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Abstract

As sketch research has collectively matured over time, its
adaptation for at-mass commercialisation emerges on the
immediate horizon. Despite an already mature research en-
deavour for photos, there is no research on the efficient in-
ference specifically designed for sketch data. In this pa-
per, we first demonstrate existing state-of-the-art efficient
light-weight models designed for photos do not work on
sketches. We then propose two sketch-specific components
which work in a plug-n-play manner on any photo effi-
cient network to adapt them to work on sketch data. We
specifically chose fine-grained sketch-based image retrieval
(FG-SBIR) as a demonstrator as the most recognised sketch
problem with immediate commercial value. Technically
speaking, we first propose a cross-modal knowledge distil-
lation network to transfer existing photo efficient networks
to be compatible with sketch, which brings down number
of FLOPs and model parameters by 97.96% percent and
84.89% respectively. We then exploit the abstract trait of
sketch to introduce a RL-based canvas selector that dynam-
ically adjusts to the abstraction level which further cuts
down number of FLOPs by two thirds. The end result is
an overall reduction of 99.37% of FLOPs (from 40.18G to
0.254G) when compared with a full network, while retain-
ing the accuracy (33.03% vs 32.77%) — finally making an
efficient network for the sparse sketch data that exhibit even
fewer FLOPs than the best photo counterpart.

1. Introduction

A significant movement in the late computer vision litera-
ture has been that of model efficiency. This effort has been
largely driven by the on-the-edge deployments of vision
models. With great strides made on networks specifically
tackling photo data (MobileNet [54], EfficientNet [63], etc),
there however has been surprisingly no work targeting hu-
man sketches [72]. This is despite the abundance of work
specifically addressing sketch data [47] and its unique traits:
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Figure 1. Our SketchyNetV1 compresses existing heavy FG-
SBIR networks to deliver smaller models. Further enhanced via
a canvas-selector module our SketchyNetV2 model minimises
sketch-resolution dynamically to reduce FLOPs.

sequential [22], abstract [60], or stroke-wise [10], style-
diversity [51], and data-scarcity [6, 20, 43]. This is partic-
ularly disappointing for the problem of fine-grained sketch-
based image retrieval (FG-SBIR), which is perhaps the
single-most studied sketch task [2, 7, 9, 13, 40, 43, 53, 75]
that has already matured for at-mass commercial adoption,
and is our problem of choice in this paper.

One would think that state-of-the-art models designed
for photos would work as-is for sketches, treating sketch
data as raster images (which sketch is not). As our first con-
tribution, we preempt this thought via a pilot study to prove
its false nature. In particular, we borrow MobileNetv2 [54]
as a backbone network to construct a typical triplet loss
based network for FG-SBIR. Results show a reduction of
almost 37% (relative) in retrieval accuracy when compared
with a typical VGG-16 backbone [57]. The focus of this
paper is however not to design entirely new sketch-specific
efficient networks from scratch — lots of good efficient photo
networks already exist. Our goal instead is to adapt existing
photo networks to work with sketch, by introducing generic
sketch-specific designs that work in a plug-n-play manner.

We first tackle the problem highlighted in the said pilot
study — to make existing photo efficient networks perform
on the same level as large networks on FG-SBIR. We argue
the reason behind why the likes of MobileNetV2 did not
work off-the-shelf is that the limited set of parameters could
not accommodate the fine-grained nature of sketches (i.e.,
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sketches are highly expressive in capturing fine-grained vi-
sual details [72]) for sketch and photo matching. For that,
we introduce a knowledge distillation (KD) paradigm [48]
to adapt this sketch trait onto efficient photo networks. The
core idea is to induce strong semantic knowledge between
a sketch and its photo, in the embedding space of a student,
from a deep and high performing teacher. This particularly
helps the efficient model to achieve on par performance
with the deep variant without having a large parameter size.
However, ours being a cross-modal retrieval, naively adapt-
ing standard KD paradigms involving logit distillation [3]
would be sub-optimal. We therefore aim to preserve cross-
modal pairwise distances among instances, and in turn the
structural consistency of the teacher’s discriminative em-
bedding space in the student. The result is already an
efficient FG-SBIR model (which we term SketchyNetV1)
that reduces the number of FLOPs from 40.18G (VGG-16
based model[51]) to 0.833G (our MobileNetV2-based) — a
roughly 48 times reduction (Fig. | left).

This abstract nature of human sketch [16] can also be
exploited, to further reduce the FLOPs. The hypothesis is
that since sketches are essentially abstract depictions of im-
ages, they should carry a similar level of semantic infor-
mation even when rendered at much lower resolutions, and
that more abstract a sketch is the more information com-
pact it is (i.e., can sustain even lower resolutions). For that,
we conducted another pilot study (Sec. 3), where we show
unlike photos, sketches can sustain retrieval accuracy with
much lower resolutions (4% vs 15% at 32x32), and 30%
of those query sketches achieving perfect retrieval at full-
resolution, when downsized to 32x32 can still retrieve ac-
curately (Fig. 2 right). This motivated us to design a can-
vas selector that can choose the right resolution on-the-fly to
render a sketch before feeding to the network. This is thanks
to another unique trait of sketch data — they come in vector
format and can be freely rendered to any resolution with-
out extra overhead. Accomplishing this however is non-
trivial since this selection process of canvas-size involves
a discrete decision, thus invoking non-differentiability. We
thus leverage reinforcement learning [9] to bypass these is-
sues and train an abstraction-aware canvas-size selector as
a policy network for our model, which estimates the opti-
mal canvas-size required for the input sketch. The FG-SBIR
model, acting as a critic, calculates reward for the canvas-
selector, balancing between accuracy and FLOPs, that trains
the policy network. With this further trait of sketches ad-
dressed, our final model (SketchyNetV2) was able to further
reduce FLOPs by a factor of 3.28 (from 0.833G to 0.254G),
while retaining a retrieval accuracy similar to the full model
(33.03 vs 32.77), exactly as one would imagine sketch effi-
cient networks to entail (sketches being sparse).

In summary, our contributions are: (a) the first investiga-
tion towards efficient sketch networks from existing photo

ones (b) a knowledge distillation framework specifically de-
signed to cater to the fine-grained nature of sketches, (c)
a canvas-size selector that caters to the abstract nature of
sketches, which further reduces FLOPs by two-thirds. Ex-
tensive experiments show our method to perform at par with
existing state-of-the-arts, while being superiorly efficient.

2. Related Work

Fine-grained SBIR: Compared to category-level SBIR
[17, 19, 36, 52], Fine-Grained SBIR (FG-SBIR) focuses
on retrieving a single photo instance from a category-
specific gallery based on a query sketch. Introduced as a
deep triplet-ranking Siamese network [75], FG-SBIR has
evolved with attention-based modules [59], textual tags
[58], hybrid cross-domain generation [42], hierarchical co-
attention [50], and various pre-training strategies like mixed
modal jigsaw solving [44], reinforcement learning [6], and
transformer-based knowledge distillation [53]. Addressing
sketch-specific traits like style diversity [51], data scarcity
[7], and sketch stroke redundancy [9], improvements have
been made for enhanced retrieval [53]. Recently it was ex-
tended to scene-level (retrieve a scene-image, given a scene-
sketch), employing cross-modal region associativity [13]
and enhanced using text-queries [46]. However, sketch-
specific computational efficiency has largely been ignored
— which we address here in this paper.

Towards Computational Efficiency: Addressing large-
scale deployment, research emerging in computational effi-
ciency [1], include network pruning [37], quantisation [21],
binarisation [ 18], knowledge distillation [25], input-size op-
timisation [62], or their combinations [1]. Network prun-
ing [23, 68] involves discovering and dropping low impact
weights or channels of a pre-trained large network, while
retaining its original accuracy. Contrarily, quantisation di-
rectly reduces the bit-width of parameter-values [21] and
gradients [77], by replacing floating-point computations
with faster and cheaper low-precision fixed-point num-
bers [34]. Its extreme version, binarisation [18], bina-
rises weights and activations. Knowledge Distillation aims
at transferring knowledge of a large pre-trained feacher
network to a smaller student for cost-effective deploy-
ment. Existing techniques leverage output logits [3], hid-
den layers [48], attention-maps [76], or neuron selectiv-
ity pattern [28] of pre-trained teachers for the same. Self-
distillation [4] employs the same network for both student
and teacher models, to further reduce compute. Input-
resolution optimisation on the other hand involves replac-
ing a high-resolution input image with its down-scaled low-
resolution version [62], to reduce overall compute [73],
while retaining accuracy. Relevant works explored dynamic
usage of high-resolution data [64] or patch proposals for
strategic image-cropping [69], where the learnable resizer
[62] operates on the original image resolution. All such
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Table 1. Performance & computational cost for various networks

Model FLOPS Parameters Time (ms) Acc@]
VGG-19 [57] 51.06G 20.02M 101 33.63
VGG-16 [57] 40.18G 14.71M 084 33.03
ResNet-101 [24] 20.50G 42.50M 155 21.77
DenseNet-201 [26] 11.40G 18.09M 335 23.62
ResNet-50 [24] 10.76G 23.51M 086 21.32
InceptionV3 [75] 07.72G 21.79M 134 24.27
ResNet-18 [24] 4.76G 11.18M 036 20.72
EfficientNet [63] 1.05G 04.01M 112 2247
MobileNetV2 [54] 0.83G 02.22M 070 20.85

methods however cater to compressing image-specific mod-
els, which if used off-the-shelf for FG-SBIR would fail to
address the sparse manner in which sketches are represented
[8]. We thus propose a sketch-specific light-weight FG-
SBIR model, tackling sparsity in sketches.

Reinforcement Learning in Vision (RL): Applying
RL [29] to computer vision problems [33, 67] is common-
place of late. Whenever quantifying the goodness of the
network’s state is non-differentiable, like selecting which
regions to crop in an image [31], RL comes in handy. In
sketch community, RL has found use in retrieval [6, 7],
modelling sketch abstraction [39, 40], designing competi-
tive sketching agents [5] and as a stroke-selector [9]. Here,
we leverage RL for optimising a canvas-size selector for a
computationally efficient retrieval model.

3. Pilot Study

Backbone Network for FG-SBIR:  Amongst popular
backbones used in recent FG-SBIR literature [6, 7, 50, 51],
are VGG-16 [30] and Inception-V3 [75]. Others like
ResNet18 [24] and EfficientNet [63], though cheaper and
prevalent in vision [24] are rarely used in FG-SBIR. Ex-
ploring their potential in FG-SBIR, we train a baseline FG-
SBIR model, plugging in popular ones as backbones for
our study. Table | reports their parameter-count, FLOPs,
time for feature-extraction per sample and Top-1 accuracy
(Sec. 5) on standard QMUL-ShoeV?2 dataset [75]. Despite
scoring more than VGG-16 on image-classification [65],
ResNet50 [24] performs poorly — indicating that modelling
fine-grained sketch-photo association needs networks with
higher FLOPs. Despite delivering better accuracies, heavier
networks cost far more resources. We thus aim for a lighter
model that achieves accuracy like a larger one.

Dynamic Sketch-canvas-size: ~ Unlike photos that hold
pixel-dense information, sketches are sparse black and
white lines. This begs the question, if a sketch rendered
at a higher resolution with added computational burden
would convey any extra semantic information than at a
lower one. To answer this, we focus on vector-format of
sketches [7], where every sketch vector s, can be charac-
terised as a sequence of points (v1,v2, - -+ ,vr), and ren-
dered to any canvas-size (c) as a raster-image (s,) via ras-
terisation R°(-) : s, — s¢ where s¢ € ReX*3, A single
baseline FG-SBIR model (VGG-16) is trained and tested
on full-resolution images, and sketches rendered at varying
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Figure 2. Pilot study for varying canvas-size (see text above).

canvas-sizes from C={32 x 32,---,256 x 256}. Compar-
ing sparse sketches versus photos, we train an equivalent
fine-grained image-based image retrieval (FG-IBIR) where
only the query against a positive photo is constructed us-
ing random augmentation [11] and resized to correspond-
ing canvas-size c;. Gallery photo-features for both are
kept pre-computed. While FG-IBIR accuracy falls rapidly
(Fig. 2 left), FG-SBIR stays relatively stable against de-
creasing canvas-sizes, as photos (unlike sketches) contain-
ing pixel-dense perfect information, lose a lot of it while
down-scaling. Furthermore, positive accuracy of FG-SBIR
at 32 x 32, shows some sketches to hold sufficient semantic
information for retrieval even at minimal canvas-size. Fig. 2
(right) shows overall QMUL-ShoeV2[75] statistics where
each bar represents the smallest canvas-size, at which bar-
height percentage of sketches achieve perfect retrieval (tak-
ing total sketches achieving perfect retrieval at 256256 as
100%). This infers that every sketch has its own optimal
canvas, and fixing it (Fig. 2 left), for the entire dataset would
always be sub-optimal. Moreover, the optimal canvas-size
for a sketch, depends on its extent of sparsity, for which
neither hard-ground-truth exists, nor is it knowable from the
user’s end. Finally, brute force discovery at every size being
infeasible during inference, motivates us to design a learn-
able adaptive canvas-size selector for sketches.

4. Methodology

Overview: Our pilot study motivates us to extend a stan-
dard FG-SBIR framework towards computational efficiency
by first introducing SketchyNetVI via knowledge distilla-
tion, and then taking it further to SketchyNetV2 via dynamic
sketch canvas-size selection. Importantly, these are done
without hurting the original performance of large-scale
slower baseline model. In particular, there are two phases
of improvement for computational efficiency. Firstly, we
train a teacher model F7; as a standard baseline FG-SBIR
model (Sec. 3). Once trained, its rich semantic knowl-
edge is transferred to a smaller student network Fy; via a
knowledge distillation (KD) paradigm, which we name as
SketchyNetV1. Next, we train a canvas-size selector that
adaptively decides optimal canvas-size or resolution per
sketch for SketchyNetV2 that would be sufficient to pre-
serve the retrieval performance while reducing the number
of FLOP operations in feature extraction significantly.

Baseline FG-SBIR model: Keeping aside complex pre-
training [44] or joint-training [7], we focus on a simple
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Figure 3. Two stage framework. (Left) SketchyNetV1: A smaller student network (Fs;) is trained from a larger pre-trained teacher (Fr)
via KD (§4.1). (Right) We progress to SketchyNetV2 by training a canvas-size selector directed by objectives of increasing performance
and reducing compute. It takes sketch as a vector (s,) and aims to predict an optimal canvas-size at which the sketch is rasterised (s;). s,
when processed by Fs; minimises overall FLOPS, while retaining accuracy of corresponding full-resolution sketch-image.

triple-branch state-of-the-art Siamese network [75] which
remains a strong baseline so far [7, 50, 51]. A VGG-16 [30]
pre-trained on ImageNet [49] acts as the shared backbone
for each branch. Given an input image I, a d dimensional
feature embedding is extracted from the backbone network
F using global average pooling followed by /5 normalisa-
tionas f; € RY. The model is trained on triplets comprising
features of an anchor sketch (f;), its matching positive (f,)
photo and a random non-matching negative photo (f,), via
a triplet loss [70]. Triplet loss (L) aims to minimise the
distance between sketch and positive photo, while maximis-
ing the same from its negative (n). With 6(a, b) = ||a —
as a distance function and a margin m > 0, we have:

Lri = max{0,m + 6(fs, fp) = 0(fs, fn)} M

4.1. SketchyNetV1: Smaller Model via KD

Based on our pilot study (Sec. 3), if we naively train from an
ImageNet pre-trained standard smaller network (e.g. Mo-
bileNetV2 [54] — usually popular for edge devices), with
simple supervised triplet loss (Eq.1) it can hardly reach the
accuracy (Table 1) obtained by a large network like VGG-
16. Therefore apart from training via a supervised loss on
the sketch-positive-negative triplet (£5L as in Eq.1), we aim
to use the pre-trained larger teacher (e.g. VGG-16) for ad-
ditional supervision. Accordingly, we adhere to Knowledge
Distillation (KD) paradigm [48], a conventional strategy for
model compression, to deliver a light-weight student model
from the larger teacher network [48]. Applying KD to our
FG-SBIR paradigm is however non-trivial. Unlike tradi-
tional KD methods, which often involve logit distillation for
classification tasks, our scenario involves cross-modal re-
trieval. Here, the output is a continuous d-dimensional fea-
ture within a joint-embedding space. Furthermore, straight-
forward regression between teacher and student features for
sketch and photo branches may encounter compatibility is-
sues, given the disparity in the embedding spaces. Ad-
dressing this, if the dimensions of teacher and student em-
beddings differ, an additional feature transformation layer
is necessary for alignment [48]. Overcoming these issues,

we aim to distil the inter-feature distances from respective
teacher networks to the student thus preserving structural
orientation of features in the teacher’s embedding space to
that in the student, during KD (Fig. 3 (left)).

Given features of sketch-positive-negative triplet of
teacher (fI, f1, fI'), we calculate the inter-feature Eu-
clidean distances in the output representation space of
teacher (Fr) using 6(-,-) (Eq.1), as dZ, = 6(fF, fI) : df,
=0(fF, fu) and df, = 6(f), f1). Passing the same sam-
ples through the student, we similarly obtain dZ},, d3!, and
dst using (f5%, £, f3). A smooth [ loss distils the I3 dis-
tances from the teacher to the student. With L5 as a Huber-
loss [27], relational distillation loss for sketch-photo pair
between teacher and student is given as,

CIS{KD = L:é( spy 2;)

Ls(a,b) = {Egﬁl__bb)l a1

where,

ifla—b| < p 2
) otherwise

Similarly, we obtain L%, and Ly p, to compute distil-
lation loss, Lrxp = Lgkp + Lrkp + Ligp- With hyperparameter
A, overall student-training objective becomes:

Lo = A + (1 = A) Lrko (©)
The student trains on varying sketch-canvas-sizes (C'), using their
respective full resolution for teacher, to ensure scale-invariance as
Loy =1 Zle Lfrz(C”. However, as optimal canvas-size varies
across sketches (Fig. 2), we need a learnable canvas-size selector,
dynamically predicting the optimal size for each sketch.

4.2. SketchyNetV2: Adaptive canvas-size Selector

Overview: Understanding that an input at a lower resolution,
would incur lesser FLOPs on evaluation than a higher one, we
upgrade SketchyNetVI (Fs:) to a more computationally efficient
SketchyNetV2 by introducing an adaptive canvas-size selector. It is
designed in the vector modality as it is much cheaper [71] than its
raster-image counterpart, and can dynamically encode the varying
abstraction level of sketches. Furthermore, predicting the optimal
canvas-size from vector modality, would make the corresponding
rasterisation operation R¢(-) at lower sizes cheaper, besides re-
ducing FLOPs in feature extraction. Taking sketch vector s, as
input, ¥ predicts the probability p(c|s,) of choosing one of K
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discreet canvas-sizes from a set of C' = {32x 32, -+ ;256 x 256}.
s, is then rasterised to s¢ € R°**3 with the optimal canvas-size
¢, as R(7) : sy — sy, and fed to Fi; for retrieval.

Selecting an optimal canvas-size however is an ill-posed prob-
lem. Firstly, there are no explicit labels representing the optimal
canvas-size for a sketch. Secondly, annotating the optimal canvas-
size for the whole dataset via brute-force iteration is computation-
ally impractical. We therefore use the pre-trained F; as a critic
to guide the learning of sketch canvas-size selector via Reinforce-
ment Learning [29] as rasterisation is a non-differentiable oper-
ation. There are two major objectives here: a) retain the original
resolution accuracy and b) encourage the use of the lower resolu-
tion to improve the computational efficiency.

Model: Any sequential network from RNN [17] or Trans-
former [35] families can be used to encode the vector-sketch
sv». To recap, sketch-vector (s,) represents a sequence of points
[v1,v2,....v1], where v, = (2¢,vs,q¢,05,¢5) € RT*5; T is
the sequence length, (x,y:) denotes the absolute coordinates in
a normalised ¢ X c canvas, while the last three represent pen-
states [22]. Furthermore, the complexity of canvas-size selector
being dependent on sequence-length (T) varying across sketches,
we use Douglas Peucker Algorithm [66] to limit sequence-length
across all sketch-samples at T, Without losing visual represen-
tation. We feed v; at every time step to a simple 1-layer GRU
network with R% hidden states and take the final hidden state
as the encoded latent representation (f,r € R%). Next, we ap-
ply a linear layer (7) to get p(c|s,) = softmax(W, for + by),
where W., € R%>® and b € R*, as shown in Fig. 3 (right).
Given p(c|s,) € R over K different canvas-sizes for every
Sy, canvas-size ¢ can be sampled from categorical distribution
as cpreq ~ categorical([p(ci|sv), -+ ,p(ck|sv)]). Accord-
ingly, s, is rasterised to s, at canvas-size Cpr.q, Which is then fed
to Fs;. In particular, given a sketch s,, canvas-size selector ¢
acting as a policy network, takes action of selecting the canvas-
size cpreq from action space C, and ¢ is optimised over a reward
calculated by the SketchyNetV1 model (F;) acting as the critic.

Reward Design:  The objectives of our canvas-selector are to
choose an optimal canvas-size such that: (i) accuracy is retained
(ii) overall FLOPs is minimised. We therefore design our reward
from two perspectives. Now as Fi; is fixed, we pre-compute the
features of all gallery photos. During training, we only extract the
feature of rasterised sketch and calculate its corresponding rank
using the pre-computed photo-features. Furthermore, taking one
sketch we pre-compute FLOPs for every canvas-size in C'. From
accuracy perspective, the aim is to select the optimal canvas-size
copt from C for each s, such that the rendered s, can retrieve the
matching photo p at numerically lowest rank r (best r=1). Fol-
lowing conventional norm of reward maximisation, we define ac-
curacy reward (Ry.) as weighted (by hyper-parameters \,, Ari)
summation of inverse of the rank (r) and negative triplet loss (fol-
lowing Eq.1) as:

Racc = Ar(l/’r) + )\Tri(_»CTri) (4)
From the compute perspective, the selection criterion should re-
ward choosing a lower canvas-size. Moreover, higher performance
being naturally inclined towards a higher-canvas-size thus increas-
ing overall compute, we need an objective dedicated towards re-
ducing computational cost. We thus propose a FLOPs constraint
regularisation to guide the learning of canvas-selector as:

Gmazxz — qmin

Ly =

where, 7; = p(ci|s») and g; is the pre-computed FLOPs value
for the j-th canvas-size with maximum at ¢y, and minimum at
Qmin. Treating (-Lr) as a reward from the compute perspective,
we define our compute reward as Reomp = (—Lr). Taking A as a
balancing hyper-parameter, we combine both perspectives as our

total reward:
RTm = )\F}?«mmp + (1 - )\F)Racc (6)

Optimisation Objective:  Finally, we train the canvas-size se-
lector using popular Policy Gradient [61] method which is both
simple to implement and requires less hyper-parameter tuning than
other state-of-the-art alternatives [56]. If p(c|s’,) be the probabil-
ity of selecting a specific canvas-size for " sketch sample s, and
the corresponding reward be R, the objective function for policy
network (canvas-size selector) over a batch of size B becomes:

B
£ra(6) =~ 3 ogplels) - R ™
5. Experiments
Datasets: We evaluated on the following publicly available
datasets having fine-grained sketch-photo association. QMUL-
ShoeV2 [75] and QMUL-ChairV2 [75] contains 6730/2000
and 1800/400 sketches/photos respectively. Keeping 679/200
(525/100) sketches/photos for evaluation from ShoeV2 (ChairV2)
respectively we use the rest for training. Sketchy [55] contains
125 categories with 100 photos each, having around 5 sketches
per photo. While, training uses a standard train-test split [55] of
9:1, during inference we construct a challenging gallery using pho-
tos across one category for retrieval. For scene-level FG-SBIR
evaluation we use FS-COCO [15] which includes 10,000 unique
sketch-photo pairs with a 7:3 train/test split.

Implementation Details: Considering a standard large FG-SBIR
network as a teacher, our proposed student uses a cheaper back-
bone feature extractor MobileNetV2 [54], a standard for mobile
end-devices. Margin is set to m = 0.2 for triplet loss (Secs. 3
and 4.1). We use an Adam optimiser at a learning rate of 0.0001
and a batchsize of 16 for 200 epochs. For practicality, we chose
discrete canvas-sizes (C) instead of a continuous action space,
where C' = {32 x 32, 64 x 64, 128 x 128, 256 x 256}. Canvas-
size selector ()¢ ) is modelled using a simple GRU network, with
embedding size 128, and trained via reinforcement learning with
a learning rate of 0.0001 and a batchsize of 32 for 500 epochs,
keeping T;,q.-=100 for vector-sketches. For the action space, we
take varying canvas-sizes from C and set 5 = 1 in Eq.2. A, A,,
Ari and A are empirically set to 0.5, 0.4, 0.48 and 0.35 (Fig.5)
respectively. While training ¢, sketches are rendered at differ-
ent completion (30%, 35%, ... 100%) levels to simulate varying
levels of abstraction, ensuring a sketch-abstraction-aware canvas-
selector (e.g., a smaller canvas for less detailed sketch).

Evaluation Metric:  Accuracy for FG-SBIR is the percentage
of sketches where true-match photos are ranked in the Top-q (q =
1,10) lists. Computational efficiency is measured via parameter-
count and average FLOPs — lower is better. For average FLOPs in
Table 2, we take the combined sum of FLOPs per sample [12] from
(i) canvas-size selector and (ii) retrieval model, using the predicted
resolution, and average across the validation set.
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Table 2. Quantitative Analysis on FG-SBIR. Best viewed when zoomed.

Methods Canvas-size Params ShoeV2 [75] ChairV2 [75] Sketchy [55] FSCOCO [15]
cXe (mil.) Topl (%) Topl0 (%) FLOPS (G)  Topl (%) Topl0 (%) FLOPS (G) Topl (%) Topl0 (%) FLOPs(G)  Topl (%) Topl0 (%) FLOPS (G)
= 32x32 8.75 09.77(118.94) 24.82(146.74) 0.083  15.61(132.04) 29.86(154.38) 0.083 4.23(L11.12) 12.58(123.13) 0.083 0.76(13.94) 6.22(114.8) 0.083
= 64x64 875 17.63 (L11.08) 44.96(126.60) 0.338 30.25(117.4) 54.21(130.03) 0.338 9.68 (15.67) 22.45(113.26) 0.338 1.85(12.85) 7.33(113.69) 0.338
% 128x128 8.75 25.01({3.70) 62.35(19.21) 1.397 40.61(17.04) 72.68(L11.56) 1.397  12.98(]2.37) 29.63(16.08) 1.397 3.28(11.42) 15.92({5.1) 1.397
< 256x256 8.75 28.71 71.56 5.280 47.65 84.24 5.280 15.35 35.71 5.280 4.7 21.02 5.280
g SketchyNetV1l 222 28.46(]0.25) 69.01(]2.55) 0.833 46.28 (10.37) 82.33 (L1.91) 0.833 14.85(10.5) 34.68({1.03) 0.833 4.22(10.48) 18.33(12.69) 0.833
= SketchyNetV2 227  27.89 (J.0.82) 68.76 (].2.80) 0.264 4598 (L1.67) 80.14 ({4.10) 0.294 1421 (] 1.14) 34.16 (L 1.55) 0321 3.98(40.72) 17.64 (13.38) 0.423
= 32x32 9.31  10.84(120.9) 27.28(148.5) 0.096  18.72((134.69) 31.68(155.88) 0.096  6.01({10.69) 14.12(124.78) 0.096 0.86(14.04) 6.93(114.78) 0.096
= 64x64 9.31 19.83(L11.91) 51.72(124.06) 0387  34.32(119.09) 56.46({31.1) 0.387 9.92(16.78) 24.38(]14.52) 0.387 2.11(12.79) 7.86(113.85) 0.387
% 128x128 931  26.78(14.96) 66.28(19.5) 1.545 4574 (17.67) 7559(L11.97) 1.545 13.81(12.89) 33.68(15.22) 1.545 3.65(41.25) 16.32(15.39) 1.545
Eu“ 256x256 9.31 31.74 75.78 5.758 53.41 87.56 5.758 16.70 38.90 5.758 49 21.71 5.758
S SketchyNetV1 222 31.59 (J0.15) 73.96 ({1.82) 0.833 53.27(40.14) 86.93 (40.63) 0.833  16.25(0.45) 38.21(40.69) 0.833 4.56(10.34) 19.92 ({1.79) 0.833
z == SketchyNetV2 227  30.86 (J.0.88) 72.56 ({3.22) 0.259 52.74 (10.67) 84.02 ({3.54) 0.289  1591(J0.79) 37.88({1.02) 0315 4.04 (10.86) 18.63 (13.08) 0.417
Z') - 32x32 22.1 11.98(422.12) 28.11({50.71) 0.142  20.53(136.01) 32.59(157.02) 0.142 1.76(42.94) 3.88(16.47) 0.142 - - -
% i 64x64 22.1 21.28(412.82) 54.71({24.11) 0577 36.09(120.45) 57.33(432.28) 0.577 3.04(11.66) 6.79(13.56) 0.577 - - -
< I~ 128x128 22,1 28.83(15.27) 67.84(110.98) 2299 48.38(18.16) 77.25(112.36) 2.299 4.12(10.58) 9.05(11.30) 2.299 - - -
5; ko] 256x256 22.1 34.10 78.82 6.041 56.54 89.61 6.041 4.70 10.35 6.041 - - -
5 SketchyNetV1 222 33.88(10.22) 77.15({1.67) 0.833 55.92(40.62) 88.20 ({.1.41) 0.833 4.59(10.11) 10.21({0.14)  0.833 - - -
= SketchyNetV2 227  33.26 (J0.84) 76.84 (J1.98) 0.255 55.14 (4 1.40) 87.31(42.30) 0.285 4.51(10.19) 9.89 (10.46) 0.308 - - -
— 32x32 25.37 12.68(123.79) 28.69(153.14) 0.125  22.48((]40.38) 32.10(({59.04) 0.125 06.92({12.7) 16.25({29.53) 0.125 - - -
o, 64x64 25.37 22.93(113.54) 57.71({24.12)  0.508 40.26(122.6) 58.23(13291) 0.508  12.46(]7.16) 29.62(116.16) 0.508 - - -
EE} 128x128 2537 30.91(1556) 70.06(L11.77) 2.024 53.88(18.98) 78.64(L12.5) 2.024  17.15(]247) 38.84(16.94) 2.024 - - -
= 256x256 25.37 36.47 81.83 5.642 62.86 91.14 5.642 19.62 45.78 5.642 - - -
= SketchyNetV1 222 36.11(]0.36) 79.63 ({2.20) 0.833 62.23 (10.63) 88.95(42.19) 0.833  19.48(J0.12) 44.02({1.76)  0.833 - - -
@ SketchyNetV2 227  35.88 (0.59) 78.46 ({3.37) 0.251 61.95 (40.91) 87.68 ({3.46) 0.281 19.10 (40.50) 43.57 (42.21)  0.304 = = =
= 32x32 22.1 - - - - - - - - - 6.11(118.05) 24.18(129.74) 0.196
= 64x64 22.1 - - - - - - - - - 12.32[(111.84) 37.65(116.27)  0.687
5 128x128 221 - - - - - - - - - 19.61(14.55) 45.12(1838) 2.876
- 256x256 22.1 - - - - - - - - - 24.16 53.92 6.512
g SketchyNetV1l 2.22 - - - - - - - - - 23.89(10.27) 51.29 (12.63) 0.833
& SketchyNetV2  2.27 = = = = = = = = = 23.77(40.39) 50.68 (13.24) 0.325
B-BFR 224x224 4.61 24.32 61.23 2.602 43.39 76.33 2.602 10.47 24.34 2.602 2.15 11.61 2.602
B-DRS Dynamic 9.36 25.12 68.84 5.493 44.78 78.14 6.187 11.87 26.58 6.245 3.86 17.63 6.291
B-Crop Dynamic 4.92 20.32 52.12 6.562 35.07 57.68 6.597 08.27 20.19 6.629 1.98 09.67 6.688
§ B-Regress [48]  Dynamic 2.27 22.82 61.33 0.261 38.42 64.65 0.291 08.69 21.98 0.323 2.07 10.15 0.375
'% B-AKD [76] Dynamic 2.27 23.67 64.26 0.268 38.61 71.88 0.295 12.67 27.71 0.331 291 14.01 0.392
é B-PKT [45] Dynamic 2.27 24.31 6591 0.259 42.68 73.66 0.288 12.27 28.31 0.317 3.45 16.22 0.372
B-VGG16-SN  256x256 14.71 33.03 78.51 40.18 52.16 84.08 40.18 18.61 41.25 40.18 5.16 23.62 40.18
B-ThiNet [37] 256x256 832 751(]2552) 22.34(156.17) 9.342  12.31(139.85) 26.63(157.45) 9.342 3.16({15.45) 12.73[(]28.52) 9.342 0.65(14.51) 5.35(118.27) 9.342
B-Prune [38] 256x256 6.17  3.92(J29.11) 17.32(161.19) 8.138 7.98(144.18) 19.82(164.26) 8.138  1.45(117.16) 8.22/(133.03) 8.138 0.53(14.63) 4.97(118.65) 8.138
B-VGG16-SN SketchyNetV2 227  32.77 (10.26) 78.21({0.3) 0.254 50.75 (41.41) 8221 ({1.87) 0.283  16.55(J2.06) 38.66({2.59)  0.332 4.69(1047) 2176 ({1.86)  0.407

5.1. Competitors

We evaluate against State-of-the-Arts (SoTAs) and a few rele-
vant curated baselines (B-). (i) SoTAs: Unlike Triplet-SN [75],
HOLEF-SN [59], Triplet-RL [6] (we report full-sketch evaluation)
and StyleVAE [51]; Partial-OT [14] specifically caters to scene-
level FG-SBIR. For fairness, we vary input-resolution of sketches
during inference (fixed at their original 256 x 256 setup during
training). We also adapt them as teachers, to judge our accuracy
retainment after model-compression (SketchyNetV1) using full-res
sketch and, further optimising canvas-size with canvas-selector
(SketchyNetV2). (ii) KD baselines: Here we re-purpose existing
works in a cross-modal setting, keeping our canvas-selector same,
with Triplet-SN as the teacher. B-Regress — regresses features from
teacher and student for both sketches and images, aligning their di-
mensions with an extra transformation layer [48], using a [ regres-
sion loss. Following [45] B-PKT calculates the conditional prob-
ability density for any pair of points in the teacher’s embedding
space [45], which models the probability of any two samples being
close together. Sampling "N’ instances, it establishes a probability
distribution for pairwise interactions within that space. Simultane-
ously, in the student’s embedding space, a comparable distribution
is derived, and the model minimises the divergence between them
using a KL-divergence loss. B-AKD follows [76] in using spatial
attention maps for knowledge transfer using similar dimensional
matching like B-Regress. (iii) Resizing strategies: Keeping the
same KD-paradigm with Triplet-SN-teacher, we vary the input-

size resizing module following existing works. B-BFR follows
[62] in designing a bilinear feature resizer amidst the intermedi-
ate layers of a CNN network, to output a down-scaled image. We
choose its resized resolution of 224 x224 (lowest) for subsequent
evaluation. B-DRS follows [12] in training a convolutional mod-
ule that takes an image in full-resolution, calculates a probability
vector on available canvas-sizes, and transforms it into binary deci-
sions, indicating the scale factor of selection. B-Crop follows [32]
in meta-learning an image-cropping module that crops the input
image to a target resolution for low compute evaluation. (iv) Prun-
ing alternatives: Here we adapt two VGG16-backboned methods
off-the-shelf from network-pruning family among other efficiency
paradigms [18, 21, 62], in FG-SBIR setup — B-ThiNet [37] and
B-Prune [38]. For comparative reference we report performance
of a VGG16-backboned Triplet-SN network (B-VGG16-SN) and
its SketchyNetV?2 variant.

5.2. Performance and Compute Analysis:

Analysis on Accuracy: Table 2 reports the quantitative evalu-
ation of our model against others. Triplet-SN [75] and HOLEF-
SN [59] perform lower owing to weak backbones of Sketch-A-
Net [74]. Enhanced by its RL-optimised reward function Triplet-
RL[6] scores higher (2.36%1 Top1 on ShoeV2) but fails to surpass
StyleVAE [51], due to its delicate meta-learned disentanglement
module addressing style-diversity. Being trained on region-wise
sketch-photo associativity, Partial-OT [14] outperforms all others
significantly on scene-level sketches (FS-COCO). We also notice a
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gradual drop in accuracy of SoTAs, when subjected to decreasing
resolution of input-sketches suggesting that some methods are in-
herently accustomed to handling scale-shifts better than others, but
are inferior to our dynamic approach (SketchyNetV2). Importantly,
when most SoTAs are employed as teachers, their respective stu-
dents (SketchyNetV1 variants) are seen to retain their respective
original accuracy with a marginal drop of &~ 0.5 — 1% overall,
thanks to our efficient KD paradigm. Having different teacher-
student embedding spaces both B-Regress and B-AKD’s paradigm
of directly regressing on features proves incompatible to a cross-
modal retrieval setting, dropping accuracy (compared to T-Triplet-
SN), whereas lacking cross-modal discrimination B-PKT performs
lower than ours, proving our superiority in retaining accuracy.

& L0

128 x 128

256 x 256

Figure 4. Exemplar sketches at their optimal canvas-size

Analysis on Compute: Although FLOPs [12] decrease (Table 2)
with a reduction in input resolution across all SoTAs, it comes
at a severe cost of accuracy (*21% average drop from 256 X256
to 3232 on ShoeV2). This is mainly because ideal canvas-size
for optimal retrieval varies across samples (Fig. 2 right) — thus
subjecting all samples to a fixed canvas-size proves detrimental
for accuracy. However, a positive Acc@1 score of ~11% even
at a low canvas-size of 32x32 for every SoTA shows that some
sketches are indeed recognisable if the model is trained properly.
This is verified further by SketchyNetV2 variant of respective So-
TAs, that secures the lowest FLOPs per SoTA, despite maintain-
ing accuracy at par with its SoOTA-counterpart — thanks to our RL-
guided canvas-selector, which can allot an optimal canvas-size per
sketch towards better retrieval (Fig. 4). Contrarily, B-BFR fails to
lower FLOPs as it fixes a 224x224 input resolution for a satisfac-
tory Acc@1 compared to Triplet-SN. B-Crop fairs better, however
sketch being sparse, cropped sketches leads to confused represen-
tations, lowering accuracy. Despite coming closest in accuracy
to ours on Triplet-SN, B-DRS lags behind considerably on com-
pute, thanks to our canvas-selector working in vector space (inputs
S») and eliminating costly convolutional operations, unlike oth-
ers using full-resolution sketch-raster as input. Being untrained
to handle sparse-nature of sketches during such high compres-
sion, performance of both B-ThiNet and B-Prune collapses (vs.
B-VGGI16-SN) unlike its SketchyNetV2. Notably, the significant
drop in parameter-count (4 - 10 times) against S0TAs, comes from
choosing lightweight MobileNetV?2 [54] as a student coupled with
our canvas-size selector in every SketchyNetV2 variant. Compared
to ShoeV2, FLOPs increase slightly for ChairV2, Sketchy and
FS-COCO, owing to higher object (ChairV2) or scene-level (FS-
COCO) details, and lower structural correspondence with photos
(Sketchy), thus training a poorer retrieval model which in turn acts
as a poor critic for our canvas-selector. Our canvas-selector alone
takes a negligible 51.84K parameters with 0.02G FLOPs.

5.3. Ablation Study

As our teacher (F'r) can be any pre-trained FG-SBIR network, we
limit our ablation to justifying design choices of our student model
and canvas-size selector. We use B-VGG16-SN as a reference Fr
— Type-() in Table 3.

Training Canvas-Size selector {)c : To justify loss objectives
of 1 we evaluate on ShoeV2, eliminating ', £, Lr one by
one from Eq. 6 (Table 3). While eliminating accuracy rewards,
(W/o rank™', w/o L) increases constraint on lowering FLOPs,
dropping accuracy, ignoring Lr (w/o Lr) gains accuracy but costs
high FLOPs. We thus optimally balance between the two using A\g
(Fig. 5 left). One can also choose to train for faster retrieval (lower
FLOPs), given a decent Acc@5 (Fig. 5 right).

T T T T T T T T
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Figure 5. Impact of varying A\r on Acc@1 and Acc@5

Architectural insights:  To judge the efficiency of our student’s
backbone, we explore a few cheaper backbone-networks (Types IV,
V in Table 3). Evidently, MobileNetV2 (Ours) balances optimally
between compute and accuracy. As an option to vector input for
canvas-selector, we re-design it with a simple seven-layer CNN
module following [78] to use the full-resolution sketch-image as
its input, and select a target canvas-size to downscale it for re-
trieval. With extra computational cost coming from spatial do-
main, total FLOPs incurred is much higher (VI). Next we compare
efficacy of sketch as input to )¢ with respect to types of vector for-
mat — offset-coordinate (VI) [22] vs. absolute ones (Ours). Turns
out the former is better for encoding. Comparing sketch encoders
among LSTM (VIII), GRU (Ours) and Transformer (/X), showed
ours to be optimum empirically (Table 3). Furthermore, prepend-
ing recent pre-processing modules like stroke-subset selector of
[9] to our canvas-selector, yields 42.95% (vs. 43.7% [9]) Acc@1
ShoeV2, proving its off-the-shelf compatibility.

Table 3. Ablative studies (accuracy on ShoeV2)

Type FLOPs  Params ShoeV2

(G)  (mil) Topl (%) Topl0 (%)
0 B-VGG16-SN 40.18 14.71 33.03 78.51
1 w/o rank! -reward 0.173 25.31 64.36
I wio LE reward 0182 227 2778 69.32
Il w/o Lp-reward 0.833 3291 78.39
IV ResNetl8 backbone 1.451 11.18 26.72 68.18
V  EfficientNet backbone  0.459 4.01 2947 72.04
VI Image-based ¢ 5.730 7.62 3221 77.68
VII  Offset s,, 0.255 227 32.61 78.40
VIII  Decoder-LSTM 0.268 2.25 3141 77.32
IX  Decoder-Tf 0.314 2.34 31.98 78.02
SketchyNetV2 0.254 227 32.77 78.21

Generalisability of canvas selector:  To judge if the optimal
canvas-size selected is uniform irrespective of the training method,
we first train four canvas-selectors using four SoTAs of Table 2.
Evaluating them on ShoeV2 [75], 89.21% of test-set sketches
in ShoeV2 to obtain the same optimal canvas size across four
different models, trained on four different methods, which fur-
ther proves that our canvas-selector can work equally well as a
pre-processing module for any new model. Furthermore, plug-
ging a canvas-selector trained with SketchyNetV1 (critic) from
B-VGG16-SN with a different SketchyNetV1 from StyleVAE
[51] during inference achieves comparable performance (35.69%
Top-1) to a canvas-selector trained on StyleVAE-SketchyNetV1
(35.88% Top-1) on ShoeV2. Importantly, 95.64% of test-set
sketches yield the same optimal canvas-size across both models,
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confirming the cross-model generalisability of our canvas selector.
(ii) On training canvas-selector with teacher Fr (for Triplet-SN)
as critic, yields same optimal canvas-sizes as those for student Fs,
for 94.21% of test-set sketches in ShoeV2, while incurring com-
parable FLOPs reduction (0.268G) and accuracy (27.91% Top1)
against Fis as critic.

Comparing Inference times: We evaluated on a 12 GB Nvidia
RTX 2080 Ti GPU, on ShoeV2, for inference time of Triplet-SN,
HOLEF-SN, Triplet-RL, and StyleVAE (SOTAs) on full-sketch to
obtain 37, 38, 36 and 42 ms, against 10, 11, 11, and 12 ms for
their SketchyNetV2 variants respectively. For practical valida-
tion, we evaluated onnx-INT8 version of Triplet-SN [75] and its
SketchyNetV2 variant (ours) after post-training quantisation, on
an iPhonel3 via the Al-benchmark app for ShoeV2 [75] to obtain
51ms and 18ms respectively, which shows our efficiency.

Retraining SoTA on mixed resolution sketches?: To explore if
retraining SoTAs on sketches with mixed resolutions, we re-train
Triple-SN [75] on rendered mixed-resolution sketches of ShoeV2.
Poor performance in Table 4 at lower resolutions similar to Table 2
validates our KD approach. The key lies in that the sketch-feature
from teacher used for student-guidance ( Ty is always extracted
from full-resolution sketch while that extracted by student is at
varying resolutions, imparting scale invariance, which is ideally
suited to our cross-modal retrieval setup.

Table 4. Evaluating SoTAs trained on mixed-resolution sketches

Canvas Triplet-SN Triplet-RL
o
€ Topl (%) Topl0 (%) FLOPs (G) Topl (%) Topl0 (%) FLOPs (G)

32x32 10.91 2665  0.083 12.97 3108 0.142

64 x 64 19.04 4812  0.338 296 5623 0577
128x128 2607 6387 1397 3004 7295 2299
256x256 2874  71.68 5280 3421 7724 6.041
5.4. Further Insights

Cross-dataset Generalisation: To judge the generalisation po-
tential of our canvas-size selector across datasets we train it on
ShoeV2, but plug it to a retrieval model (SketchyNetV1) trained
on ChairV2, and evaluate on ChairV2. Against the standard result
(Table 2) of training both modules (SketchyNetV2) on ChairV2
(0.285G, 55.32% Acc@1), this setup retains accuracy at 53.14%
with slight rise in FLOPs (0.314G), thus confirming its potential.

Faster Sketch-recognition: Exploring potential of our canvas-
size selector, we prepend it to a standard sketch-recognition
pipeline [74] to optimise the canvas-size of query sketch, and re-
duce overall compute. Unlike our ¢, it uses negative of cross-
entropy loss as accuracy reward (Ra.), keeping rest same. Com-
pared to existing Sketch-a-Net [74] incurring 5.28G FLOPs at
68.71% accuracy on Quickdraw [22], our canvas-selector fitted
paradigm drops FLOPs to 0.261G while retaining accuracy at
68.14%. This shows for the first time, that sparsity of sketches
can be handled, in various downstream tasks via our ¥ c.

Extension to Category-level SBIR: For categorical SBIR we use
Sketchy (ext) [36] dataset (90:10 train:test split), which holds 75k
sketches across 125 categories having ~ 73k images [36] in total.
It is evaluated using mean average precision (mAP@all) and pre-
cision at top 200 retrieval (P@200) [36]. Here we compete against
state-of-the-arts (SoTA) like B-D2S that follows [19] without its
zero-shot setting), and a simple baseline using a Siamese-style

Table 5. Quantitative Evaluation on Categorical SBIR

Methods FLOPs Params Sketchy(ext)
G) (mil.) mAP@all  P@200
B-SBIR-SN 40.18 14.71 0.715 0.861
ﬁ DSH [36] 22.14 16.32 0.711 0.858
& B-D2S[19] 17.75 136.36 0.810 0.894
StyleVAE [51] 8.116 25.37 0.905 0.927
«  T-SBIR-SN 0.254 0.702 0.810
5 T-DSH 0.289 207 0.704 0.823
% T-D2S 0.268 ’ 0.798 0.845
= T-StyleVAE 0.251 0.886 0.897

VGG-16 network (B-SBIR-SN) following [75]. Similar to Sec-
tion 5.1 adapting SoTAs as teachers in our SketchyNetV2 paradigm
(T-SoTA) shows them retaining their accuracy (Table 5) while sig-
nificantly lowering compute.

Teacher-Student Pairs: To explore other teacher-student pairs
apart from ours, we test SketchyNetV2 models of a few (F'r, Fs)
pairs, where teachers are trained similar to B-VGG16-SN. From
Table 6 we see our pair to outperform others.

Table 6. Evaluation on Teacher-Student Pairs

Stug MobileNetV2 EfficientNet ResNet-18
Tey. ene
hey. Top-1 FLOPs Top-1 FLOPs Top-1 FLOPs
VGG-16 [30] 32.77% 0.254G 2947% 0.459G 26.72% 1.451G

Inception-V3 [74] 27.89% 0.264G 27.16% 0.461G 2531% 1.452G

Combining compression methods: To explore if a combi-
nation of compression methods is capable of increasing effi-
ciency, we subject our Knowledge Distillation (KD) trained model
(SketchyNetV1) of Triplet-SN [75] (Table 2) to (i) quantisation
following [21], and (ii) network-pruning following [38], sepa-
rately, and then train their respective canvas-selectors. While the
former secures 27.34% (vs. 27.89% ours) Top-1 score with a
lower inference time of 9.1 ms (vs. 10 ms ours), the latter scores
26.91% (vs. 27.89% ms ours) Top-1 with lower FLOPs of 0.249G
(vs. 0.264G ours). Such competitive results further endorse ex-
ploring combining compression methods as future works.

Future Works: Sketch being an abstraction of an object’s photo,
when resized to a lower scale for retrieval, infers that its object’s
semantic is interpretable at that scale. This should ideally provide
a lower bound for resizing a photo while retaining interpretability
(e.g. high retrieval score). Consequently, designing a learnable
photo-resizer aided by our trained sketch-canvas selector is a po-
tential future work. Secondly, ours being a meta-framework, using
more recent frameworks like DINOv2 [41] as large-scale teacher
models for further gains is another targeted future work.

6. Conclusion

We for the first time investigate the problem of efficient inference
for FG-SBIR, where we show that using existing efficient light-
weight networks directly, are unfit for sketches. We thus propose
two generic components that can be adapted to photo-networks for
sketch-specific data. Firstly, a cross-modal knowledge distillation
paradigm distils the knowledge of larger models to a smaller one,
directly reducing FLOPs (params) by 97.92 (84.9)%. Secondly,
an abstraction-aware canvas-size selector dynamically selects the
best canvas-size for a sketch, reducing FLOPs by extra two-thirds.
Extensive experiments show our method to perform at par with
state-of-the-arts using much lower compute thus further conveying
our method’s worth in enhancing them towards deployment.

28390



References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

Manoj Alwani, Yang Wang, and Vashisht Madhavan.
Decore: Deep compression with reinforcement learning. In
CVPR, 2022. 2

Aneeshan Sain and Ayan Kumar Bhunia and Pinaki Nath
Chowdhury and Aneeshan Sain and Subhadeep Koley and
Tao Xiang and Yi-Zhe Song. CLIP for All Things Zero-
Shot Sketch-Based Image Retrieval, Fine-Grained or Not. In
CVPR, 2023. 1

Jimmy Ba and Rich Caruana. Do deep nets really need to be
deep? NeurlPS, 2014. 2

Hessam Bagherinezhad, Maxwell Horton, Mohammad
Rastegari, and Ali Farhadi. Label refinery: Improving ima-
genet classification through label progression. arXiv preprint
arXiv:1805.02641,2018. 2

Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad,
Yongxin Yang, Timothy M Hospedales, Tao Xiang, Yulia
Gryaditskaya, and Yi-Zhe Song. Pixelor: A competitive
sketching ai agent. so you think you can sketch? ACM TOG,
2020. 3

Ayan Kumar Bhunia, Yongxin Yang, Timothy M
Hospedales, Tao Xiang, and Yi-Zhe Song. Sketch less
for more: On-the-fly fine-grained sketch based image
retrieval. In CVPR, 2020. 1,2, 3,6

Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Aneeshan
Sain, Yongxin Yang, Tao Xiang, and Yi-Zhe Song. More
photos are all you need: Semi-supervised learning for fine-
grained sketch based image retrieval. In CVPR, 2021. 1, 2,
3,4

Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Yongxin
Yang, Timothy M Hospedales, Tao Xiang, and Yi-Zhe Song.
Vectorization and rasterization: Self-supervised learning for
sketch and handwriting. In CVPR, 2021. 3

Ayan Kumar Bhunia, Subhadeep Koley, Abdullah Faiz
Ur Rahman Khilji, Aneeshan Sain, Pinaki Nath Chowdhury,
Tao Xiang, and Yi-Zhe Song. Sketching without worrying:
Noise-tolerant sketch-based image retrieval. In CVPR, 2022.
1,2,3,7

Ayan Kumar Bhunia, Subhadeep Koley, Amandeep Kumar,
Aneeshan Sain, Pinaki Nath Chowdhury, Tao Xiang, and Yi-
Zhe Song. Sketch2Saliency: Learning to Detect Salient Ob-
jects from Human Drawings. In CVPR, 2023. 1

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In /ICML, 2020. 3

Ying Chen, Liang Qiao, Zhanzhan Cheng, Shiliang Pu, Yi
Niu, and Xi Li. Dynamic low-resolution distillation for cost-
efficient end-to-end text spotting. In ECCV, 2022. 5, 6, 7
Pinaki Nath Chowdhury, Ayan Kumar Bhunia,
Viswanatha Reddy Gajjala, Aneeshan Sain, Tao Xiang,
and Yi-Zhe Song. Partially does it: Towards scene-level
fg-sbir with partial input. In CVPR, 2022. 1, 2

Pinaki Nath Chowdhury, Ayan Kumar Bhunia,
Viswanatha Reddy Gajjala, Aneeshan Sain, Tao Xiang,
and Yi-Zhe Song. Partially does it: Towards scene-level
fg-sbir with partial input. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 6

28391

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Pinaki Nath Chowdhury, Aneeshan Sain, Ayan Kumar Bhu-
nia, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song. Fs-
coco: Towards understanding of freehand sketches of com-
mon objects in context. In ECCV, 2022. 5, 6

Chowdhury, Pinaki Nath and Bhunia, Ayan Kumar and Sain,
Aneeshan and Koley, Subhadeep and Xiang, Tao and Song,
Yi-Zhe. Democratising 2D Sketch to 3D Shape Retrieval
Through Pivoting. In ICCV, 2023. 2

John Collomosse, Tu Bui, and Hailin Jin. Livesketch: Query
perturbations for guided sketch-based visual search. In
CVPR, 2019. 2,5

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. NeurIPS, 28, 2015. 2, 6
Sounak Dey, Pau Riba, Anjan Dutta, Josep Llados, and Yi-
Zhe Song. Doodle to search: Practical zero-shot sketch-
based image retrieval. In CVPR, 2019. 2, 8

Anjan Dutta and Zeynep Akata. Semantically tied paired
cycle consistency for zero-shot sketch-based image retrieval.
In CVPR, 2019. 1

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and
Pritish Narayanan. Deep learning with limited numerical
precision. In ICML, 2015. 2,6, 8

David Ha and Douglas Eck. A neural representation of
sketch drawings. In ICLR, 2018. 1, 5,7, 8

Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In /CLR, 2016. 2
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In NeurlPS Deep Learning
Workshop, 2014. 2

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 3

Shouyou Huang and Qiang Wu. Robust pairwise learning
with huber loss. Journal of Complexity, 2021. 4

Zehao Huang and Naiyan Wang. Like what you like: Knowl-
edge distill via neuron selectivity transfer. arXiv preprint
arXiv:1707.01219,2017. 2

Leslie Pack Kaelbling, Michael L Littman, and Andrew W
Moore. Reinforcement learning: A survey. JAIR, 1996. 3, 5
Andrew Zisserman Karen Simonyan. Very deep convolu-
tional networks for large-scale image recognition. In /CLR,
2015. 3,4, 8

Debang Li, Huikai Wu, Junge Zhang, and Kaiqi Huang. A2-
rl: Aesthetics aware reinforcement learning for image crop-
ping. In CVPR, 2018. 3

Debang Li, Junge Zhang, and Kaiqi Huang. Learning to
learn cropping models for different aspect ratio require-
ments. In CVPR, 2020. 6

Xiaodan Liang, Lisa Lee, and Eric P Xing. Deep variation-
structured reinforcement learning for visual relationship and
attribute detection. In CVPR, 2017. 3



[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks. In
ICML, 2016. 2

Hangyu Lin, Yanwei Fu, Yu-Gang Jiang, and Xiangyang
Xue. Sketch-bert: Learning sketch bidirectional encoder rep-
resentation from transformers by self-supervised learning of
sketch gestalt. In CVPR, 2020. 5

Li Liu, Fumin Shen, Yuming Shen, Xianglong Liu, and Ling
Shao. Deep sketch hashing: Fast free-hand sketch-based im-
age retrieval. In CVPR, 2017. 2, 8

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
InICCV,2017. 2,6

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016. 6, 8

Umar Riaz Muhammad, Yongxin Yang, Yi-Zhe Song, Tao
Xiang, and Timothy M Hospedales. Learning deep sketch
abstraction. In CVPR, 2018. 3

Umar Riaz Muhammad, Yongxin Yang, Timothy
Hospedales, Tao Xiang, and Yi-Zhe Song. Goal-driven
sequential data abstraction. In /CCV, 2019. 1, 3

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
DINOV2: Learning Robust Visual Features without Supervi-
sion. arXiv preprint arXiv:2304.07193, 2023. 8

Kaiyue Pang, Yi-Zhe Song, Tony Xiang, and Timothy M
Hospedales. Cross-domain generative learning for fine-
grained sketch-based image retrieval. In BMVC, 2017. 2
Kaiyue Pang, Ke Li, Yongxin Yang, Honggang Zhang, Tim-
othy M Hospedales, Tao Xiang, and Yi-Zhe Song. Gener-
alising fine-grained sketch-based image retrieval. In CVPR,
2019. 1

Kaiyue Pang, Yongxin Yang, Timothy M Hospedales, Tao
Xiang, and Yi-Zhe Song. Solving mixed-modal jigsaw puz-
zle for fine-grained sketch-based image retrieval. In CVPR,
2020. 2,3

Nikolaos Passalis and Anastasios Tefas. Learning deep rep-
resentations with probabilistic knowledge transfer. In ECCV,
2018. 6

Pinaki Nath Chowdhury and Ayan Kumar Bhunia and Anee-
shan Sain and Subhadeep Koley and Tao Xiang and Yi-Zhe
Song. SceneTrilogy: On Human Scene-Sketch and its Com-
plementarity with Photo and Text. In CVPR, 2023. 2

Pinaki Nath Chowdhury and Ayan Kumar Bhunia and Anee-
shan Sain and Subhadeep Koley and Tao Xiang and Yi-Zhe
Song. What Can Human Sketches Do for Object Detection?
In CVPR, 2023. 1

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antonie Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. In /CLR, 2015. 2,4, 6

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. 1JCV, 2015. 4

28392

(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xi-
ang, and Yi-Zhe Song. Cross-modal hierarchical modelling
forfine-grained sketch based image retrieval. In BMVC,
2020. 2, 3,4

Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xi-
ang, and Yi-Zhe Song. Stylemeup: Towards style-agnostic
sketch-based image retrieval. In CVPR, 2021. 1, 2, 3, 4, 6,
7,8

Aneeshan Sain, Ayan Kumar Bhunia, Vaishnav Potlapalli,
Pinaki Nath Chowdhury, Tao Xiang, and Yi-Zhe Song.
Sketch3t: Test-time training for zero-shot sbir. In CVPR,
2022. 2

Aneeshan Sain, Ayan Kumar Bhunia, Subhadeep Koley,
Pinaki Nath Chowdhury, Soumitri Chattopadhyay, Tao Xi-
ang, and Yi-Zhe Song. Exploiting Unlabelled Photos for
Stronger Fine-Grained SBIR. In CVPR, 2023. 1,2

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 1, 3, 4,
5,7

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James
Hays. The sketchy database: learning to retrieve badly drawn
bunnies. ACM TOG, 2016. 5, 6

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 5

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In /CLR,
2015. 1,3

Jifei Song, Yi-Zhe Song, Tony Xiang, and Timothy M
Hospedales. Fine-grained image retrieval: the text/sketch
input dilemma. In BMVC, 2017. 2

Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timo-
thy M Hospedales. Deep spatial-semantic attention for fine-
grained sketch-based image retrieval. In ICCV, 2017. 2, 6
Subhadeep Koley and Ayan Kumar Bhunia and Aneeshan
Sain and Pinaki Nath Chowdhury and Tao Xiang and Yi-Zhe
Song. Picture that Sketch: Photorealistic Image Generation
from Abstract Sketches. In CVPR, 2023. |

Richard S Sutton, David A McAllester, Satinder P Singh, and
Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. In NeurIPS, 2000. 5
Hossein Talebi and Peyman Milanfar. Learning to resize im-
ages for computer vision tasks. In /ICCV, 2021. 2, 6
Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019.
1,3

Burak Uzkent and Stefano Ermon. Learning when and where
to zoom with deep reinforcement learning. In CVPR, 2020.
2

Supawit Vatathanavaro, Suchat Tungjitnob, and Kitsuchart
Pasupa. White blood cell classification: a comparison be-
tween vgg-16 and resnet-50 models. In JSCI, 2018. 3
Mabhes Visvalingam and J Duncan Whyatt. The douglas-
peucker algorithm for line simplification: re-evaluation
through visualization. In Computer Graphics Forum, 1990.
5



[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,
Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and
Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation.
In CVPR, 2019. 3

Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao
Xu. Cnnpack: Packing convolutional neural networks in the
frequency domain. NeurIPS, 29, 2016. 2

Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang,
and Gao Huang. Glance and focus: a dynamic approach
to reducing spatial redundancy in image classification. In
NeurlPS, 2020. 2

Kilian Q Weinberger and Lawrence K Saul. Distance met-
ric learning for large margin nearest neighbor classification.
JMLR, 2009. 4

Peng Xu, Chaitanya K Joshi, and Xavier Bresson. Multi-
graph transformer for free-hand sketch recognition. IEEE
T-NNLS, 2021. 4

Peng Xu, Timothy M Hospedales, Qiyue Yin, Yi-Zhe Song,
Tao Xiang, and Liang Wang. Deep learning for free-hand
sketch: A survey. IEEE TPAMI, 2022. 1,2

Ran Xu, Fangzhou Mu, Jayoung Lee, Preeti Mukherjee, So-
mali Chaterji, Saurabh Bagchi, and Yin Li. SmartAdapt:
Multi-branch object detection framework for videos on mo-
biles. In CVPR, 2022. 2

Qian Yu, Yongxin Yang, Yi-Zhe Song, Tao Xiang, and Tim-
othy M. Hospedales. Sketch-a-net that beats humans. In
BMVC, 2015. 6, 8

Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M
Hospedales, and Chen-Change Loy. Sketch me that shoe. In
CVPR, 2016. 1,2,3,4,5,6,7,8

Sergey Zagoruyko and Nikos Komodakis. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. In /CLR, 2017.
2,6

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 2

Mingjian Zhu, Kai Han, Enhua Wu, Qiulin Zhang, Ying Nie,
Zhenzhong Lan, and Yunhe Wang. Dynamic resolution net-
work. In NeurlIPS, 2021. 7

28393



