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Abstract

Modern world models require costly and time-
consuming collection of large video datasets with action
demonstrations by people or by environment-specific
agents. To simplify training, we focus on using many virtual
environments for inexpensive, automatically collected
interaction data. Genie [5], a recent multi-environment
world model, demonstrates simulation abilities of many
environments with shared behavior. Unfortunately, training
their model requires expensive demonstrations. Therefore,
we propose a training framework merely using a random
agent in virtual environments. While the model trained
in this manner exhibits good controls, it is limited by the
random exploration possibilities. To address this limitation,
we propose AutoExplore Agent - an exploration agent that
entirely relies on the uncertainty of the world model,
delivering diverse data from which it can learn the best.
Our agent is fully independent of environment-specific
rewards and thus adapts easily to new environments. With
this approach, the pretrained multi-environment model can
quickly adapt to new environments achieving video fidelity
and controllability improvement.

In order to obtain automatically large-scale interaction
datasets for pretraining, we group environments with simi-
lar behavior and controls. To this end, we annotate the be-
havior and controls of 974 virtual environments - a dataset
that we name RetroAct. For building our model, we
first create an open implementation of Genie - GenieRe-
dux and apply enhancements and adaptations in our ver-
sion GenieRedux-G. Our code and data are available at
https://github.com/insait-institute/GenieRedux.

1. Introduction

Learning from interactive environments allows us to under-
stand and represent the rules, the possible actions, and the
consequences that govern them. As an alternative to labori-
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A:jump,B:shoot, ↑:none...

(e.g. Platformer;
left,right,crouch,jump)

A:none,B:kick ↑:fly...

Figure 1. Our proposed world model training framework. It
consists of a pretrained multi-environment world model on ran-
dom agent data, and a new AutoExplore Agent that explores an
environment and delivers diverse data for fine-tuning.

ously hand-coded synthetic simulators, world models have
emerged as deep learning tools for realistic environment
modeling entirely from observations, commonly images of
the observed environment [1, 5, 37, 65].

Previous work such as [19, 23, 33] uses light world mod-
els to support goal-driven agents with goal-specific state
representations. The focus is on coarse future predictions,
not on their high visual quality. In contrast, the objective of
recent world models is to achieve high-quality future pre-
dictions given past observations and actions. Such recent
models are able to offer realistic action execution and even
real-time interaction with people [1, 58]. This has become
possible with the rise of diffusion, transformers [14, 59],
and state space models [17], and by borrowing architectural
choices from video generation pipelines [51, 60]. Typically,
these generative models are designed to closely match a sin-
gle selected environment. One of the state-of-the-art mod-
els, Genie, distinguishes itself by being trained on many
visually diverse environments with similar dynamics, thus
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demonstrating generalization across new visuals.
Building these high-quality statistical simulators re-

quires diverse observations of the environment as well as
of the actions to simulate. Some obtain this data by costly
video dataset collection and curation with human demon-
strations of the actions [1, 5, 63]. If actions are unavail-
able, an extra component is designed to predict them, which
can introduce uncertainty compared to ground truth labels
[5, 37]. Extension to new environments with new types of
actions in this setting is difficult as it requires again an ex-
pensive data collection process. Others, such as [58] have
explored retrieving data with an environment-specific agent,
in their case - the game Doom.

In this work, we propose a framework for accessible
and effort-free training of world models in multiple envi-
ronments. To this end, we first build RetroAct- an an-
notated and curated large dataset of retro game environ-
ments (based on the environments of Stable Retro [48]). We
group them based on behavior labels and control descrip-
tions. This grouping allows us to generate large-scale in-
teraction datasets across environments with similar behav-
iors. Next, we pretrain a multi-environment world model
GenieRedux - our open implementation of Genie [5], using
a random agent. Unlike [66], which reports the agent’s im-
proved behavior from pretraining, we aim to improve the
world model. For this, we adapt GenieRedux to virtual en-
vironments and implement architectural and training proce-
dure enhancements, resulting in the GenieRedux-G model.
We observe that just by training GenieRedux-G on random
interactions from subsets of 200 environments and 50 en-
vironments with mapped controls, automatically collected
from RetroAct, we are able to obtain control behavior
(0.450 ∆PSNR in 50 environments) and reasonable visual
fidelity (26.36 PSNR in 50 environments).

As random actions are limited in their ability to explore
the environment, we develop a method to obtain more di-
verse interaction data to improve the control behavior and
visual fidelity of our model. To this end, inspired by [53],
we develop our own environment-independent reward func-
tion, allowing an agent to explore different environments,
entirely without relying on predefined environment rewards.
While they aim at a high-performing goal-driven agent, we
base our design on improving the underlying large world
model for the simulation of environments in terms of higher
visual fidelity and improved controllability. For graphical
illustrations, see Fig. 1. The objective of our exploration-
driven agent is to maximize the world model’s uncertainty,
estimated by the classification entropy available in the ob-
servation prediction stage of GenieRedux-G. Once the di-
verse data is obtained, we fine-tune GenieRedux-G. We
show that this method leads to significant visual (up to 7.4
PSNR) and control (up to 1.4 ∆PSNR) improvements, com-
pared to random agent pretraining.

Our contributions are as follows:
• A framework for training world models with cheap data

collection - by training an exploration agent based on our
world’s model uncertainty.

• The implementation and release of GenieRedux and
GenieRedux-G - open Pytorch models based on [5].

• Architectural and loss changes to the model leading to
fidelity improvements, based on our tokenizer represen-
tation study.

• Preparing a large scale environment dataset for multi-
environment world model training.

2. Related Work
World models. Initially built as rough imagination mod-
els assisting reinforcement learning (RL) agents [10, 19,
21, 24, 53], world models have evolved into independent
realistic video generation models conditioned on actions
[9, 39, 50, 64]. They facilitate task-specific agent training
by providing predictive representations of the environment.
Inspired by [20], Ha and Schmidhuber [18] use a VAE to
encode visual observations into latent states, with an MDN-
RNN predicting future states based on prior states, actions,
and VAE outputs to facilitate policy learning. DreamerV2
[22] introduce an RL agent, achieving human-level perfor-
mance in Atari. It encodes images with a CNN and com-
putes posterior and prior stochastic states using recurrent
states. Unlike our work, though, it does not assess the
agent’s impact on world model improvement nor general-
ize task rewards across different environments.

World models also aim to generate realistic video condi-
tioned on actions [27, 37, 65]. Genie [5] trains a video tok-
enizer and a Latent Action Model (LAM) for dynamic next-
frame generation. GAIA-1 [27] tackle autonomous driv-
ing in unstructured settings by encoding multi-modal inputs
into a unified representation and predicting image tokens
based on prior inputs, using an autoregressive transformer.
Menapace et al. [37] employ an encoder-decoder architec-
ture in which the predicted action labels act as a bottleneck,
allowing a user to control the generated video by a discrete
action. The key gap in these works is automatic data collec-
tion, which is addressed in our approach.
Efficient exploration. The importance of efficient explo-
ration in RL is highlighted by [28]. Early methods en-
hanced exploration by adding noise [16, 34] or using en-
tropy regularization [40], but they have action space limi-
tations and often fail with complex dynamics, where varied
actions do not always drive meaningful exploration. A more
direct approach uses heterogeneous actors [26, 29, 52] with
diverse exploration strategies to enhance environment ex-
ploration. Bayesian methods [54, 57] have also been intro-
duced to create acquisition functions for uncertainty-driven
exploration [2, 38, 41–44], but often struggle to generalize
to high-dimensional inputs like images.
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Figure 2. Method Overview. We propose an alternative to costly human interaction data collection - by exploring environments with an
agent. The reward is solely based on the classification uncertainty of our model.

Recent exploration methods emphasize state novelty
[3, 7, 11, 35, 36, 45, 55, 67], focusing on encouraging agents
to assess novelty only after visiting states. In contrast, our
approach, inspired by [7, 47, 53], uses model disagreement
to proactively guide agents to states with the highest poten-
tial without environment target-driven reward. [6, 46] pro-
pose exploration agents driven by uncertainty in state tran-
sition and simple feature extractors. Instead, we propose an
exploration agent designed to improve a world model that
does not model states. Plan2Explore [53] enables agents to
seek novel states using a reward that maximizes the state
entropy of an RSSM model. While Plan2Explore improves
goal-driven agents with their framework, we improve a
modern transformer world model with a novel exploration-
based reward using token uncertainty.

Rather than relying on world models, EX2 [15] learns
a classifier to distinguish visited states, providing intrin-
sic rewards for states that are difficult for the classifier
to differentiate. KL-divergence-based approaches [30–32],
guide exploration by comparing distributions. For example,
SMM [32] computes the KL divergence between the policy-
induced state distribution and a uniform target. Tao et al.
[56] propose an intrinsic reward based on the distance be-
tween a state and its nearest neighbors in a low-dimensional
feature space. However, low-dimensionality leads to infor-
mation loss, restricting full state space exploration — an
issue we address by the use of a world model.

3. RetroAct Dataset

We first tackle the problem of accessible training of multi-
environment world models by building a framework for
cheaply acquiring multi-environment interaction data. In
particular, we aim to collect interactions of similar actions

Figure 3. RetroAct Annotation. Description of environments
in RetroAct by annotated attribute. Better viewed zoomed.

in many environments. Instead of relying on expensive hu-
man interaction, we obtain and curate a collection of vir-
tual environments. As a source, we use the Stable Retro
framework by [48], which is a collection of retro games
across multiple platforms, with an accompanying starting
state. We make no use of the defined rewards. We obtain
almost all the supported games (974).

This raw set contains an environment mix of very differ-
ent visuals and behaviors. However, in our setting of learn-
ing from similar dynamics, it is required to establish corre-
spondence between the environments’ behaviors. We per-
form annotation where for each environment three aspects
are classified. The motion style classifies the general style
of what and how is moved by the controls, closely relating
to game genre; the camera viewpoint; the control axis de-
scribing in which direction the player can be moved. The la-
bel distributions are shown in Fig. 3. In Tab. 1 we compare
our RetroAct with other related datasets. RetroAct
distinguishes itself by providing behavior and control anno-
tations, while maintaining a high number of environments.

It is discovered that the most prevalent type of environ-
ment in our set is the platformer - 483 titles. As the largest
subset, we filter only these games for further use, as it is
required to have many environments exhibiting similar con-
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Table 1. Comparison of RetroAct dataset to others.

Dataset Type #Environments
Diverse

Behaviors Open
Behavior

Annotation
Control

Annotation
Coinrun [13] Environments 1 ✗ ✓ ✗ ✗

ALE [4] Environments 57 ✓ ✓ ✗ ✗
Stable Retro [48] Environments 1003 ✓ ✓ ✗ ✗
Platformers [5] Videos Unknown ✓ ✗ ✗ ✗
RetroAct(Ours) Environments 974 ✓ ✓ ✓ ✓

trols. Five motion actions are defined for our model - mov-
ing left, right, up, down and jump. Each game has its
own mapping of buttons to actions. Therefore, we generate
a short clip of each of the 5 selected actions for each of the
483 titles and build an annotation tool to observe and an-
notate the executed action. Eventually, we annotated 2,925
behavior and 2,898 control labels.

After experimenting, we observed that models require
more training with a higher number of environments, so
we defined two subsets of our large set to handle computa-
tional cost: a subset consisting of the first 200 games of 483
behavior-filtered games for pretraining, and another sub-
set of 50 randomly selected action-consistent games using
RetroAct’s action labels for fine-tuning.

We collect a large scale dataset by launching a ran-
dom agent in all of the environments, collecting ac-
tions and observations. From the 200-game set we build
Platformers-200 - a dataset with 10,000 episodes (50
episodes per game) with 500 frames each at most, result-
ing in 4.6mln images. From the 50-game set we obtain
Platformers-50 - 5000 episodes (100 per game) of
length at most 1000, resulting in 4.8mln images. In our
protocol, we take 1% of the sessions of each environment
as a validation set. We show that using a random agent is
already sufficient to learn a level of controllability and later
build on top with an exploration agent of our design.

To validate our GenieRedux implementation, we imple-
ment the CoinRun case study in [5]. Using the protocol
from above, we obtain a dataset of 10k episodes with a max-
imum length of 500, resulting in 4mln images.

4. Multi-Environment World Model
Given virtual environments, our first goal is to automatically
obtain a dataset of image sequences I1, ..., IN and corre-
sponding actions a1, ..., aN−1. Given a sequence I1, ..., IN
and past and future actions a1, ..., aN+T−1, our world
model aims to predict the future T frames IN+1, ..., IT , cor-
responding to the actions executed.

GenieRedux. As Genie [5] is not made available by
the authors, we create an open implementation and
call it GenieRedux. We validate our implementa-
tion quantitatively and qualitatively in Sec. 5 and
Sup.Mat F. It consists of three components. A video

Tokenizer encodes input frame sequences into spatio-
temporal tokens: e1, ..., eN = Tenc(I1, ..., IN ), and de-
codes back to images: I1, ..., IN = Tdec(e1, ..., eN ).
A Latent Action Model encodes input frame se-
quences into spatio-temporal tokens: a1, ..., aN−1 =
LAMenc(I1, ..., IN−1), and decodes them to reconstruct
future prediction I2, ..., IN = LAMdec(a1, ..., aN−1). A
Dynamics module predicts the next frames based on par-
tially masked frame tokens and actions: I2, ..., IN+T−1 =
D(e1, ..., eN , ..., eN+T−1; a1, ..., aN+T−1), where in infer-
ence eN , .., eN+T−1 are masked. We adhere closely to Ge-
nie’s specifications for implementing these components.

All components use the causal Spatial Temporal Trans-
former (STTN) [62]. We use Position Encoding Generator
(PEG) [12] for spatial and temporal attention, and Attention
with Linear Biases (ALiBi) [49] for temporal attention.

We train our models with a sequence size of 16 frames
and resolution of 64x64 to address computational limita-
tions. We train a U-Net-based superresolution network
on 50K data samples to upscale the output to 256x256.
(Sup.Mat. B)

GenieRedux-G. Building upon the base model, we of-
fer a variant - GenieRedux-G, which is adapted to vir-
tual environments and contains architectural and training
improvements. While GenieRedux uses an indispensable
LAM model to obtain the actions, we discard it, as ground
truth actions are available from our agent. Instead, the one-
hot actions are concatenated to each layer of the Dynamics
module for conditioning. In this way, we avoid the uncer-
tainty of a prediction.

The Dynamics module consists of an ST-ViViT encoder,
followed by a MaskGIT architecture [8], which predicts in-
dices from the tokenizer’s codebook for randomly masked
input tokens during training, according to a schedule. As
standard cross-entropy is used, token classification has the
drawback to penalize equally any prediction different from
the ground truth. However, close tokens in the codebook
result in significantly fewer changes than far tokens, as also
shown in Sec. 5. To enable this concept of a distance be-
tween tokens in the classification of NE tokens, we design
a Token Distance Cross-Entropy (TDCE) Loss:

TDCE(x, y) = (yTK) · softmax(x) + CE(x, y) (1)
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Here x ∈ RNE is the prediction logits, y ∈ RNE is the
ground truth one-hot class. K ∈ RNE×NE is a precom-
puted table at the start of training of the cosine distances
between all tokens ; CE(.) denotes standard Cross-Entropy
Loss. When an incorrect token class is given probability, it
is penalized based on its distance to the ground truth class.

MaskGIT’s design is to take as input learnable embed-
dings, indexed by the tokens predicted by the Tokenizer.
They are randomly initialized, and therefore contain none
of the content of the tokens. Given that that the encoding
itself and the distance between tokens can contribute to Dy-
namic module’s performance, we add a skip connection by
adding the embedding to the token itself, which improves
visual fidelity and controllability of the model.

AutoExplore Agent We extend our framework with an
exploration agent that obtains data by going deeper into the
environments. We name it AutoExplore Agent. The re-
ward of the agent is entirely based on the world model per-
formance and operates without any environment rewards.
Therefore, it can be trained in various environments without
tuning to their specifics or relying on a reward definition.

The design of our reward is based on the fact that
GenieRedux-G employs classification for token prediction.
Each token is predicted by sampling from a categorical dis-
tribution over the codebook. We first obtain all NT to-
ken prediction distributions by running GenieRedux-G-50
5 steps back from the current observation Ic for which
we want to estimate the reward. We provide 2 images
Ic−4, Ic−3, predict 3 images - Ic−2, ..., Ic, and take the
distributions of the predicted tokens of Ic to obtain x =
[x1, ..., xt, ..., xNT

]. We evaluate the uncertainty per pre-
dicted token ut by calculating the entropy over the categor-
ical distribution and normalize it in the range [0, 2]:

ut =
2 ·

∑NT

i xi · log(xi)

Ne
(2)

Studying the properties of the Tokenizer representation,
we find that a prevalent token is learned representing static
parts of the environment. Only the changing parts generate
high uncertainty and, therefore, we take the subset Stop of
25% highest uncertainties of the entire set of uncertainties
S = {ut}. The reward, shown in Eq. 3, establishes the
agent’s goal to collect data that maximizes uncertainty of
the world model.

S25% = {u ∈ S | u ≥ Q75(S)} (3)

R(Ic) =
1

|S25%|
∑

u∈S25%

u (4)

Our agent is an actor-critic, trained with the Policy Gra-
dient method. For the agent architecture, we follow [39]. It

consists of a CNN encoder followed by an LSTM. As stan-
dard in RL, 4 frames are stacked, max-pooled, and the result
is the input to the agent for a single time step.

Exploration-driven World Model Training. We ini-
tially pretrain GenieRedux-G on Platformers-200
and fine-tune on Platformers-50 to obtain the model
GenieRedux-G-50. Then, we train AutoExplore Agent by
using GenieRedux-G-50, using it as a source of reward. The
details of training the agent are presented in Sup.Mat A.3.

Running the trained exploratory agent on a selected en-
vironment, we obtain a new diverse dataset with action
demonstrations under unseen scenes. We first fine-tune the
decoder of the Tokenizer for 1,000 iterations to adapt to the
new unseen scenes. The Dynamic module of GenieRedux-
G is then fine-tuned on the new data to achieve greater vi-
sual fidelity and controllability under new conditions. In
order to build test sets to evaluate our approach, we train an
Agent-57 model for each of the environments we explored,
using the available environment rewards. More details on
the test setup are provided in Sup.Mat A.2.

For visual fidelity evaluation, we use FID (Fréchet in-
ception distance) Heusel et al. [25], PSNR (signal-to-noise
ratio) and SSIM (structural similarity index measure) Wang
et al. [61]. To evaluate controllability, we use the recently
proposed ∆tPSNR metric [5], which compares the visual
effect of the ground truth action (x̂t) versus a random action
(x̂′

t): ∆tPSNR = PSNR(xt, x̂t)−PSNR(xt, x̂
′
t),, where xt

is the ground truth frame at time t. A higher ∆tPSNR indi-
cates a higher level of controllability. As in Bruce et al. [5],
for all experiments we report ∆tPSNR with t = 4.

5. Experiments
Comparing GenieRedux and GenieRedux-G. We im-
plement the original CoinRun case study with a random
agent, as advised by [5], in order to validate and compare
GenieRedux with LAM, and GenieRedux-G which uses
agent-provided actions instead. In this study, the presence
of LAM is the only difference between the models. We
first train on a dataset, collected by a random agent. Vi-
sual fidelity results are in Tab. 2. Our GenieRedux imple-
mentation exhibits high visual quality and matches all seven
CoinRun environment actions, as well as progressing envi-
ronment motions (demonstrated in Sup.Mat. F). However,
as demonstrated by the metrics, GenieRedux-G shows supe-
rior visual fidelity and controllability (more in Sup.Mat. F),
as it avoids the uncertainty of LAM prediction. This study
demonstrates that even using a random agent can result in
action performance abilities in the world model.

Next, we train an actor-critic agent with PPO on the en-
vironment reward, following [13] to collect data and train
GenieRedux-TA and GenieRedux-G-TA. Tab. 3 shows
evaluation on a test set collected by a trained agent.
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Table 2. Comparison of GenieRedux and GenieRedux-G on
Basic Test Set. Peformed on a test set, collected from the Coinrun
environment with randomly sampled actions.

Model Basic Test Set
FID↓ PSNR↑ SSIM↑

Tokenizer 18.14 38.25 0.96

LAM 37.01 33.97 0.92

GenieRedux 21.88 25.51 0.77
GenieRedux-G 18.88 33.41 0.92

Table 3. Comparison of GenieRedux and GenieRedux-G on
Diverse Test Set. The models are trained with data collected by
random agent and trained agent (-TA), and tested on data collected
by a trained agent from the Coinrun environment.

Model Diverse Test Set
FID↓ PSNR↑ SSIM↑

Tokenizer 19.13 35.85 0.94
Tokenizer-TA 11.63 40.62 0.97

GenieRedux 23.97 23.82 0.73
GenieRedux-G 19.51 31.66 0.90

GenieRedux-TA 12.57 31.97 0.90
GenieRedux-G-TA 12.40 34.44 0.92

GenieRedux-G outperforms GenieRedux on all settings.
Furthermore, models trained on diverse agent-collected data
are visually superior to those trained on random agents. The
higher ∆PSNR of 1.89 for GenieRedux-G-TA compared
to 0.70 for GenieRedux-G shows the superiority of diverse
data training in controllability. (more in Sup.Mat. F)

Multi-Environment Models. Here, we evaluate the
models we initially train on many environments from
RetroAct. GenieRedux-G-200 is pretrained on the
Platformers-200 dataset for 180k iterations. On the
validation set, we obtain 23.32 PSNR and 17.12 FID. Us-
ing this model as a base, GenieRedux-G-50 is trained on
Platformers-50. Its quantitative evaluation on a test
set of 10k sessions separately generated from the selected
50 environments is at the start of Tab. 4. As the 50 en-
vironments are selected with corresponding action controls
between each other, we see a boost in the quality of pre-
diction. Fig. 4 demonstrates that the instructed action is
executed successfully by GenieRedux-G. As the up action
is rarely used, it serves more as a no-operation action. (more
in Sup.Mat C.1)

Ablation Study. In this experiment we evaluate the addi-
tive gain of each proposed improvement in GenieRedux-G
- the additive token input and training with the Token Dis-
tance Cross-Entropy Loss. The ablation is performed on a
generated test set of 10k sessions, each 500 frames long.

Table 4. Ablation study on improvements in GenieRedux-G.

Model FID↓ PSNR↑ SSIM↑
GenieRedux-G-200 22.31 25.11 0.80
GenieRedux-G-50 23.80 26.36 0.84

+ Token Input 22.96 26.65 0.84
+ TDCE Loss 22.95 27.06 0.85
Autoregressive 22.11 28.07 0.88

RightInput Left Up Down Jump

Figure 4. Control Of GenieRedux-G-50. Demonstrating all con-
trols of our multi-environment model on multiple games.

The data is collected using a random action policy from the
environments in Platformers-50. Visual fidelity eval-
uation is provided in Tab. 4. It can be seen that each com-
ponent gives our model a benefit in terms of visual fidelity.
Finally, we perform an autoregressive evaluation of the best
model to achieve our highest score.

Tokenizer Representation Study. This experiment pro-
vides insights into the inner workings of GenieRedux-G to
motivate our proposed changes. As the Dynamics module
operates entirely on the token representation, we examine
it closely. Fig. 5 shows the reconstructions of an input se-
quence (first row) and the visualized token representation
(last row), where each predicted token index is assigned a
different color. The visual features of the first frame are
captured by various tokens. Starting with the second frame,
the representation drastically changes - a token is special-
ized in representing the static frame regions compared to
the past, while all motion regions are updated with new con-
tent. Observing that visually similar patches predict identi-
cal or similar tokens, we replace each predicted token with
its closest in the codebook. We only keep the special back-
ground token unchanged. In the second row of Fig. 5 we
show the resulting reconstruction - while some blurriness
appears, the image remains largely the same. Conversely,
replacing each token with its furthest in the codebook (third
row) results in a significantly different image. This property
- closer tokens having more similar appearance - motivates
our Token Distance Cross-Entropy Loss, which penalizes
predicting tokens further away from the ground truth.

Fig. 6 visualizes the uncertainty of GenieRedux-G-50
for each predicted token of its Dynamics module given a
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Table 5. Quantitative Results on 3 environments. We evaluate the benefit of the data from the propose AutoExplore Agent to our
models. GenieRedux-G-50 is our pretrained world model on 50 environments. GenieRedux-G-50-ft are fine-tuned models using data from
a random agent or AutoExplore (Exploration). GenieRedux-G denotes a non-fine-tuned model, trained with the exploration data.

Environment Strategy Model FID↓ PSNR↑ SSIM↑ ∆PSNR↑

Random GenieRedux-G-50 41.99 26.32 0.81 0.83
GenieRedux-G-50-ft 42.34 27.04 0.81 1.19

Adventure Island II Exploration
Tokenizer-ft 11.01 38.95 0.98 -

GenieRedux-G 11.94 28.33 0.88 0.37
GenieRedux-G-50-ft 12.77 30.60 0.90 1.47

Random Autoregressive GenieRedux-G-50-ft 41.55 27.82 0.83 1.24
Exploration Autoregressive GenieRedux-G-50-ft 11.33 33.61 0.94 2.09

Super Mario Bros

Random GenieRedux-G-50 29.83 34.24 0.94 0.56
GenieRedux-G-50-ft 30.13 34.54 0.94 0.54

Exploration
Tokenizer 8.09 42.00 0.99 -

GenieRedux-G 9.56 34.00 0.95 0.09
GenieRedux-G-50-ft 9.55 36.13 0.97 0.57

Random Autoregressive GenieRedux-G-50-ft 30.84 34.85 0.95 0.57
Exploration Autoregressive GenieRedux-G-50-ft 9.33 37.77 0.97 0.76

Smurfs

Random GenieRedux-G-50 79.51 21.47 0.69 0.47
GenieRedux-G-50-ft 80.61 21.83 0.70 0.65

Exploration
Tokenizer 17.86 35.61 0.98 -

GenieRedux-G 20.43 35.42 0.80 0.85
GenieRedux-G-50-ft 20.01 27.45 0.85 1.55

Random Autoregressive GenieRedux-G-50-ft 80.16 22.16 0.71 0.69
Exploration Autoregressive GenieRedux-G-50-ft 18.97 29.53 0.90 2.06
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Figure 5. Tokenizer Representation. Reconstruction images
from the tokenizer, and the effect of replacing each token with
its closest and furthest in the codebook. Lastly, we visualize the
indices of the predicted tokens.

sequence. The uncertainty metric is the entropy of the clas-
sification over 1024 codebook tokens. Tokens correspond-
ing to motion have the highest uncertainty; other regions
are mostly classified as the ”static” token. Thus, minimal
character movement yields low uncertainty, while forward
motion increases it. This motivates us to build AutoExplore
Agent’s reward based on this uncertainty.

Exploration-based training. We demonstrate
our exploration-based training of GenieRedux-G.
We perform the procedure on 3 environments -
AdventureIslandII, which provides an easy set-
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rta
in
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Figure 6. Dynamics Uncertainty. Shown is the uncertainty per
token predicted for each image of an example sequence. Uncer-
tainty is generated in the regions of motion.

ting for the agent to learn (single platform with no enemies
at the start), SuperMarioBros provides an enemy and
obstacles soon after the start and Smurfs provides a
more complex background imagery and different action
dynamics. For each of the environments, we train an
AutoExplorer Agent. We observe that the agent learns to
move forward and navigate obstacles to maximize reward.
(more in Sup.Mat. D)

We use our pretrained GenieRedux-G-50 model as a
baseline and fine-tune it for each environment in two set-
tings - a dataset collected on the selected environment by a
random agent and by our AutoExplorer Agent. Each dataset
consists of 10k sessions, each 700 frames long. We fine-
tune (GenieRedux-G-50-ft) for 10k iterations and pick the
best performing model. In our comparison, we also include
a GenieRedux-G model trained from scratch on the diverse
exploration datasets for 15k iterations to show the effect of
pretraining. We perform single-pass generation for all mod-
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Figure 7. AutoExplore Agent vs Random Agent Qualitative
Comparison. We show that AutoExplore exhibits better visual
quality and avoids losing track of the agent.

Table 6. Comparison of AutoExplore Agent with others.

Agent SuperMarioBros AdventureIslandII
PSNR↓ SSIM↓ ∆PSNR↓ PSNR↓ SSIM↓ ∆PSNR↓

RF 28.58 0.94 0.181 24.82 0.78 0.44
VAE 24.40 0.86 0.087 16.57 0.5 0.072
Ours 23.81 0.85 0.065 15.20 0.41 0.070

els and the more computationally heavy autoregressive eval-
uation for the fine-tuned models on data from random and
AutoExplore Agent’s datasets. Tab. 5 shows visual fidelity
and controllability metrics for each environment, confirm-
ing the effectiveness of our exploration method. The model
fine-tuned on AutoExplore Agent’s data consistently out-
performs the models trained on random actions in terms
of visual fidelity. Exploration-based fine-tuning also im-
proves controllability. Environments with small characters
and uniform backgrounds can be more challenging for all
models to learn. However, the gain in controllability in this
case remains noticeable during autoregressive evaluation.
Fig. 7 demonstrates the superior quality of our method. In
addition, we observe that the multienvironment pretraining
leads to significant gains in both studied aspects compared
to the nonpretrained model. (more in Sup.Mat. C)

AutoExplore Agent Evaluation. We compare AutoEx-
plore Agent with exploration-based methods in [6]. We
train agents based on SSE of RF and VAE features on top
of GenieRedux and compare with ours on Tab. 6. Auto-
Explore Agent’s reward results in maximum world model
visual and controllability errors (on 1k episodes of agent
actions), fulfilling its intended role in our framework.

User Studies. To validate the quality of our final results,
we perform a user study in which we ask people to rate
from 1 to 5 the quality of samples produced respectively by
GenieRedux-G trained on random agent’s data and on Au-
toExplore Agent’s data. Each sample in our study consists
of two 16-frame clips playing in a synchronized manner -
the ground truth clip and our GenieRedux-G-50-ft recon-
struction, given two initial frames and generating the rest
autoregressively. We provide a total of 120 samples to the
users - 40 samples per model and 40 samples of two ground-
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Figure 8. User study results. Our user study on two games shows
that our model trained with AutoExplore Agent’s data is consistently
rated higher.

truth samples, to establish scale. We give 20 samples from
each of the two selected games - SuperMarioBros and
AdventureIslandII. We get reviews from 19 partici-
pants. The results are shown in Fig. 8. The model, trained
on data from AutoExplore Agent is clearly rated closer to
the ground truth, establishing the quality of our method.

With a second user study, we evaluate the action accu-
racy of the generated frames. We use ambiguous single in-
put cases (character starting mid-air) and generate 60 clips
with 3 actions on AdventureIslandII. Users prefer
our exploration-trained model, rating it 0.75 ± 0.019 on
a scale from 0 (random preferred) to 1 (exploration pre-
ferred). (more in Sup.Mat. E.2)

6. Conclusion

As world models have developed into large models with im-
pressive simulation properties, they require large interaction
datasets, complete with diverse observations and actions.
Genie [5] demonstrates impressive abilities by training on
multiple environments, however, requiring the collection of
a large video dataset and a model to infer actions.

In this work, we address the heavy burden of data col-
lection and curation by building a new framework for train-
ing large world models by collecting interaction data from
a large number of virtual environments. We first build an
open implementation of Genie - GenieRedux and enhance
it into its version GenieRedux-G. We obtain models exhibit-
ing control by pretraining on a large set of virtual environ-
ments. We address the overfitting limitations of random
data collection policy by proposing AutoExplore Agent,
an agent entirely independent of the environment reward,
maximizing the uncertainty of GenieRedux-G. After fine-
tuning on the explored environment, our model is able to
improve its visual fidelity and controllability much better
than training solely on random agent’s data. Demonstrat-
ing this on multiple environments, we show the potential of
our framework to make training of next-generation world
models more accessible, cost-effective, and effort-free.
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