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Figure 1. We propose GASP, a novel model for creating photorealistic, real-time, animatable, 360◦ avatars from easily-captured data. We
train a generative prior model of Gaussian Avatars on Synthetic data. The prior allows our model to be fit using a single image or a short
video with the prior accounting for the unseen views. This lets users create their avatar with only a webcam or smartphone.

Abstract

Gaussian Splatting has changed the game for real-time
photo-realistic rendering. One of the most popular applica-
tions of Gaussian Splatting is to create animatable avatars,
known as Gaussian Avatars. Recent works have pushed
the boundaries of quality and rendering efficiency but suf-
fer from two main limitations. Either they require expensive
multi-camera rigs to produce avatars with free-viewpoint
rendering, or they can be trained with a single camera but
only rendered at high quality from this fixed viewpoint. An
ideal model would be trained using a short monocular video
or image from available hardware, such as a webcam, and
rendered from any view. To this end, we propose GASP:
Gaussian Avatars with Synthetic Priors. To overcome the
limitations of existing datasets, we exploit the pixel-perfect
nature of synthetic data to train a Gaussian Avatar prior. By
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fitting this prior model to a single photo or video and fine-
tuning it, we get a high-quality Gaussian Avatar, which sup-
ports 360◦ rendering. Our prior is only required for fitting,
not inference, enabling real-time applications. Through our
method, we obtain high-quality, animatable Avatars from
limited data which can be animated and rendered at 70fps
on commercial hardware.

1. Introduction

Creating high-quality digital humans unlocks significant
potential for many applications, including Virtual Reality,
gaming, video conferencing, and entertainment. Digital hu-
mans must be photorealistic, easy to capture and capable of
real-time rendering. The vision and graphics communities
have long worked towards this goal, and we are rapidly ap-
proaching the point where such digital humans are possible.

A series of works based first on NeRFs [30] raised the
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bar in creating exceptional visual quality [4, 5, 9, 14, 23,
54]. However, NeRFs remain slow to render and are unsuit-
able for real-time applications. Gaussian Splatting-based
works have led to significant improvements in both qual-
ity and rendering speed [7, 11, 20, 33, 38, 45, 46]. De-
spite these improvements, the list of suitable applications
for these methods is small. Each of these models suffers
from one of two drawbacks: either they require expensive
capture setups with multiple synchronized cameras, which
prevents easy user enrollment [11, 33, 46], or they train on
a single camera but exhibit significant quality degradation
when rendered from views with more than a minimal varia-
tion in camera pose [7, 38, 45]. Furthermore, to maximize
visual quality, some of these methods use a large CNN af-
ter rendering, which prevents real-time rendering without a
powerful GPU [11, 46].

For mass adoption, an avatar model should achieve high-
quality 360◦ rendering in real-time and require only the
amount of data a user can practically provide. In most cases
a user can only capture a monocular, frontal image or video
using their webcam or smartphone camera. The problem
of fitting an avatar to this data is ill-posed; the extreme
sides and back of the head are not visible, leading to arti-
facts in these unseen regions. In order to overcome this,
we require a prior model that is able to “fill in the gaps”
left by missing data. Such a model has been shown to be
effective in other data-limited, human-centric models, such
as visual dubbing [36] and static NeRF models [4]. Ide-
ally, we would train such a model on a large, multi-view,
perfectly annotated and diverse dataset. However, very few
multi-view face datasets exist. Those that do either lack full
coverage, particularly around the back of the head [23], or
have only a small number of subjects [44]. Furthermore,
annotations such as camera calibrations and 3D morphable
model (3DMM) parameters associated with these datasets
have to be estimated using imperfect methods and are a sig-
nificant source of error.

We propose GASP: Gaussian Avatars with Synthetic
Priors. We use a large, diverse dataset of synthetic humans
[16, 43] to overcome the difficulties associated with training
a prior on real data. This data is generated using computer
graphics and has perfectly accurate annotations, including
exact correspondence to the underlying 3DMM. This en-
ables the large-scale training of a prior for Gaussian Avatars
for the first time. However, the use of synthetic data intro-
duces a domain gap problem. We address this by learning
per-Gaussian features with semantic correlations. By learn-
ing these correlations on synthetic data and then maintain-
ing them when fitting to real data, using a three-stage fitting
process, we can cross this domain gap. Our method even
enables rendering the back of the head, having fit to only a
single front-facing image or video; see Fig. 1.

To summarize, we propose a novel system for creating

realistic, real-time animatable avatars from a webcam or
smartphone enabled by the following contributions:
• A prior model over Gaussian Avatar parameters trained

using purely synthetic data.
• A three-stage fitting process, combined with learned per-

Gaussian correlations to overcome the synthetic-to-real
domain gap and allow for 360◦ rendering.

• Real-time rendering enabled through use of neural net-
works only during training and fitting, and not at infer-
ence time.

2. Related Work
2.1. Photorealistic Animatable Avatars

A significant number of works have attempted to build pho-
torealistic 3D Avatars that can be animated. Most of these
works use an existing animatable model, known as a 3D
morphable model (3DMM) [3, 24]. Earlier works improve
the realism of a 3DMM in image space using compositing
[40], a CNN model [22] or pixel-level MLPs [28]. Some
works [37, 42] improve the CNN models by adding a learn-
able latent texture known as a neural texture [41] and evalu-
ating this with a deferred neural renderer. Other works make
use of volumetric rendering, either in the form of a point-
based representation [52], or a NeRF [14, 29, 31, 49, 53–
55]. The primary issue with most of these methods is that
they are too slow to render [14, 29, 49, 53, 54], or can only
be rendered from limited viewpoints [55].

Gaussian Splatting [20] has allowed for unprecedented
photorealism and real-time capabilities in volumetric ren-
dering for Avatars. We refer to this class of methods as
Gaussian Avatars. Most Gaussian Avatar methods have
built upon 3DMMs as a coarse representation of the geom-
etry and Gaussian Splatting for finer geometry and appear-
ance. Some explicitly bind the Gaussians to the 3D mesh
[33, 45], while others learn functions to deform the Gaus-
sians based on 3DMM parameters [7, 11, 46]. These meth-
ods are much faster than NeRF-based models but are either
only produce good results on cameras close to the training
view [7, 45] or require multiple cameras [11, 33, 46]

Furthermore, other approaches based on a 3DMM may
learn a texture and/or mesh displacements [1, 2, 6, 12, 13]
with optional CNNs to improve quality. These methods are
often fast to render and have good novel view synthesis,
however they fall short of photorealism [2, 12, 13], take too
long to train [6] or deal poorly with hair [1].

2.2. Few-Shot Avatars

Several other works have attempted to address a similar
problem to ours, in which the goal is to create a photore-
alistic avatar from limited amounts of data. In each case,
the solution is to leverage some form of data-driven prior.
Preface [5] uses a large-scale dataset to train an identity-
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Figure 2. Overview of our method. In the first stage, we train an auto-decoder prior model on Synthetic data to predict the parameters of a
mesh-attached Gaussian Avatar. We can then adapt this model to user enrollment data, either a single image or short monocular video. We
leverage the prior to improve the quality in unseen regions and achieve free-viewpoint rendering.

conditioned NeRF prior model in an auto-decoder fashion.
Cafca [4] also seeks to train this model on large-volume
synthetic data. While high quality, the results are static and
cannot be animated, and being NeRF-based, are also slow
to render, taking over 20s per frame. Some works use pow-
erful 2D image-space models as a prior, exploiting a small
amount of data to enable control over the larger model with
a 3DMM. StyleRig [39] first achieves control over Style-
GAN2 [19] in this way, and DiffusionRig [8] obtains even
better results using a DDPM [17] as a prior. Dubbing for
Everyone [36] uses a StyleGAN-based UNET with person-
alized Neural Textures, which allows for better adaptation.
ROME [21] takes a similar approach, with neural textures
predicted from images. However, as they operate at the im-
age level, they cannot model the back and sides of the head.

Hong et al. [18] build a morphable model for NeRFs us-
ing an image dataset for fast and generalisable avatars, how-
ever due to its image only training it often displays artefacts
from viewpoints outside the narrow range in these datasets.
Xu et al. [48]’s work is most similar to ours. They also build
a morphable model, this time using Gaussians, which en-
ables fitting to a single image. However, this method does
not have a mechanism to update the back of the head and
lacks semantic expression parameters, making it harder to
animate with existing techniques.

Our work is real-time, animatable using readily avail-
able tools and photorealistic. It has a fast fitting process
which can be fit using a single camera and rendered from
any viewpoint, including the back of the head. While the
above works share some of these criteria, none satisfies all.
We note that none of the above methods have an explicit
mechanism for updating the appearance at the back of the
head using information from the front, and none show the

back of the head in their results. A tabular comparison with
recent work is provided in the supplementary material.

3. Method

3.1. Background: Gaussian Splatting

3D Gaussian Splatting is a method for reconstructing a
volume from a set of images with corresponding camera
calibrations. It involves using a collection of Gaussian
primitives, represented by a position, µ, in 3D space, an
anisotropic covariance matrix, Σ, a color, c and an opacity,
α. Kerbl et al. [20] proposed a system to optimize these
parameters to fit the evidence provided by the images by
decomposing the covariance, Σ, into scale, σ, and rotation,
r, components, represented as a vector and quaternion re-
spectively. Following projection by the camera and depth
sorting, each pixel color, P , is computed as:

P =

NG∑
i=1

ciαi

i−1∏
j=1

(1− αj) (1)

Since the whole process is differentiable, the Gaussian At-
tributes can be optimized to match the given images and
camera parameters.

3.2. Background: Mesh Attached Gaussians

Gaussian Splatting is excellent at reconstructing static
scenes but, in its basic form, cannot model animation dy-
namics. To do this, we make use of a 3D Morphable Model
(3DMM) [16, 43] as a way of animating the Gaussians.
Multiple works [33, 38] make the observation that, given
a sufficiently good coarse approximation of geometry in the
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form of a mesh, the problem can be reduced to an approx-
imately static scene. By attaching each Gaussian, Gi, to a
specific triangle, t, in the 3DMM mesh, the Gaussian is as-
sumed to remain static relative to that triangle’s pose. There
are several successful formulations of this posing transfor-
mation:

µ,σ, r = Tlocal→global(µ
′,σ′, r′ | t) (2)

For our purposes, we use the definition of Qian et al. [33],
where the origin of each triangle’s system is assumed to
be the center, the orthonormal basis is determined by one
edge, the triangle’s normal and their cross-product, and the
isotropic scale by the mean of the length of one edge and
its perpendicular in the triangle. This allows us to define a
Gaussian Avatar, G, as a collection of static Gaussian prim-
itives in a triangle-local space.

G = {Gi : 1 ≤ i ≤ NG}, Gi = {µ′
i,σ

′
i, r

′
i, ci,oi} (3)

As these are static, we can optimize them using the same
procedures as in the original formulation [20].

3.3. Prior Model Training

We train our prior model as a generative model over iden-
tities. Following previous work [10, 32, 34, 47], we train
this prior as an auto-decoder model. We jointly learn a per-
subject identity code, zj ∈ R512, j ∈ {1, . . . , Nid}, and an
MLP decoder, D(z). One may naı̈vely think of training this
model to directly output the Gaussian Attributes, A, with a
single MLP. However, such a method quickly becomes in-
tractable. As a typical model with 100,000 Gaussians may
have millions of attributes, the number of parameters in D
would be too large. Instead, we augment each Gaussian
with a learnable feature vector, fi ∈ R8, i ∈ {1, . . . , NG}.
This feature is analogous to a positional encoding with ad-
ditional semantic meaning. We then train a network to map
these per-Gaussian features to Gaussian attributes, with
each Gaussian processed independently and in parallel.

To make optimization more stable, we learn a Canoni-
cal Gaussian Template, C, which is fixed across all subjects,
and model the per-person variation as offsets from this tem-
plate. The Canonical Template can be considered the mean
Avatar. The i-th Gaussian of the avatar for the subject j is
given by:

Ai,j = Ci,j +D(fi, zj) (4)

This is best understood by following Fig. 3. To train this
model, we jointly optimize C, D, {zj}1≤j≤Nid , {fi}1≤i≤NG

to minimize the following loss function:

L = λpixLpix + λαLα + λpercepLpercep + Lreg (5)

Where Lpix is a pixel level loss consisting of L1, the ℓ1 dif-
ference between the real and predicted images, and LSSIM

zj

fj
D

µi

ri

…

µ*
i

r*
i

…

Personalized 
Gaussian Offsets

Canonical
Gaussian Template

1 2 3P

1 2 3P

1 2 3P

1 2 3P

Figure 3. The architecture of our prior model. A latent vector for
identity, z, is used to transform learnable per-Gaussian features, f ,
into Gaussian Attributes, which offset a canonical template. Our
training process has four stages: the prior training, P, and three
user-specific fitting steps. We freeze some layers and train others
at each stage, as indicated.

which is the differentiable SSIM loss, weighted by λ1 and
λSSIM respectively. Lpercep is a perceptual loss based on
LPIPS [51], Lα is the ℓ1 distance between the real and pre-
dicted alpha masks, and Lreg is a regularization loss acting
on the Gaussians. We regularize scale, σ′, and displace-
ment, µ′:

Lreg = λσ||max(0.6, σ′)||2 + λµ||µ′||2 (6)

Unlike previous methods, our 3DMM does not capture
coarse hair geometry, meaning the Gaussians must fully
model it. We, therefore, reduce λµ by a factor of 100 for
Gaussians bound to faces in the scalp region, which we
manually define.

3.4. Initialization

Using just one Gaussian per triangle face of the 3DMM
leads to an under-parameterised model that lacks sufficient
detail. To overcome this, we use the initialization strategy
of Xiang et al. [45]. We generate a UV map of a given reso-
lution for our mesh and take each pixel’s corresponding face
and barycentric coordinates. The face is used for Gaussian
binding. We use the barycentric coordinates to position the
origin of each Gaussian’s local coordinate system.

3.5. Fitting Process

Given input data ranging from a single image, to a short
video from a single monocular camera, we aim to produce
a high-quality avatar that can be viewed from any angle. We
have three stages to this fitting process, visualized in Fig. 3:
1. We find the best in-prior Gaussian Avatar by randomly

initializing an identity latent vector, z, and optimizing
this with everything else frozen; we call this inversion.

2. We fine-tune the MLP, D, with the rest of the model
frozen.

3. We refine the resulting Gaussians using the standard
Gaussian Splatting optimization procedure [20] to best
fit the data.
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Figure 4. Visualization of the first three components of a PCA
decomposition of the Gaussian features f , displayed using the ge-
ometry of a random subject. Note the semantic relationships.

To motivate this three-step process, we can consider two
extremes. On the one hand, we could perform inversion
only. This relies heavily on the prior. If we had perfectly di-
verse real-human data and a perfect prior, this may be all we
would need to do. However, our prior was trained on syn-
thetic data, so inversion can only generate synthetic-looking
avatars. On the other hand, we could use the prior for ini-
tialization and then optimize the resulting Gaussians. This
would achieve similar results to the existing state-of-the-art
but with the unseen regions looking synthetic.

We can extract more value from our prior model by con-
sidering correlations in the per-Gaussian features, f . Our
network is forced to map these to Gaussian attributes and
learns to associate similar Gaussians with similar features.
Fig. 4 shows a PCA decomposition of the Gaussian fea-
tures, demonstrating that these features have learned seman-
tic meaning. By freezing the features in the fitting process,
Gaussians with similar semantic features will be mapped to
have similar attributes. For example, if D learns to make a
Gaussian representing hair at the front of the head blonde,
it will also update an unseen one at the back of the head.

To prevent stages 2 and 3 from diverging too far from the
prior, we introduce an additional regularization term, Lprior,
to the loss, L, during these stages. Lprior is defined as the
ℓ2 distance between each Gaussian attribute and its corre-
sponding value from the prior (i.e., after stage 1). This is
particularly important when regularizing unseen Gaussians.
Results after each stage of fitting are shown in the supple-
mentary material.

4. Dataset
We require calibrated multi-camera data of the same subject
performing a wide range of expressions to train our prior
model. Collecting such data would require complex and ex-
pensive camera rigs. Instead, we leverage the synthetic data
generation pipeline of Hewitt et al. [16]. This allows us to
generate highly diverse and perfectly calibrated image data
with pixel-perfect annotations. We generate 1000 identities
(random face shape, texture, upper body clothing, hairstyle,

Figure 5. Examples from our synthetic dataset. We generate a
large and diverse set of synthetic subjects rendered from many
views to train our prior model.

hair color, and eye color). We illuminate the scene using
uniform white lighting to simplify model training. We pose
those faces with random expressions and sample a virtual
camera uniformly from a hemisphere ([-180, +180] degrees
azimuth and [-20, +45] degrees elevation) to render 50 im-
ages per identity. Examples of the data used in training our
prior is shown in Fig. 5.

5. Results
We conduct all of our evaluations on the NeRSemble
Dataset [23]. This dataset contains multiple subjects per-
forming dozens of facial expression sequences, including
one freeform sequence, across 16 cameras. For each se-
quence, we preprocess each video using an off-the-shelf
background removal [25] and face segmentation tool [50] to
get the head region only. We obtain Morphable Model pa-
rameters in the format of Wood et al. [43] using the method
of Hewitt et al. [16]. We consider three experimental set-
tings using this data; please refer to the supplementary ma-
terial for the cameras and sequences used:

Monocular: To best replicate our desired setting, we en-
roll all avatars using a single frontal camera. We use a
subset of the expression sequences for fitting and evaluate
them using the unseen freeform sequence. We use the four
most extreme view cameras for evaluation, as determined
by manual inspection, to test the model’s ability to produce
good results on regions unseen at training.

Multi-Camera: To confirm that our model does not sac-
rifice performance when more data is available, we also en-
roll avatars using the same configuration above but with all
cameras used for input.

Single Image: To test the limits of our model, we also
experiment with just a single image as input, selecting the
first frame from the Monocular setting as input.

To evaluate visual quality, we use the standard metrics
of PSNR, SSIM and LPIPS [51] and FID [15]. We find that
PSNR and SSIM prefer solutions that match low-frequency
detail, e.g. a flat sheet of hair. While FID is better at cap-
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Monocular Video Single Image

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ ID-SIM ↑ QUAL ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ ID-SIM ↑ QUAL ↑
FlashAvatar 17.25 0.603 0.450 351 0.234 2.08 13.26 0.490 0.519 367 0.057 2.05
GaussianAvatars 17.39 0.601 0.428 366 0.179 2.08 14.80 0.474 0.475 385 0.000 2.03
ROME* - - - - - - 15.78 0.543 0.441 136 0.408 3.38
HeadNeRF* - - - - - - 17.72 0.658 0.333 171 0.114 -
FLARE 14.94 0.524 0.444 140 0.459 - 15.492 0.534 0.440 158 0.322 -
DiffusionRig 19.67 0.343 0.436 155 0.302 2.98 16.87 0.316 0.541 183 0.239 3.15
Ours 21.34 0.712 0.333 117 0.568 3.68 20.73 0.677 0.348 119 0.526 3.80

Table 1. Quantitative Evaluations: We compare our method with three state-of-the-art models. We evaluate on two scenarios, for the
Monocular scenario we on a single camera and then evaluate on the four most extreme. For single image we do the same but using only the
first image from the Monocular sequence. In each case the evaluation sequence is unseen in the training set. We take the average PSNR,
SSIM and LPIPS scores for each frame of each avatar. We also ask for user ratings of the quality of each method and report the mean
scores out of 5 (QUAL). (*) ROME and HeadNeRF only support single image use cases. We highlight the Best and Second Best for
each metric.

Ground TruthOursOurs (No Prior)FLAREGaussian AvatarsFlash AvatarsDiffusion Rig

Figure 6. Qualitative comparisons of our method with existing state-of-the-art in the Monocular Setting. We train on a monocular camera
and evaluate on unseen camera poses (top three rows) and an unseen sequence from the training view (bottom row). Our model captures
identity better than Diffusion Rig [8] and suffers from fewer artifacts than other Gaussian Avatar models ([33, 45], ours without a prior).

turing high-frequency similarity, we also conducted a user
study to measure perceived quality most accurately. We ask
users to rate each video out of five and report the mean
scores; we denote this QUAL. More details can be found
in the supplementary.

5.1. Baselines

We compare our model to state-of-the-art methods. For
the first set of methods, we look at Gaussian Avatar mod-
els: Gaussian Avatars [33], which is designed for ultra-high
quality rendering when trained on multiple views, and Flash
Avatars [45], which is designed to be trained and evaluated
on monocular data. We train these using the same mor-
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Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ ID-SIM ↑ QUAL ↑
FlashAvatar 24.73 0.815 0.253 125 0.767 3.70
GaussianAvatars 23.73 0.812 0.285 113 0.773 3.65
DiffusionRig 19.42 0.377 0.425 155 0.302 3.00
Ours 23.44 0.786 0.261 101 0.734 3.80

Table 2. Multi-Camera: We run comparisons using 16 training
cameras. We report the mean user ratings out of 5 (QUAL). We
highlight the Best and Second Best for each metric.

phable model, 3DMM fitting process and dataset prepro-
cessing as our method. In addition to Gaussian Avatar mod-
els, we look at models designed for few-shot animatable
avatar synthesis. We select the publicly available imple-
mentations of ROME [21], DiffusionRig [8] and HeadNeRF
[18].

5.2. Monocular Training

The results of this experiment can be found in Tab. 1. Our
model significantly outperforms state-of-the-art across all
metrics, including user-perceived quality. Our model pro-
duces significantly fewer artifacts in novel views compared
to other Gaussian Avatar methods [33, 45]. This is because
our prior helps prevent the model from overfitting to the
training camera view. Diffusion Rig [8] does not show any
visible artifacts, but struggles to preserve the identity of the
subject, this is best seen in Fig. 6.

5.3. Single Image Training

The results of the single image setting are shown in Tab. 1.
With such limited data, other Gaussian Avatar methods
overfit and perform poorly. Even on the same camera
view as the input image, Gaussian Avatar methods strug-
gle with artifacts; see Fig. 7. Our method also outperforms
ROME [21] (on all metrics), and HeadNeRF [18] (on all but
one metric) which are designed to work with single images.

5.4. Multi-Camera Training

Our model is competitive with the state-of-the-art in the
Multi-Camera setting (Tab. 2). We expect our model to per-
form worse than other Gaussian Avatar methods [33, 45]
as the prior regularizes the model towards a synthetic solu-
tion, and we do not model lighting or dynamic expressions.
Despite this, our model performs similarly to the state-of-
the-art, suggesting it can effectively use all available data.
Furthermore, using the prior allows our model to converge
in fewer steps than other Gaussian Avatar models, making
it cheaper and more efficient to train. Our model performs
better on all metrics compared to Diffusion Rig [8].

5.5. Ablations

We perform an ablation study to demonstrate our model’s
effectiveness. The results are shown in Tab. 3. We use three

Input Image

ROME

Diffusion Rig

Gaussian 

Avatars

Ours (no prior)

Ours

HeadNeRF

Ground Truth

Figure 7. Qualitative comparisons of our method with existing
state-of-the-art in the Single Image Setting, using the top image
only for the fitting process.

subjects in the monocular setting. More details, as well as
additional qualitative results, are in the supplementary.

No Prior: To validate the use of the prior, we fit person-
specific models using our MLP without any prior. We also
ablate the use of the prior regularization loss term. It can
be seen that the absence of the prior dramatically reduces
the quality according to all metrics, while not regularizing
towards the prior leads to slightly better ID reconstruction
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Figure 8. Example Avatars from in-the-wild scenarios, including
in non-uniform lighting.

but worse quality according to all other metrics.
Number of Subjects: We compare the model quality us-

ing priors trained on differing numbers of subjects. The
more subjects we have, the better the quality. Interestingly,
using one subject in the prior performs worse than not using
a prior. This contrasts with the findings of Buehler et al. [4].

Number of Gaussians: We consider the effect of initial-
izing with fewer Gaussians. We use texture maps ranging
from 64 × 64 up to the full 512 × 512. We see that the
highest resolution model performs best. Although the gain
is small, it is notable visually (see supplementary).

Fitting Stages: We show the importance of each stage of
the fitting process. Without stage 1 (optimizing for z), our
model performs worse on all metrics; this is also true for
stage 2. Without stage 3, our model performs similarly, or
slightly better, visually but suffers from a significant drop
in ID reconstruction. The supplementary materials include
visual results for each stage.

5.6. In the Wild Results

To demonstrate that our model is able to handle videos
beyond those captured in controlled conditions, Fig. 8 in-
cludes results from webcam videos under different lighting
conditions. While our method is already quite robust, we
can easily add lighting variation using synthetic data in fu-
ture work if we introduce a lighting model.

5.7. Runtime

After fitting a user’s Avatar using the prior, we can generate
the mesh attached Gaussian Avatar parameters, A. Com-
bined with the triangle face bindings and barycentric coor-
dinates, this fully specifies an Avatar. No neural networks,
including D, are required for inference. A user’s Avatar
can be stored as an approximately 15MB file. Without any
runtime optimizations, the complete inference pass, from
Morphable Model parameters to the final rendered image
runs at 70fps on an NVIDIA 4090 RTX GPU. The posing
of the Gaussians can run at 67fps on a 3rd Gen Intel(R)

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ ID-SIM ↑
w/o prior 19.42 0.670 0.391 212 0.478
w/o prior regularization 20.31 0.701 0.344 122 0.620

w/o stage 1 19.56 0.678 0.364 127 0.588
w/o stage 2 20.33 0.704 0.347 118 0.585
w/o stage 3 20.47 0.711 0.343 113 0.441

1 Prior Subject 15.86 0.550 0.459 274 0.365
10 Prior Subjects 19.98 0.678 0.367 146 0.538
100 Prior Subjects 20.39 0.703 0.347 129 0.577

64×64 Gaussians 20.41 0.709 0.363 155 0.493
128×128 Gaussians 20.45 0.704 0.353 127 0.567
256×256 Gaussians 20.43 0.702 0.350 117 0.575

Full (1k Subjects, 512×512) 20.67 0.716 0.340 108 0.589

Table 3. Ablations: We ablate several components of the model.
We evaluate the absence of the prior, the effect of fewer subjects
and fewer Gaussians. We also ablate each stage of the fitting pro-
cess. We highlight the Best and Second Best for each metric.

Core(TM) i9-13900K CPU, suggesting improvements in
Gaussian Splatting may allow real-time CPU inference.

6. Limitations and Future Work
While our model is able to achieve high-quality 360◦ ren-
dering, it has some limitations. For some regions, such as
the back of the head, the model produces synthetic-looking
results. We would like to address this issue by looking into
2D image-based priors [26, 27] based on diffusion models
[35]. To reduce artefacts introduced by overfitting to the
monocular view, we used only flat RGB colour and did not
model lighting, reducing our model’s realism. In future, we
may include a lighting model in our prior, enabled by a di-
verse set of lighting conditions in our synthetic data. As
can be seen in our supplementary, our prior serves as a gen-
erative model with good interpretability. Given sufficient
resources and a good camera/morphable model registration
pipeline, we would like to use the findings of this work to
train a similar generative prior using real data.

7. Conclusion
We have presented GASP, a novel method enabling 360◦,
high-quality Avatar synthesis from limited data. Our model
builds a prior over Gaussian Avatar parameters to “fill in”
missing regions. To bypass the issues associated with col-
lecting a large-scale real dataset, such as the need for full
coverage and imperfect annotation, we use synthetic data.
Learned semantic Gaussian features and a three-stage fitting
process enable us to cross the domain gap while fitting to
real data to create realistic avatars. Our model outperforms
the state-of-the-art in novel view and expression synthesis
with Avatars trained from a single camera (e.g., a webcam
or phone camera) using a short enrollment video or a single
image while retaining the ability to animate and render in
real-time.
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