction of the 6 × 3 matrix hijk is not necessary
as relevant products can be computed on the fly.

It may seem counterintuitive that on-the-fly compu-
tation can outperform precomputed sparse matrices.
Even ignoring all arithmetic, replicating a single block
product requires fetching camera intrinsics, image pose
and scale, IRLS weight and a landmark position.

Key to understanding this is realizing that camera
intrinsics and image pose are constant for each row of
Hpl and therefore rarely need to be fetched during com-
putation. Additionally, while landmarks do vary per
block, the relevant landmark position is often present
in cache. This will be elaborated in Sec. 6.2.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Grain Size

0

5

10

R
un

tim
e

(m
s)

Figure 3. Hlp execution time by grain size on EuRoC.

6.1. Parallelization Strategy
Arithmetic pressure is substantially increased by on-
the-fly computation schemes. Initial experiments using
a naive multi-threaded scalar implementation showed
worse performance than using precomputed matrices.
Fully realizing the FLOPS potential of modern proces-
sors requires synthesis using SIMD instructions.

We therefore implement relevant kernels using
ISPC[24] and CUDA[21]. We describe the CUDA im-
plementation since more readers are familiar with the
terminology. The ISPC version is essentially identical.

When computing products by Hpl each row of the
output (relating to one image) is delegated to a thread
block performing a grid stride loop over pertinent ob-
servations. Threads handle one observation at a time.
Block reduction is performed on loop conclusion.

The above strategy is unsuited to Hlp due to land-
marks generally having fewer observations than the
warp size. Each thread is instead assigned to an en-
tire landmark and loops over all associated observa-
tions. This implies that adjacently stored landmarks
with differing observation counts induce performance-
degrading warp divergence (see [21]). Partially mitigat-
ing data ordering strategies are introduced in Sec. 6.2.

As ISPC kernels are single-threaded, we realize
multi-threading through parallelized for-loops. Grain
size selection was guided by graphs akin to Fig. 3.

6.2. Ordering Implications
The order in which images and landmarks are laid out
in memory has significant performance implications.

The kernels of Sec. 6.1 access the same data, e.g.
landmark positions, numerous times. When sequen-
tially stored images observe overlapping landmark sets,
many of these accesses will result in performance-
boosting cache hits. Images and landmarks should ide-
ally be sorted by covisibility to maximize this effect.

Cache utilization is not the only factor that must
be considered when ordering our data. Recall that our
parallelization strategy for Hlp suffers from warp diver-
gence when adjacent landmarks have different observa-
tion counts. Reducing this to a minimum is paramount.

27020

Ordering On-the-Fly Precomputed
Hpl Hlp Hpl Hlp

Random 1.39 8.57 2.62 2.66
Idx 1.20 6.65 2.60 2.66

Count 1.28 1.87 2.61 2.68
Count & Idx 1.19 1.88 2.59 2.66

Table 4. Computation times in milliseconds for different
landmark orderings. Precomputing yields ordering invari-
ance. Idx sorts by the minimum observing image ID and
Count by observation count. Count & Idx sorts by observa-
tion count and breaks ties by minimum observing image ID.
Random is self-explanatory. Dataset is EuRoC of Sec. 8.1.

Time spent on sorting itself must also be taken into
account. Increased preprocessing times associated with
complex ordering schemes may nullify their benefits.

We present a heuristic compromise addressing all
three concerns. First, group images by camera and
sort images within each group by their image ID in the
underlying SfM model. This is a reasonable proxy for
sorting by covisibility when the model stems from in-
cremental SfM [40]. Even global SfM exhibits natural
covisibility grouping by virtue of starting from pairwise
reconstructions [23]. Secondly, sort landmarks by ob-
servation count, breaking ties by the lowest observing
image ID. This ordering is easily realized and improves
throughput substantially as seen in Tab. 4.

7. Single-Precision Synthesis
Using single-precision floating-point arithmetic is de-
sirable from a performance perspective. Memory con-
sumption is halved while arithmetic throughput and
effective cache size are doubled. Implementations tar-
geting consumer-grade GPUs seldom have a choice as
such systems typically have limited double-precision
support. This section presents solutions to issues en-
countered during our foray into single-precision BA.

7.1. Avoiding Catastrophic Cancellation
The absolute precision of IEEE-754 floats halves with
every doubling of magnitude [12]. We encountered
catastrophic cancellation when subtracting image and
landmark positions (the first step of projection) far
from the origin. Shifting the coordinate system origin
to the midrange of all image positions remedied this.

Near-zero depth landmark observations also induce
catastrophic cancellation. As preprocessing we project
all landmarks in both single- and double-precision, then
disconnect observations where the difference exceeds
0.005 pixels. Inspection revealed such observations
were, almost without exception, erroneous anyway.

101 102 103 104

κ

ht

hr

Unscaled – h

Jacobi – h

Proposed – h

Figure 4. Condition numbers of full (h) blocks of Hpp com-
pared to translation (ht) and rotation (hr) sub-blocks in
isolation. Our variable scaling scheme improves condition-
ing as effectively as Jacobi scaling. Dataset is EuRoC.

7.2. Balancing Translation and Rotation
Blocks of Hpp are ill-conditioned when no variable scal-
ing is performed. This causes H-1

pp (used for precondi-
tioning) to be inaccurately computed, which in turn
leads to numerical failure. This issue is usually mit-
igated through Jacobi scaling [1, 7, 39], where each
optimization variable is assigned a distinct numerical
scaling factor derived from the augmented Hessian.

Jacobi scaling is unfortunately detrimental to
matrix-free methods. Every fetch of an image pose
from memory described in Sec. 6 would need to include
all six associated scaling factors, thereby reducing effec-
tive cache size. A compact alternative to the general-
purpose Jacobi scaling strategy is therefore necessary.

Note initially that every 6 × 6 block of Hpp can be
further subdivided into four 3 × 3 blocks:

hi =
(

ht
i htr

i

hrt
i hr

i

)
(9)

where t and r signify translation and rotation compo-
nents of the block hi associated with image i.

Figure 4 shows that sub-blocks ht and hr are well-
conditioned when considered in isolation, indicating
that numerical scale differences between translation
and rotation components cause blocks of Hpp to be
ill-conditioned. Uniformly applied global scaling does
not address this, as the imbalance varies by image.

Motivated by these observations, we introduce a sin-
gle numerical scaling factor si unique to each image i:

si =

√
tr(hr

i)
tr(ht

i)
(10)

Jacobian entries related to translation are scaled
equally by this factor. No variable scaling of rotation is
performed. Inspecting Fig. 4 reveals that the proposed
variable scaling scheme improves conditioning as effec-
tively as Jacobi scaling despite its simplicity.

Scaling factors are stored together with image poses
to aid alignment and improve caching.

27021

0 0.2 0.4 0.6 0.8 1
Parallax Angle [◦]

105

107

109

κ

Figure 5. Condition numbers of Hll blocks as a function of
associated landmark parallax angle. Dataset is EuRoC.

7.3. Handling Low-Parallax Landmarks
The Schur complement requires computing the inverse
of the block diagonal matrix Hll. Blocks corresponding
to low-parallax landmarks are ill-conditioned (Fig. 5)
and cannot be reliably inverted under single-precision.
While such landmarks are customarily removed dur-
ing preprocessing, we observed instances of numerical
failure stemming from parallax decreasing drastically
during the BA process itself. Low-parallax landmarks
must therefore be handled properly inside the BA loop.

Utilizing the pseudo-inverse H+
ll resolves the issue

by preventing perturbation in the degenerate depth di-
rection of troublesome landmarks, but is unfortunately
too computationally costly to apply to all blocks of Hll.

We propose a compromise inspired by the pseudo-
inverse implementation of the popular linear algebra
library Numpy[13], which from the SVD A = UΣV T

computes the pseudo-inverse as A+ = V Σ+U T where:

Σ+
i =

{
1/Σi if Σi > τ max Σ
0 otherwise

(11)

The constant τ is determined from machine precision.
Equation (11) implies that the pseudo-inverse is only

necessary for blocks where κ (A) > 1
τ . Frustratingly,

exact condition number calculation is a computation-
ally heavy task as well. In order to circumvent this, we
employ the easily obtained upper bound for symmetric
positive-definite matrices discovered by [18] instead:

κ (A) ≤ 1 +
√

1 − (n / tr A)n det A

1 −
√

1 − (n / tr A)n det A
(12)

where n = 3 is the matrix size. Although this sub-
stitution causes the pseudo-inverse to be unnecessar-
ily applied to a few well-conditioned landmark blocks,
the overhead associated with this is dwarfed by savings
from avoiding exact condition number computation.

Note that the presented approach does not assume
shared intrinsics, meaning it may be readily integrated
into any existing single-precision BA pipeline.

8. Experiments
We evaluate the impact of ideas presented within this
paper by synthesizing and comparing three matrix-free
solvers against the industry standard (and virtually
only option) for shared intrinsics BA: Ceres[2].

Our CPU solvers CPU-f64 and CPU-f32 compute in
double- and single-precision respectively. Applicabil-
ity to GPUs is demonstrated through GPU-f32 imple-
mented in CUDA. All solvers have their Levenberg-
Marquardt loops meticulously modeled after Ceres’.

8.1. Datasets
As no equivalent to BAL[1] for the SI-BA case exists
to our knowledge, we generate and share COLMAP[33]
models from datasets known by the wider community:
■ Tanks & Temples (Courthouse)[16]:

Used for benchmarking 3D reconstruction and view
synthesis – most recently for Gaussian Splatting[15].

■ EuRoC (V1-01)[3]:
A mainstay of the visual SLAM community which
figures in well-known works such as [4] and [26].

■ Aachen (Day-Night)[31]:
Prominent in visual localization research [32][29].
We use the SfM model released by the authors com-
posed of three overlapping incremental sequences
(and a photo collection component which we omit).

■ KITTI (00)[10]:
A classic of the autonomous vehicle community [5].
All images within stem from car-mounted cameras.

■ LaMAR (LIN)[30]:
Collection focused on large-scale AR. We were un-
able to construct a non-degenerate SfM model of
the entire LIN dataset and settled for a subset of
the mapping sequence reliably reconstructed.

See Tab. 5 for summary statistics. All SfM models use
the COLMAP RADIAL camera model, except Aachen
which uses SIMPLE RADIAL and LaMAR which uses
PINHOLE. Gaussian noise is added to initial image and
landmark positions to increase BA difficulty.

Cam
era

s

Im
age

s

Lan
dm

ark
s

Obse
rva

tio
ns

T&T 1 1106 223 290 1 294 841
Aachen 3 2369 889 342 5 022 411
EuRoC 1 2812 68 163 1 907 064
KITTI 1 4541 526 740 2 826 328

LaMAR 20 22 144 2 211 368 9 252 244

Table 5. Summary statistics of each dataset.

27022

10-2

10-3

10-4τ
-F

ix
ed

T&T Aachen EuRoC KITTI LaMAR
Ceres
CPU-f64
CPU-f32
GPU-f32

0 2

10-2

10-3

10-4

τ
-D

yn
am

ic

0 15 0 2
Runtime (s)

0 5 0 30

Figure 6. Achieved tolerance as a function of runtime. Tolerances tighter than τ = 10-4 are not achievable by GPU-f32 on
KITTI due to our rather rudimentary implementation lacking fundamental floating point error accumulation mitigations.

Ceres CPU-f64 CPU-f32 GPU-f32

T&T Aachen EuRoC KITTI LaMAR

2.
6

10
.4

3.
6

5.
6

29
.1

0.
6

2.
3

0.
8

1.
3

7.
6

0.
3

1.
3

0.
4

0.
7

3.
2

0.
1

0.
2

0.
2

0.
2

0.
7

(a) Fixed Intrinsics – τ = 0.001

T&T Aachen EuRoC KITTI LaMAR

1.
4

5.
6

2.
0

3.
1

10
.7

0.
3

1.
2

0.
4

0.
7 2.
7

0.
2

0.
7

0.
2

0.
4 1.
6

0.
1

0.
2

0.
1

0.
1

0.
5

(b) Fixed Intrinsics – τ = 0.1

T&T Aachen EuRoC KITTI LaMAR

6.
6

31
.9

10
.0

13
.4

32
.6

0.
7 5.
7

0.
9 1.
9

23
.8

0.
4 3.
1

0.
6

1.
0 13

.1

0.
4

0.
8

0.
5

0.
5 2.
7

(c) Dynamic Intrinsics – τ = 0.001

T&T Aachen EuRoC KITTI LaMAR

3.
5

10
.8

5.
2

6.
9

17
.1

0.
4 2.
1

0.
4 0.
9

12
.1

0.
2 1.
1

0.
3

0.
5 6.

8

0.
3

0.
6

0.
4

0.
4

1.
4

(d) Dynamic Intrinsics – τ = 0.1

Figure 7. Time in seconds to reach τ .

8.2. Settings and Setup
Both dynamic (intrinsics vary freely) and fixed (intrin-
sics are kept constant) configurations are evaluated.

Levenberg-Marquardt iterations are capped at 100.
PCG iterations are fixed at 50 to minimize pseudo-
random fluctuations from forcing sequence thresholds.
A 1 pixel Huber loss is applied. Block Jacobi precon-
ditioning is used as recommended by [39].

The implicit Schur method was used for Ceres (ex-
plicit RCS generation worsened performance). Prepro-
cessing time is removed from Ceres timings to make
comparison fair, as it includes error checking and book-
keeping which our specialized solvers don’t require.
Timings of our solvers do include all preprocessing.

A Windows 10 laptop with 32GB of RAM, a 14 core
Intel i7-12800H processor and an NVIDIA RTX 3080
(mobile) GPU constitutes the experimental test bench.

8.3. Results
8.3.1. Runtime
Following precedence[7, 17, 38] we measure the time to
reach a target cost Eτ = E∗ + τ(E0−E∗) where E0 is
the initial cost before BA, E∗ the lowest cost achieved
by any solver (a substitute for the theoretical minimum
cost) and Eτ the cost associated with the tolerance τ .

Figure 6 shows that our solvers provide significant
runtime reductions at any tolerance. Detailed results
for τ = 0.1 and τ = 0.001 (see Fig. 7) reveal speedups of
roughly 4x (CPU-f64), 8x (CPU-f32) and 20x (GPU-f32)
over Ceres. Reduced performance on LaMAR when not
keeping intrinsics constant will be discussed in Sec. 8.4.

27023

lo
gE

Fi
xe

d
T&T Aachen EuRoC KITTI LaMAR

lo
gE

D
yn

am
ic

3 4 5 6
Iteration

Ceres
CPU-f64
CPU-f32
GPU-f32

Figure 8. Convergence curves for fixed and dynamic intrinsics.

T&T
Aach

en

EuR
oC

KIT
TI

LaM
AR

D
yn

Ceres 1102 4333 1303 2548 8715
CPU-f64 125 571 100 300 3022
CPU-f32 81 358 74 192 1652

Fi
x Ceres 1029 4118 1192 2381 8325

CPU-f64 110 446 95 263 983
CPU-f32 73 296 71 173 632

Table 6. Peak memory consumption in megabytes.

8.3.2. Memory Consumption
Peak memory consumption is given in Tab. 6. Pro-
posed data structures and matrix-free methods lead to
an order of magnitude reduction in memory consump-
tion compared to Ceres. Note however that this is not
the case when estimating intrinsics on LaMAR.

8.3.3. Convergence Characteristics
Cost reduction per iteration is seen in Fig. 8 to be
virtually indistinguishable between CPU-f64 and Ceres.
Single-precision solvers CPU-f32 and GPU-f32 deviate
slightly yet exhibit rather remarkable robustness. Run-
time improvements noted in Sec. 8.3.1 stem therefore
not from superior convergence characteristics, but in-
stead from efforts on accelerating core computations.

8.4. Discussion
Runtime and memory consumption of presented BA
solvers suffers when refining intrinsics on LaMAR.
Choosing to represent Hcl as a dense matrix is the root
cause, as high camera counts lead to increased sparsity
of Hcl (see Sec. 5). Extending the matrix-free compu-
tation scheme of Sec. 6 to include Hcl could resolve this
issue, albeit at the cost of implementation complexity.
We leave this challenge as potential future work.

Another matter warranting commentary is the sur-
prising 4x speedup observed even when computing un-
der double-precision, since extrapolation from Tables 2
and 4 suggests a twofold increase in throughput at best.

The remainder is addressed by noting that Ceres, in
line with [39], executes products with the augmented
Hessian H through the Jacobian J and its transpose.
While elegant and allowing for easy integration of addi-
tional terms like pose priors, this slows down PCG iter-
ations considerably as J scales with observation count
in a manner similar to H. The authors of [39] chose
this strategy to circumvent the considerable cost and
complexity associated with generating Hpl and Hlp.

As our matrix-free approach never explicitly creates
these matrices, it reaps the benefits of using the aug-
mented Hessian without paying the customary matrix
construction overhead. Indeed, this is the true bene-
fit of our proposed method. The fact that matrix-free
products are faster than their precomputed variants,
while significant in its own right, is an ancillary result.

9. Conclusion
Algorithms and data structures tailored to SI-BA were
presented. Experiments demonstrated remarkable re-
ductions in runtime and memory consumption. Cru-
cially, it was shown that SI-BA based on explicitly gen-
erated normal equations is memory bound and that our
proposed matrix-free approach boosts performance be-
yond limits set by the memory subsystem. Applicabil-
ity to GPUs was proven through synthesizing a solver
outperforming CPU variants. Additionally, analysis
of single-precision instability yielded two novelties: a
compact alternative to Jacobi scaling and a performant
method of handling low-parallax landmarks.

While BA on photo collections has been exhaus-
tively studied, this exploratory paper has unearthed
optimizations intrinsic to SI-BA. We hope to inspire
further work on this issue of great practical concern.

27024

References
[1] Sameer Agarwal, Noah Snavely, Steven M Seitz, and

Richard Szeliski. Bundle adjustment in the large. In
Computer Vision–ECCV 2010: 11th European Con-
ference on Computer Vision, Heraklion, Crete, Greece,
September 5-11, 2010, Proceedings, Part II 11, pages
29–42. Springer, 2010. 1, 2, 5, 6

[2] Sameer Agarwal, Keir Mierle, et al. Ceres solver: Tu-
torial & reference. Google Inc, 2(72):8, 2012. 1, 6

[3] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus W
Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics
Research, 35(10):1157–1163, 2016. 6

[4] Carlos Campos, Richard Elvira, Juan J Gómez
Rodŕıguez, José MM Montiel, and Juan D Tardós.
Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transac-
tions on Robotics, 37(6):1874–1890, 2021. 6

[5] Long Chen, Yuchen Li, Chao Huang, Bai Li, Yang
Xing, Daxin Tian, Li Li, Zhongxu Hu, Xiaoxiang Na,
Zixuan Li, et al. Milestones in autonomous driving and
intelligent vehicles: Survey of surveys. IEEE Transac-
tions on Intelligent Vehicles, 8(2):1046–1056, 2022. 6

[6] Shrutimoy Das, Siddhant Katyan, and Pawan Kumar.
A deflation based fast and robust preconditioner for
bundle adjustment. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 1782–1789, 2021. 2

[7] Nikolaus Demmel, Christiane Sommer, Daniel Cre-
mers, and Vladyslav Usenko. Square root bundle ad-
justment for large-scale reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11723–11732, 2021. 1, 2, 5,
7

[8] Jack Dongarra, Sven Hammarling, Nicholas J Higham,
Samuel D Relton, Pedro Valero-Lara, and Mawussi
Zounon. The design and performance of batched blas
on modern high-performance computing systems. Pro-
cedia Computer Science, 108:495–504, 2017. 3

[9] Ryan Eberhardt and Mark Hoemmen. Optimization
of block sparse matrix-vector multiplication on shared-
memory parallel architectures. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 663–672. IEEE, 2016. 3

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE conference on com-
puter vision and pattern recognition, pages 3354–3361.
IEEE, 2012. 6

[11] Evangelos Georganas, Kunal Banerjee, Dhiraj
Kalamkar, Sasikanth Avancha, Anand Venkat,
Michael Anderson, Greg Henry, Hans Pabst, and
Alexander Heinecke. Harnessing deep learning via
a single building block. In 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), pages 222–233. IEEE, 2020. 3

[12] David Goldberg. What every computer scientist
should know about floating-point arithmetic. ACM
computing surveys (CSUR), 23(1):5–48, 1991. 5

[13] Charles R Harris, K Jarrod Millman, Stéfan J Van
Der Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. Array programming with
numpy. Nature, 585(7825):357–362, 2020. 6

[14] Siddhant Katyan, Shrutimoy Das, and Pawan Kumar.
Two-grid preconditioned solver for bundle adjustment.
In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 3599–3606,
2020. 2

[15] Bernhard Kerbl, Georgios Kopanas, Thomas
Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM
Trans. Graph., 42(4):139–1, 2023. 1, 6

[16] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and
Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions
on Graphics (ToG), 36(4):1–13, 2017. 6

[17] Avanish Kushal and Sameer Agarwal. Visibility based
preconditioning for bundle adjustment. In 2012 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1442–1449. IEEE, 2012. 2, 7

[18] Jorma Kaarlo Merikoski, Uoti Urpala, Ari Virtanen,
Tin-Yau Tam, and Frank Uhlig. A best upper bound
for the 2-norm condition number of a matrix. Linear
algebra and its applications, 254(1-3):355–365, 1997. 6

[19] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):
99–106, 2021. 1

[20] Pierre Moulon, Pascal Monasse, Romuald Perrot, and
Renaud Marlet. OpenMVG: Open multiple view geom-
etry. In International Workshop on Reproducible Re-
search in Pattern Recognition, pages 60–74. Springer,
2016. 1

[21] John Nickolls, Ian Buck, Michael Garland, and Kevin
Skadron. Scalable parallel programming with cuda: Is
cuda the parallel programming model that application
developers have been waiting for? Queue, 6(2):40–53,
2008. 4

[22] Jorge Nocedal and Stephen J Wright. Numerical opti-
mization. Springer, 1999. 2

[23] Linfei Pan, Daniel Barath, Marc Pollefeys, and Jo-
hannes Lutz Schönberger. Global Structure-from-
Motion Revisited. In European Conference on Com-
puter Vision (ECCV), 2024. 1, 5

[24] Matt Pharr and William R Mark. ispc: A spmd com-
piler for high-performance cpu programming. In 2012
Innovative Parallel Computing (InPar), pages 1–13.
IEEE, 2012. 4

[25] Marc Pierrot Deseilligny and Isabelle Cléry. Apero, an
open source bundle adjusment software for automatic
calibration and orientation of set of images. The In-
ternational Archives of the Photogrammetry, Remote

27025

Sensing and Spatial Information Sciences, 38:269–276,
2012. 2

[26] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono:
A robust and versatile monocular visual-inertial state
estimator. IEEE transactions on robotics, 34(4):1004–
1020, 2018. 6

[27] Jie Ren, Wenteng Liang, Ran Yan, Luo Mai, Shiwen
Liu, and Xiao Liu. Megba: A gpu-based distributed
library for large-scale bundle adjustment. In Euro-
pean Conference on Computer Vision, pages 715–731.
Springer, 2022. 1, 2

[28] Yousef Saad. Iterative methods for sparse linear sys-
tems. SIAM, 2003. 3

[29] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart,
and Marcin Dymczyk. From coarse to fine: Robust
hierarchical localization at large scale. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12716–12725, 2019. 6

[30] Paul-Edouard Sarlin, Mihai Dusmanu, Johannes L
Schönberger, Pablo Speciale, Lukas Gruber, Vik-
tor Larsson, Ondrej Miksik, and Marc Pollefeys.
Lamar: Benchmarking localization and mapping for
augmented reality. In European Conference on Com-
puter Vision, pages 686–704. Springer, 2022. 6

[31] Torsten Sattler, Tobias Weyand, Bastian Leibe, and
Leif Kobbelt. Image retrieval for image-based localiza-
tion revisited. In BMVC, page 4, 2012. 6

[32] Torsten Sattler, Will Maddern, Carl Toft, Akihiko
Torii, Lars Hammarstrand, Erik Stenborg, Daniel Sa-
fari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic,
et al. Benchmarking 6dof outdoor visual localization
in changing conditions. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 8601–8610, 2018. 6

[33] Johannes L Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 4104–4113, 2016. 1, 6

[34] Johannes L Schönberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selec-
tion for unstructured multi-view stereo. In Computer
Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part III 14, pages 501–518. Springer, 2016.
1

[35] Christopher Sweeney, Tobias Hollerer, and Matthew
Turk. Theia: A fast and scalable structure-from-
motion library. In Proceedings of the 23rd ACM in-
ternational conference on Multimedia, pages 693–696,
2015. 1

[36] Bill Triggs, Philip F McLauchlan, Richard I Hartley,
and Andrew W Fitzgibbon. Bundle adjustment—a
modern synthesis. In Vision Algorithms: Theory
and Practice: International Workshop on Vision Al-
gorithms Corfu, Greece, September 21–22, 1999 Pro-
ceedings, pages 298–372. Springer, 2000. 1, 2

[37] Shimon Ullman. The interpretation of structure from
motion. Proceedings of the Royal Society of Lon-

don. Series B. Biological Sciences, 203(1153):405–426,
1979. 1

[38] Simon Weber, Nikolaus Demmel, Tin Chon Chan,
and Daniel Cremers. Power bundle adjustment for
large-scale 3d reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 281–289, 2023. 1, 2, 7

[39] Changchang Wu, Sameer Agarwal, Brian Curless, and
Steven M Seitz. Multicore bundle adjustment. In
CVPR 2011, pages 3057–3064. IEEE, 2011. 1, 2, 5,
7, 8

[40] Zhichao Ye, Guanglin Li, Haomin Liu, Zhaopeng Cui,
Hujun Bao, and Guofeng Zhang. Coli-ba: Compact
linearization based solver for bundle adjustment. IEEE
Transactions on Visualization and Computer Graph-
ics, 28(11):3727–3736, 2022. 1, 5

[41] Runze Zhang, Siyu Zhu, Tian Fang, and Long Quan.
Distributed very large scale bundle adjustment by
global camera consensus. In Proceedings of the IEEE
International Conference on Computer Vision, pages
29–38, 2017. 1, 2

[42] Lei Zhou, Zixin Luo, Mingmin Zhen, Tianwei Shen,
Shiwei Li, Zhuofei Huang, Tian Fang, and Long Quan.
Stochastic bundle adjustment for efficient and scalable
3d reconstruction. In European Conference on Com-
puter Vision, pages 364–379. Springer, 2020. 2

27026

