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Abstract

State-space models (SSMs) have recently shown promise in
capturing long-range dependencies with subquadratic com-
putational complexity, making them attractive for various
applications. However, purely SSM-based models face crit-
ical challenges related to stability and achieving state-of-
the-art performance in computer vision tasks. Our paper
addresses the challenges of scaling SSM-based models for
computer vision, particularly the instability and inefficiency
of large model sizes. We introduce a parameter-efficient
modulated group mamba layer that divides the input chan-
nels into four groups and applies our proposed SSM-based
efficient Visual Single Selective Scanning (VSSS) block in-
dependently to each group, with each VSSS block scan-
ning in one of the four spatial directions. The Modulated
Group Mamba layer also wraps the four VSSS blocks into
a channel modulation operator to improve cross-channel
communication. Furthermore, we introduce a distillation-
based training objective to stabilize the training of large
models, leading to consistent performance gains. Our
comprehensive experiments demonstrate the merits of the
proposed contributions, leading to superior performance
over existing methods for image classification on ImageNet-
1K, object detection, instance segmentation on MS-COCO,
and semantic segmentation on ADE20K. Our tiny vari-
ant with 23M parameters achieves state-of-the-art perfor-
mance with a classification top-1 accuracy of 83.3% on
ImageNet-1K, while being 26% efficient in terms of pa-
rameters, compared to the best existing Mamba design
of same model size. Code and models are available at:
https://github.com/Amshaker/GroupMamba

1. Introduction

Various context modeling methods have emerged in the do-
mains of language and vision understanding. These include
Convolution [21, 66], Attention [60], and, more recently,
State Space Models [16, 17]. Transformers with their multi-

Figure 1. Comparison in terms of Parameters vs. Top-1 Accuracy
on ImageNet-1k [9]. Our GroupMamba-B achieves superior top-1
classification accuracy while reducing parameters by 36% com-
pared to VMamba [35].

headed self-attention mechanism [60] have been central to
both language models such as GPT-3 [2] and vision models
such as Vision Transformers [10, 36]. However, challenges
arose due to the quadratic computational complexity of at-
tention mechanisms particularly for longer sequences, lead-
ing to the recent emergence of State Space models such as
S4 [17].

While being effective in handling extended input se-
quences due to their linear complexity in terms of se-
quence lengths, S4 [17] encountered limitations in global
context processing in information-dense data, especially in
domains like computer vision due to the data-independent
nature of the model. Alternatively, approaches such as
global convolutions-based state space models [14] and Liq-
uid S4 [20] have been proposed to mitigate the aforemen-
tioned limitations. The recent Mamba [16] introduces the
S6 architecture which aims to enhance the ability of state-
space models to handle long-range dependencies efficiently.
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The selective-scan algorithm introduced by Mamba uses
input-dependent state-space parameters, which allow for
better in-context learning while still being computationally
efficient compared to self-attention.

However, Mamba, specifically the S6 algorithm, is
known to be unstable for e.g., image classification, espe-
cially when scaled to large sizes [46]. Additionally, the
Mamba model variant used in image classification, gen-
erally called the VSS (Visual State Space) block, can be
more efficient in terms of parameters and compute require-
ments based on the number of channels. The VSS block
includes extensive input and output projections along with
depth-wise convolutions, whose parameters and compute
complexities are directly proportional to the number of
channels in the input. To address this issue, we propose
a hierarchical-based Modulated Group Mamba layer that
mitigates the aforementioned issues in a computation and
parameter-efficient manner. The main contributions of our
paper are:
1. We introduce a Modulated Group Mamba layer, inspired

by Group Convolutions, which enhances computational
efficiency and interaction in state-space models by us-
ing a multi-direction scanning method for comprehen-
sive spatial coverage and effective modeling of local and
global information.

2. We introduce a Channel Affinity Modulation (CAM) op-
erator, which enhances communication across channels
to improve feature aggregation, addressing the limited
interaction inherent in the grouping operation.

3. To address the instability issue in the SSM-based archi-
tecture, we introduce a distillation-based training objec-
tive designed to stabilize models with a large number of
parameters, leading to better performance and a smooth
loss convergence trend.

4. We build a series of parameter-efficient generic classifi-
cation models called “GroupMamba”, based on the pro-
posed Modulated Group Mamba layer. Our tiny vari-
ant achieves 83.3% top-1 accuracy on ImageNet-1k [9]
with 23M parameters and 4.5G FLOPs. Additionally,
our base variant achieves top-1 accuracy of 84.5% with
57M parameters and 14G FLOPs, outperforming all re-
cent SSM methods (see Fig. 1).

2. Related Work
Convolutional Neural Networks (ConvNets) have been the
popular choice for computer vision tasks since the intro-
duction of AlexNet [30]. The field has rapidly evolved with
several landmark ConvNet architectures [21, 25, 52, 56, 57].
Alongside these architectural advances, significant efforts
have been made to refine individual convolution layers, in-
cluding depthwise convolution [65], group convolution [7],
and deformable convolution [8]. Recently, ConvNeXt vari-
ants [37, 63] have taken concrete steps towards modernizing

traditional 2D ConvNets by incorporating macro designs
with advanced settings and training recipes to achieve on-
par performance with the state-of-the-art models.

In recent years, the pioneering Vision Transformer
(ViT) [10] has significantly impacted the computer vision
field, including tasks such as image classification [12, 36,
38, 58], object detection [3, 44, 68, 71], and segmenta-
tion [5, 28, 51]. ViT [10] introduces a monolithic design
that approaches an image as a series of flattened 2D patches
without image-specific inductive bias. The remarkable per-
formance of ViT for computer vision tasks, along with its
scalability, has inspired numerous subsequent endeavors to
design better architectures. The early ViT-based models
usually require large-scale datasets (e.g., JFT-300M [55])
for pretraining. Later, DeiT [58] proposes advanced train-
ing techniques in addition to integrating a distillation token
into the architecture, enabling effective training on smaller
datasets (e.g., ImageNet-1K [9]). Since then, subsequent
studies have designed hierarchical and hybrid architectures
by combining CNN and ViT modules to improve perfor-
mance on different vision tasks [11, 12, 41, 50, 54]. Another
line of work is to mitigate the quadratic complexity inherent
in self-attention, a primary bottleneck of ViTs. This effort
has led to significant improvements and more efficient and
approximated variants [6, 29, 43, 45, 50, 59, 62], offering
reduced complexity while maintaining effectiveness.

Recently, State Space Models (SSMs) have emerged as
an alternative to ViTs [60], capturing the intricate dynam-
ics and inter-dependencies within language sequences [17].
One notable method in this area is the structured state-space
sequence model (S4) [17], designed to tackle long-range
dependencies while maintaining linear complexity. Follow-
ing this direction, several models have been proposed, in-
cluding S5 [53], H3 [13], and GSS [42]. More recently,
Mamba [16] introduces an input-dependent SSM layer and
leverages a parallel selective scan mechanism (S6).

In the visual domain, various works have applied
SSMs to different tasks. In particular for image clas-
sification, VMamba [35] uses Mamba with bidirectional
scans across both spatial dimensions in a hierarchical
Swin-Transformer [36] style design to build a global
receptive field efficiently. A concurrent work, Vision
Mamba (Vim) [70], instead proposed a monolithic de-
sign with a single bidirectional scan for the entire image,
outperforming traditional vision transformers like DeiT.
LocalVMamba [27] addresses the challenge of captur-
ing detailed local information by introducing a scanning
methodology within distinct windows (inspired from Swin-
Transformer [36]), coupled with dynamic scanning direc-
tions across network layers. EfficientVMamba [47] inte-
grates atrous-based selective scanning and dual-pathway
modules for efficient global and local feature extraction,
achieving competitive results with reduced computational
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complexity. These models have been applied for image
classification, as well as image segmentation [15, 34, 40,
49], video understanding [4, 31, 67], and various other
tasks [18, 19, 23, 32, 61]. Their wide applicability shows
the effectiveness of SSMs [13, 17, 42, 53], and in particular
Mamba [16], in the visual domain. In this paper, we propose
a Modulated Group Mamba layer that mitigates the draw-
backs of the default vision Mamba block, such as lack of
stability [46] and the increased number of parameters with
respect to the number of channels.

3. Method
Motivation: Our method is motivated based on the obser-
vations with respect to the limitations of existing Visual
State-Space models.
• Lack of Stability for Larger Models: We observe

from [46] that Mamba [16] based image classification
models with an MLP channel mixer are unstable when
scaled to a large number of parameters. This instability
can be seen in SiMBA-L (MLP) [46], which leads to sub-
optimal classification results of 49% accuracy. We miti-
gate this issue by introducing a Modulated Group Mamba
design alongside a distillation objective (as presented in
Sec. 3.4) that stabilizes the Mamba SSM training without
modifying the channel mixer.

• Efficient Improved Interaction: Given the computational
impact of Mamba-based design on the number of chan-
nels, the proposed Modulated Group Mamba layer is
computationally inexpensive and parameter efficient than
the default Mamba and able to model both local and
global information from the input tokens through multi-
direction scanning. An additional Channel Affinity Mod-
ulation operator is proposed in this work to compensate
for the limited channel interaction due to the grouped op-
eration and enhance their interactions.

3.1. Preliminaries
State-Space Models: State-space models (SSMs) like
S4 [17] and Mamba [16] are structured sequence archi-
tectures inspired by a combination of recurrent neural net-
works (RNNs) and convolutional neural networks (CNNs),
with linear or near-linear scaling in sequence length. De-
rived from continuous systems, SSMs define and 1D
function-to-function map for an input x(t) ∈ RL → y(t) ∈
RL via a hidden state h(t) ∈ RN . More formally, SSMs
are described by the continuous time Ordinary Differential
Equation (ODE) in Eq. 1.

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where h(t) is the current hidden state, h′(t) is the up-
dated hidden state, x(t) is the current input, y(t) is the

output, A ∈ RN×N is SSM’s evolution matrix, and B ∈
R1×N ,C ∈ R1×N are the input and output projection ma-
trices, respectively.
Discrete State-Space Models: To allow these models to
be used in sequence modeling tasks in deep learning, they
need to be discretized, converting the SSM from a con-
tinuous time function-to-function map into a discrete-time
sequence-to-sequence map. S4 [17] and Mamba [16] are
among the discrete adaptations of the continuous system,
incorporating a timescale parameter ∆ to convert the con-
tinuous parameters A,B into their discrete equivalents
A,B. This discretization is typically done through the
Zero-Order Hold (ZOH) method given in Eq. 2.

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B

ht = Aht−1 +Bxt,

yt = Cht.

(2)

While both S4 [17] and Mamba [16] utilize a similar
discretization step as stated above in Eq. 2, Mamba dif-
ferentiates itself from S4 by conditioning the parameters
∆ ∈ RB×L×D, B ∈ RB×L×N and C ∈ RB×L×N , on the
input x ∈ RB×L×D, through the S6 Selective Scan Mech-
anism, where B is the batch size, L is the sequence length,
and D is the feature dimension.

3.2. Overall Architecture

As shown in Fig. 2 (a), our model uses a hierarchical archi-
tecture, similar to Swin-Transformer [36], with four stages
to efficiently process images at varying resolutions. As-
suming an input image, I ∈ RH×W×3, we first apply
a Patch Embedding layer to divide the image into non-
overlapping patches of size 4 × 4 and embed each patch
into a C1-dimensional feature vector. The patch embedding
layer is implemented using two 3 × 3 convolutions with a
stride of 2. This produces features maps of size H

4 ×W
4 ×C1

at the first stage. These feature maps are passed through N1

blocks of our Modulated Grouped Mamba (as detailed in
Sec. 3.3). In each subsequent stage, a down-sampling layer
merges patches in a 2 × 2 region, followed by another N
blocks of our Modulated Grouped Mamba layer. Hence,
feature size at stages two, three and four are H

8 × W
8 × C2,

H
16 × W

16 × C3, and H
32 × W

32 × C4, respectively.

3.3. Modulated Group Mamba Layer

We present the overall operations of the proposed Modu-
lated Group Mamba layer (Fig. 2 (b)) for an input sequence
Xin, with dimensions (B,H,W,C), where B is the batch
size, C is the number of input channels and H/W are the

14914



Figure 2. Overview of the proposed method. Top Row: The overall architecture of our framework with a consistent hierarchical design
comprising four stages. Bottom Row: We present (b) The design of the modulated group mamba layer. The input channels are divided into
four groups with a single scanning direction for each VSSS block. This significantly reduces the computational complexity compared to the
standard mamba layer, with similar performance. Channel Affinity Modulation mechanism is introduced to address the limited interactions
within the VSSS blocks. (c) The design of VSSS block. It consists of Mamba block with 1D Selective Scanning block followed by FFN.
(d) The four scanning directions used for the four VSSS blocks are illustrated.

width and height of the feature map, in Eq. 3.

XGM = GroupedMamba(Xin,Θ)

XCAM = CAM(XGM,Affinity(Xin))

Xout = Xin + FFN(LN(XCAM))

(3)

Here, XGM is the output of Eq. 6, XCAM is the output of
Eq. 9, LN is the Layer Normalization [1] operation, FFN is
the Feed-Forward Network as described by Eq. 5, and Xout
is the final output of the Modulated Group Mamba block.
The individual operations, namely the GroupedMamba
operator, the VSSS block used inside the GroupedMamba
operator, and the CAM operator, are presented in Sec. 3.3.1,
Sec. 3.3.2 and Sec. 3.3.3, respectively.

3.3.1. Visual Single Selective Scan (VSSS) Block
The VSSS block (Fig. 2 (c)) is a token and channel mixer
based on the Mamba operator, comprising of a Mamba
block followed by a Feed-Forward Network, each with a
LayerNorm before it. Mathematically, for an input token
sequence Zin, the VSSS block performs the operations as
described in Eq. 4.

Z′
out = Zin + Mamba(LN(Zin))

Zout = Z′
out + FFN(LN(Z′

out))
(4)

Where Zout is the output sequence, Mamba is the dis-
cretized Mamba SSM operator as described in Eq. 2.

FFN(LN(Z′
out)) = GELU(LN(Z′

out)W1 + b1)W2 + b2

(5)
Where GELU [24] is the activation function and W1, W2,
b1, and b2 are weights and biases for the linear projections.

3.3.2. Grouped Mamba Operator
Considering the motivation presented earlier in Sec. 3, we
aim to design a variant of the Mamba [16] that is both com-
putationally efficient and can effectively model the spatial
dependencies of the input sequence. Given that Mamba is
computationally inefficient on large number of channels C
in the input sequence, we propose a grouped variant of the
operator, inspired by Grouped Convolutions. The Grouped
Mamba operation is a variant of the VSSS block presented
in Sec. 3.3.1, where the input channels are divided into
groups, and the VSSS operator is applied separately to each
group. Specifically, we divide the input channels into four
groups, each of size C

4 , and an independent VSSS block is
applied to each group. Hence, the proposed grouped mamba
operator enhances the model efficiency by splitting chan-
nels into smaller groups. To better model spatial dependen-
cies in the input, each of the four groups scans in one of
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four directions across the input: left-to-right, right-to-left,
bottom-to-top, and top-to-bottom as outlined in Fig. 2 (d).

Let G = 4 be the number of groups representing
four scanning directions: left-to-right, right-to-left, top-to-
bottom, and bottom-to-top. We form four sequences from
the input sequence Xin, namely XLR, XRL, XTB, and XBT,
each of shape (B,H,W, C

4 ), representing one of the four
directions specified earlier. These are then flattened to
form a single token sequence of shape (B,N, C

4 ), where
N = W ×H is the number of tokens in the sequence. The
parameters for each of the four groups can be specified by
θLR, θRL, θTB, and θBT, respectively, for each of the four
groups, representing the parameters for the VSSS blocks.

Given the above definitions, the overall relation for the
Grouped Mamba operator can be written as shown in Eq. 6.

XGM =GroupedMamba(Xin,Θ) = Concat
(

VSSS(XLR,ΘLR), VSSS(XRL,ΘRL),

VSSS(XTB,ΘTB), VSSS(XBT,ΘBT)
) (6)

Where:
• XLR, XRL, XTB, and XBT represent the input tensors

scanned in the respective directions.
• ΘLR, ΘRL, ΘTB, and ΘBT represents the parameters of the

VSSS block for each direction.
• The output of each Mamba operator is reshaped again to
(B,H,W, C

4 ), and concatenated back to form the token
sequence XGM, again of the size (B,H,W,C).

3.3.3. Channel Affinity Modulation (CAM)
On its own, the Grouped Mamba operator may have a disad-
vantage in the form of limited information exchange across
channels, given the fact that each operator in the group only
operates over C

4 channels. To encourage the exchange of in-
formation across channels, we propose a Channel Affinity
Modulation operator, which recalibrates channel-wise fea-
ture responses to enhance the representation power of the
network. In this block, we first average pool the input to
calculate the channel statistics as shown in Eq. 7.

ChannelStat(Xin) = AvgPool(Xin) (7)

where Xin is the input tensor, and AvgPool represents the
global average pooling operation. Next comes the affinity
calculation operation as shown in Eq. 8.

Affinity(Xin) = σ (W2δ (W1ChannelStat(Xin))) (8)

where δ and σ represent non-linearity functions, and W1

and W2 are learnable weights. The role of σ is to assign an
importance weight to each channel to compute the affinity.
The result of the affinity calculation is used to recalibrate the
output of the Grouped Mamba operator, as shown in Eq. 9.

XCAM = CAM(XGM,Affinity(Xin)) = XGM ·Affinity(Xin)
(9)

where XCAM is the recalibrated output, XGM is the concate-
nated output of the four VSSS groups from Eq. 6, Xin is
the input tensor, and Affinity(Xin) are the channel-wise at-
tention scores obtained from the channel affinity calculation
operation in Eq. 8.

While the average pooling and affinity procedure em-
ployed by the CAM module resembles the Squeeze-and-
Excitation (SE) block [26], it introduces a distinct mecha-
nism tailored explicitly for cross-channel attention within
multi-group transformations. Specifically, CAM allows
inter-group information exchange to overcome the inherent
limitations of the ”Grouped Mamba Operator,” which in-
herently restricts interactions within individual groups. In
contrast, SE blocks typically focus on recalibrating a single
feature group and have not yet been investigated within the
context of Mamba-based architectures.

3.4. Distilled Loss Function
As mentioned earlier in the motivation in Sec. 3, the Mamba
training is unstable when scaled to large models [46]. To
mitigate this issue, we propose to utilize a distillation objec-
tive alongside the standard cross-entropy objective. Knowl-
edge distillation involves training a student model to learn
from a teacher model’s behavior by minimizing a combi-
nation of the classification loss and distillation loss. The
distillation loss is computed using the cross-entropy objec-
tive between the logits of the teacher and student models.
Given the logits (Zs) from the student model, logits (Zt)
from a teacher model (RegNetY-16G [48] in our case), the
ground truth label y, and the hard decision of the teacher
yt = argmaxcZt(c), the joint loss function is defined as
shown in Eq. 10.

Ltotal = αLCE(Zs, y) + (1− α)LCE(Zs, yt). (10)

where LCE is the cross-entropy objective and α is the
weighting parameter. We demonstrate in the supplementary
material that incorporating the distilled loss enhances train-
ing stability, resulting in consistent performance improve-
ments for larger model variants.

4. Experiments
4.1. Image Classification
Settings: The image classification experiments are based
on ImageNet-1K [9], which comprising of over 1.28 million
training images and 50K validation images, spanning 1, 000
categories. Following [38], we train our models for using
the AdamW [39] optimizer and a cosine decay learning rate
scheduler for 300 epochs, including a 20 epoch warm-up.
The total batch size is set to 1024, with models trained on 8x
A100 GPUs, each with 80GB of CUDA memory. Optimizer
betas are set to (0.9, 0.999); momentum is set to 0.9, and
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Method
Token
mixing

Image
size #Param. FLOPs Top-1 acc.

RegNetY-8G [48] Conv 2242 39M 8.0G 81.7
RegNetY-16G [48] Conv 2242 84M 16.0G 82.9

EffNet-B4 [57] Conv 3802 19M 4.2G 82.9
EffNet-B5 [57] Conv 4562 30M 9.9G 83.6

DeiT-S [58] Attention 2242 22M 4.6G 79.8
DeiT-B [58] Attention 2242 86M 17.5G 81.8
DeiT-B [58] Attention 3842 86M 55.4G 83.1

ConvNeXt-T [37] Conv 2242 29M 4.5G 82.1
ConvNeXt-S [37] Conv 2242 50M 8.7G 83.1
ConvNeXt-B [37] Conv 2242 89M 15.4G 83.8

Swin-T [36] Attention 2242 28M 4.6G 81.3
Swin-S [36] Attention 2242 50M 8.7G 83.0
Swin-B [36] Attention 2242 88M 15.4G 83.5

ViM-S [70] SSM 2242 26M - 80.5
VMamba-T [35] SSM 2242 31M 4.9G 82.5
VMamba-S [35] SSM 2242 50M 8.7G 83.6
VMamba-B [35] SSM 2242 89M 15.4G 83.9

LocalVMamba-T [27] SSM 2242 26M 5.7G 82.7
LocalVMamba-S [27] SSM 2242 50M 11.4G 83.7

EfficientVMamba-B [47] SSM 2242 33M 4.0G 81.8

GroupMamba-T SSM 2242 23M 4.5G 83.3
GroupMamba-S SSM 2242 34M 7.0G 83.9
GroupMamba-B SSM 2242 57M 14G 84.5

Table 1. Performance comparison of GroupMamba models with state-of-the-art convolution-based, attention-based, and SSM-
based models on ImageNet-1K [9]. Our models demonstrate better trade-off between accuracy and parameters.

an initial learning rate of 1 × 10−3 is used with a weight
decay of 0.05. Label smoothing of 0.1 is used alongside the
distillation objective (see Sec. 3.4).

Results: Tab. 1 presents a comparison of our pro-
posed GroupMamba models (T, S, B) with various state-
of-the-art methods. The GroupMamba models exhibit
a notable balance of accuracy and computational effi-
ciency. GroupMamba-T achieves a top-1 accuracy of
83.3% with 23 million parameters and 4.5 GFLOPs,
outperforming ConvNeXt-T [37] and Swin-T [36] by
1.2% and 2.0%, respectively, with fewer parameters.
Additionally, GroupMamba-T surpasses the recently in-
troduced SSM models, outperforming VMamba-T [35]
and LocalVMamba-T [27] by 0.8% and 0.6%, respec-
tively, while using 26% fewer parameters than VMamba-
T. GroupMamba-S, with 34 million parameters and 7.0
GFLOPs, achieves an accuracy of 83.9%, surpassing
VMamba-S [35], Swin-S [36], and EfficientVMamba-
B [47]. The performance is better than LocalVMamba-
S [27] by 0.2% with 32% fewer parameters. Further-

more, GroupMamba-B achieves an accuracy of 84.5% with
only 57 million parameters and 14 GFLOPs, exceeding
VMamba-B [35] by 0.6% while using 36% fewer param-
eters.

4.2. Object Detection and Instance Segmentation

Settings: We evaluate the performance of GroupMamba-T
for object detection on the MS-COCO 2017 dataset [33].
Our method is based on the Mask R-CNN 1× schedule [22]
detector with the hyperparameters as used for Swin [36].
We use the AdamW [39] optimizer and train Mask-RCNN
with GroupMamba-T backbone for 12 epochs. The back-
bone is initialized and fine-tuned from the ImageNet-1K [9].
We use an initial learning rate of 1 × 10−4 and decay by a
factor of 10 at epochs 9 and 11. FLOPs are computed for an
input dimension of 1280× 800.
Results: Tab. 2 shows the results of GroupMamba-T, com-
paring it against various state-of-the-art models for object
detection and instance segmentation using the Mask R-
CNN framework on the MS-COCO dataset. Our model
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Detection & Instance Segmentation Semantic Segmentation

Backbone APb APb
50 APb

75 APm APm
50 APm

75 #param. FLOPs mIoU (SS) mIoU (MS)

ResNet-50 [21] 38.2 58.8 41.4 34.7 55.7 37.2 44M 260G 42.1 42.8
Swin-T [36] 42.7 65.2 46.8 39.3 62.2 42.2 48M 267G 44.4 45.8

ConvNeXt-T [37] 44.2 66.6 48.3 40.1 63.3 42.8 48M 262G 46.0 46.7
VMamba-T [35] 47.4 69.5 52.0 42.7 66.3 46.0 50M 270G 48.3 48.6

LocalVMamba-T [27] 46.7 68.7 50.8 42.2 65.7 45.5 45M 291G 47.9 49.1
GroupMamba-T 47.6 69.8 52.1 42.9 66.5 46.3 40M 279G 48.6 49.2

Table 2. Comparison of model performance on dense prediction tasks: Object detection and instance segmentation results on MS-
COCO [33] using Mask R-CNN 1× schedule [22], and semantic segmentation results on ADE20K [69] using UperNet [64]. ’SS’ and
’MS’ denote single-scale and multi-scale evaluations, respectively. AP b and APm represent box and mask AP.

achieves box AP (APb) of 47.6 and mask AP (APm) of
42.9. It surpasses ResNet-50 [21], Swin-T [38], ConvNeXt-
T [37]. In addition, GroupMamba-T has competitive perfor-
mance compared to VMamba-T [35] and LocalVMamba-
T [27], with less 20% parameters compared to VMamba-
T. Fig. 3 (first row) displays qualitative examples of object
detection and instance segmentation. GroupMamba-T ac-
curately detects and segments the targets in various scenes.
More qualitative examples are presented in the supplemen-
tary material.

4.3. Semantic Segmentation
Settings: We also evaluate the performance of
GroupMamba-T for semantic segmentation on the
ADE20K [69] dataset. The framework is based on the
UperNet [64] architecture, and we follow the same hy-
perparameters as used for the Swin [36] backbone. More
specifically, we use the AdamW [39] optimizer for a total
of 160k iterations with an initial learning rate of 6× 10−5.
The default resolution in our experiments is 512× 512.
Results: The GroupMamba-T model demonstrates favor-
able performance in semantic segmentation compared to
various state-of-the-art methods, as presented in Tab. 2.
GroupMamba-T achieves a mIoU of 48.6 in single-scale
and 49.2 in multi-scale evaluation. This outperforms
ResNet-50 [21], Swin-T [36], and ConvNeXt-T [37]. Ad-
ditionally, GroupMamba-T exceeds the performance of the
recent SSM methods, including ViM-S [70], VMamba-
T [35], and LocalVMamba [27]. Fig. 3 (second row) shows
qualitative examples of GroupMamba-T. These examples
demonstrate our model’s ability to accurately segment vari-
ous classes for indoor and outdoor scenes. More qualitative
examples are presented in the supplementary material.

4.4. Ablation Study
Fig. 4 shows the impact of each proposed contribu-
tion in terms of top-1 accuracy, number of parameters,
and throughput, compared to other SSM-based methods.
GroupMamba-T with 4-D scanning, comprising 22M pa-

rameters, achieves a top-1 accuracy of 82.30% and a
throughput of 803. By applying a unidirectional 1D scan
across N/4 channels in four directions—left-to-right, right-
to-left, top-to-bottom, and bottom-to-top instead of the full
4-D scanning across all N channels, the throughput signifi-
cantly increased from 803 to 1125, with only 0.1% drop in
accuracy and the same number of parameters.

The integration of the CAM module further elevates the
top-1 accuracy from 82.20% to 82.50%, with a minor reduc-
tion in throughput (from 1125 to 1069). Finally, incorporat-
ing the proposed distillation-based loss pushes the top-1 ac-
curacy to 83.30%, while preserving the throughput at 1069.
Compared to Vim-S [70], GroupMamba-T demonstrates
a more efficient design, achieving a 2.8% improvement
in top-1 accuracy with 1.5× higher throughput, all while
utilizing fewer parameters. Compared to LocalVMamba-
T [27], GroupMamba-T has a 0.6% higher accuracy in top-1
accuracy, with 3× faster and smaller number of parameters.
Regarding VMamba-T V1 [35], our model achieves a 1.1%
gain in top-1 accuracy with a comparable number of param-
eters while being faster by 2.5×. Likewise, when compared
to VMamba-T V2 [35], GroupMamba-T shows marginally
faster throughput, an increase of 0.8% in top-1 accuracy,
and a 26% improvement in parameter efficiency.

5. Conclusion and Future Work

In this paper, we tackle the computational inefficiencies and
stability challenges associated with visual SSMs for com-
puter vision tasks by introducing a novel layer called Mod-
ulated Group Mamba. We also propose a multi-directional
scanning method that improves parameter efficiency by
scanning in four spatial directions and leveraging Channel
Affinity Modulation (CAM) operator to enhance feature ag-
gregation across channels. To stabilize training, especially
for larger models, we employ a distillation-based training
objective. Our experiments demonstrate that the proposed
GroupMamba models outperform recent SSMs while being
more efficient in terms of parameters and throughput.
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Figure 3. Qualitative results of GroupMamba-T for object detection and instance segmentation (first row) on the MS-COCO val. set and
semantic segmentation (second row) on ADE20k val. set.

Parameters Accuracy

22 M

LocalVMamba-T

Vmamba-T V2

Vmamba-T V1

Vim-S

GroupMamba-T 
(1-D Scanning + CAM + Distillation)

GroupMamba-T 
(1-D scanning + CAM)

GroupMamba-T 
(1-D Scanning)

GroupMamba-T 
(4-D Scanning)

22 M

22 M

23 M

23 M

26 M

31 M

26 M

82.30%

82.20%

82.50%

83.30%

80.50%

82.20%

82.50%

82.70%

Throughput

803

1125

1069

1069

736

427

1021

338

Figure 4. Comparison of GroupMamba variants and SSM-based methods in top-1 accuracy on ImageNet-1k [9] and computational effi-
ciency in terms of throughput and number of parameters. The throughput (number of predicted samples per second) is measured using a
single NVIDIA A100 GPU with a batch size of 128 for all methods.

Our research has focused on image classification, object
detection, and segmentation. To further validate and ex-
tend the generalization ability of our method, we aim to ex-
plore additional downstream tasks, such as video recogni-

tion and time-series data applications. Evaluating the Mod-
ulated Group Mamba layer in these contexts will help to un-
cover its potential benefits and limitations, providing deeper
insights and guiding further improvements.
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Christopher Ré. FlashFFTConv: Efficient convolu-
tions for long sequences with tensor cores. arXiv
preprint, arXiv:2311.05908, 2023. 1

[15] Haifan Gong, Luoyao Kang, Yitao Wang, Xiang Wan,
and Haofeng Li. nnmamba: 3d biomedical image seg-
mentation, classification and landmark detection with
state space model. arxiv preprint, arXiv:2402.03526,
2024. 3

[16] Albert Gu and Tri Dao. Mamba: Linear-time sequence
modeling with selective state spaces. arxiv preprint,
arXiv:2312.00752, 2023. 1, 2, 3, 4

[17] Albert Gu, Karan Goel, and Christopher Ré. Effi-
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