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Abstract

This paper presents a novel pipeline named EnliveningGS,
which enables active locomotion of 3D models represented
with 3D Gaussian splatting (3DGS). We are inspired by
the fact that real-world lives pose their bodies in a natu-
ral and physically meaningful manner by compressing or
elongating muscle fibers embedded in the body. Enliven-
ingGS aims to replicate the similar functionality of 3DGS
models so that the object within a 3DGS scene acts like a
living creature rather than a static shape — they walk, jump,
and twist in the scene under provided motion trajectories
driven by muscle activations. While the concept is straight-
forward, many challenging technical difficulties need to be
taken care of. Synthesizing realistic locomotion of a 3DGS
model embodies an inverse physics problem of very high
dimensions. The core challenge is how to efficiently and
robustly model frictional contacts between an “enlivened
model” and the environment, as it is the composition of con-
tact/collision/friction forces triggered by muscle activation
that generates the final movement of the object. We propose
a hybrid numerical method mixing LCP and penalty method
to tackle this NP-hard problem robustly. Our pipeline also
addresses the limitation of existing 3DGS deformation algo-
rithms and inpainting the missing information when models
move around.

1. Introduction
The advent of learning-based radiance field rendering
techniques like NeRF [34] and 3D Gaussian splitting
(3DGS) [26] have rebranded the pipeline of novel view syn-
thesis. From synthesized RGB information, users can fur-
ther alter and edit the illumination, appearance, and geom-
etry. It is also possible to integrate those neural scene rep-
resentations with physics to synthesize plausible physics-
based dynamics. For instance, PIE-NeRF uses a quadratic
moving least square interpolation to approximate the non-
linear elastodynamics of a NeRF model [11]. PhysGaus-
sian [45] integrates 3DGS with the material point method
(MPM) [39]. GaussianSplashing leverages a universal
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Figure 1. Jumping Chess. We use static 3DGS as input and gener-
ates physics-aware 4D animations. The chess piece contracts and
expands its body, creating jumping motions through collisions and
friction with the chessboard, fitting the user’s input trajectory.

particle-based discretization to animate 3DGS scenes with
fluids [10]. Those frameworks allow deeper integrations of
3DGS with relevant downstream graphics/vision tasks, en-
abling a wide range of exciting applications.

It is a common paradigm, when combining physics and
3DGS, that the physical effects of the neural scene are pas-
sively triggered by external forces, which are normally spec-
ified by the user or pre-scripted (e.g., the gravity force).
This makes sense for inanimate objects — they are not
changing their kinematic states unless forced by external
excitements. However, the locomotion of a living being fol-
lows a distinct modality. Rather than relying on external
forces passively, a living entity actively adjusts its poses to
achieve a desired movement such as walking, bending, or
jumping. The enabler of such locomotion is muscle acti-
vations that contract or elongate different parts of the body,
which interact with the environment e.g., the floor. The re-
sultant contact and friction forces, in turn, provide the nec-
essary momentum of the motion. This procedure is beyond
the capability of existing physics-based 3DGS techniques
as the muscle activations can hardly be measured or synthe-
sized with a passive physics simulator. It is unfortunate that
an interesting 3DGS scene can only house lifeless objects.

In this paper, we show a novel framework to further en-
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hance the 3DGS expressivity. We name our framework En-
liveningGS, which inversely computes muscle activations
embedded in a 3DGS model that lead to user-specific mo-
tion. As shown in Figure 1, the user only needs to provide a
desired trajectory of the object (or other high-level descrip-
tions of the kinematics). Given a set of embedded muscle
fibers (approximated by piece-wise linear springs), Enliven-
ingGS segments the object from the scene, estimates the
possible contact/friction forces between the object and its
surrounding environment, and calculates the optimal mus-
cle activations to drive the corresponding body motion so
that the object behaves like a living creature and moves
following the prescribed trajectories as much as possible.
As contact modeling is known to be an NP-hard problem
and quickly becomes unsolvable when there are a moder-
ate number of contact incidents, EnliveningGS introduces
a two-stage locomotion procedure to reduce the solution
space and efficiently handle frictional contacts between the
3DGS model and the scene. To summarize, our contribu-
tions include:

• Active Animatable 3DGS Pipeline: We present En-
liveningGS pipeline that brings any household object to
life. When they walk or jump, occluded areas become
visible again. To overcome such visual artifacts, we pro-
pose an improved inpainting algorithm to fill colors and
textures back to those exposed areas based on the known
prior of the environment. We also present a self-splitting
machanism for Gaussian kernels to capture and reduce
spiky artifacts under significant deformation.

• Hybrid Contact Modeling Framework for 3DGS: We
design a novel hybrid numerical procedure combing the
penalty method, which softens the hard contact con-
straint, and the classic Linear Complementarity Program-
ming (LCP) [38] so that the combinatorial space of the
active set can be significantly reduced, and the two-way
coupling with the underlying nonlinear physics simula-
tion becomes feasible.

2. Related Work

3D Gaussian editing. Recently, 3D Gaussian splatting
(GS) [25] utilizes a set of 3D Gaussian kernels to repre-
sent static scenes explicitly and achieve state-of-the-art re-
sults. Subsequently, editing on GS has become a popular
topic[7, 13, 30, 31, 47, 48, 50]. To make static 3D scenes de-
formable, some works extract explicit high-quality meshes
from 3DGS representations and align GS kernels with mesh
surfaces for guidance when deformed [12, 14, 44] . Their
reliance on strong topological information and high-quality
meshes makes it difficult to balance quality and interactiv-
ity. SC-GS [20] learns sparse control points for 3D scene
dynamics but faces challenges with large movements and
complex deformation.

Physics-aware dynamics on 3D GS. To combine a static
GS scene with a physics engine to generate dynamics on
GS, PhysGaussian[45] leverages the first-order information
from the displacement map (deformation gradient) to assist
dynamic simulations. VR-GS [23] constructed a tetrahe-
dral cage for each segmented Gaussian kernel group and
embedded these kernel groups into corresponding meshes,
allowing the deformed mesh driven by eXtended Position-
based Dynamics (XPBD) [32] to guide the deformation of
the Gaussian kernels. GASP[6] treats the simulation pro-
cess as a black box and integrates Newtonian dynamics into
the GaMeS[44] framework. PhysDreamer [49] distills dy-
namics priors learned by video generation models. It is
worth mentioning that existing methods consider the sim-
ulation process as a forward process, leaving the inverse
solving and control of physical parameters of objects on 3D
GS as an unexplored area.

Contacts in locomotion control Friction plays a crucial
role in soft body locomotion control. Stewart and Trin-
kle linearize the 3D friction model using a polyhedral cone
and propose an LCP formulation to approximate Coulomb’s
friction cone conditions [38] and many improve upon it
[2, 3, 24, 35, 43]. LCP-based methods offer exact solutions
and are efficient for small to medium-sized problems but
can be computationally expensive for optimization prob-
lems. Due to this drawback, many previous methods explic-
itly assumed that the contacts remain static [21, 27] while
optimizing control forces subject to equations of motion.
A few studies [41] exploit the physical meaning of com-
plementarity constraints as heuristics to improve the solu-
tion and performance of the solver but still often fall back
into exhaustive searching due to a lack of good initial state.
The penalty method models contacts and frictions as spring
forces and evaluates them at the instant [16–18, 42, 46] but
can introduce numerical challenges such as stiffness and in-
stability [1, 36]. The combination of the penalty methods
and LCP-based methods has been less explored.

3. Method
3.1. Overview
A 3DGS scene consists of a collection of 3D Gaussians
Gscene. Each Gaussian kernel is defined by a center position
µ ∈ R3, a covariance matrix Σ, the opacity σ ∈ [0, 1) and
a set of spherical harmonics coordinates c ∈ Rk describing
the colors emitted by the Gaussian in all directions. The co-
variance matrix Σ can be factorized into a rotation matrix
R expressed as a quaternion q ∈ R4 and a scaling matrix S
of its diagonal vector s ∈ R3: Σ = RSSTRT .

Vanilla 3DGS represents a static environment where
users can switch their viewpoints within the scene freely. It
is also possible to include dynamics to the scene by adding
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Figure 2. Bidirectional local embedding. Our bidirectional local
embedding (a) serves as guidance for (b) self-splitting GS defor-
mation, (c) accurate collision handling, and (d) non-penetration
regularization.

external forces e.g., as in PhysGaussian [45] so that 3DGS
models move or deform under user-specified forces pas-
sively. Nevertheless, real-world living creatures are self-
driven — their movements are enabled by embedded mus-
cles given a desired kinematic motion target. Such an active
movement mechanism is much more difficult to obtain as
it inevitably involves frictional contacts between the model
and the environment. To this end, we incorporate additional
physical expressions into the Gaussian elements, enabling
them to be self-driven in a physics-based way. These el-
ements can change their appearance at each time step and
approximate user-specified motion targets interacting with
the environment.

3.2. Hybrid Mesh-Gaussian Representation
Let Go denote the Gaussian elements of an object of inter-
est, which is segmented from the scene Gscene. We first
create an encapsulating tetrahedral mesh T = (V,F) to
approximate the object’s overall volume, mass, and defor-
mation. Here, V and F refer to the sets of nodal points and
faces in T . To achieve this segmentation, we approximate
the nearby environment with planes (more in Secs. 3.5 and
3.6). The plane P expressed as a unit normal vector n and
its distance d from the origin:

P (n, d) = {x ∈ R3 | NTx+ d = 0}, (1)

is used to “cut out” irrelevant Gaussians, reduce the blurred
regions at the cut, and serve as a prior for inpainting the
missing parts after segmentation. Additionally, it is utilized
for collision detection to determine the collision forces act-
ing on Go.

T determines the states of Gaussian kernels in Go after
deformation. The deformed position of a point x′ originally
at x within a tetrahedron is represented by the barycentric
coordinates of the four vertices of the tetrahedron v′:

x′ =
∑
i

λi(x)v
′
i. (2)

After deformation, T provides a global displacement map
for all Gaussians in Go. However, the internal rotation and

scaling of the Gaussians cannot be accurately described
by position-based interpolation, resulting in spiky artifacts.
Additionally, the tetrahedral mesh is a coarse mesh. Its
faces have significant gaps from the boundaries of the ob-
ject, and it does not accurately describe the collision be-
tween Go and the plane. To address these issues, we es-
tablish a bidirectional local embedding within the Gaussian
around the mean m to precisely describe its influence range.
This is determined by the endpoints of the ellipsoid corre-
sponding to the Gaussian [v1,v2,v3]:

T± = [m,v1,v2,v3]
= [m,m± γs1r1,m± γs2r2,m± γs3r3],

(3)
where the relevant parameters can be obtained from the
scaling matrix S = diag(s1, s2, s3) and the rotation Ma-
trix R = [r1, r2, r3]. γ is a parameter that describes the
range of influence, and we set its default value as 3.0. Each
Gaussian has two directional embeddings, T+ and T−, and
each contains four points.

We design bidirectional local embeddings for several
purposes. For collision processing, it is used to detect the
extent to which an object collides with the environmental
plane; and for segmentation, it detects whether the Gaus-
sian is cut by the plane and establishes a loss term to pe-
nalize Gaussian kernels that intersect the plane under initial
setting; For deformation, it is used to accurately describe
the scaling and rotation of the deformed Gaussian kernel.
Finally, based on the angle between two directions, it deter-
mines whether the deformed Gaussian kernel is sufficient to
cover the radiance field.

3.3. Soft Body Locomotion on Plane
The core of our pipeline is an active locomotion solver for
T and Go. This is in the form of an inverse problem involv-
ing high-dimension inequalities constraints for processing
frictional contacts between a 3DGS object and the environ-
ment.

3.3.1. Muscle-Driven Dynamics
We embed muscle fibers within T to serve as the primary
drivers of motion. At each time step, the nodal positions of
N nodes in V , denoted as p, is determined through numeri-
cal integration of the dynamic equations of motion:

Mp̈ = fext + fint + fd + fm + fc, (4)

where M is the mass matrix, fext, fint, fd, fc, fm represent
external, internal, damping, muscle, and contact forces, re-
spectively. We use ˙(·) for velocity and (̈·) for acceleration.
The external force fext includes e.g., the gravity force. The
internal force fint, also known as the elastic force, is the re-
sultant force generated by the material’s elastic properties
that resist deformation. In our implementation, this force
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Figure 3. An overview of EnliveningGS pipeline. Our hybrid mesh-Gaussian representation plays an important role in all tasks within
the pipeline. Our locomotion solver inversely computes the muscle activation embedded in the segmented 3DGS object that leads to user-
specific motion.

is determined as the negative gradient of the Neo-Hookean
energy [5]:

Ψ =
µ

2
(IC − 3)− µ ln J +

λ

2
(ln J)

2
. (5)

Here, µ and λ are the Lamé parameters. IC = tr(FTF)
and J = det(F) are computed based on the deformation
gradient F. We use the Rayleigh damping for the damping
force:

fd = (αM+ βK0) ṗ, (6)

where K0 is the rest-shape stiffness matrix.
We consider muscle fibers as polygonal curves with M

segments. The spring force caused by each segment is com-
puted as: f = ka where k is the stiffness of the muscle fiber
and a denotes the change in the segment’s length. When
a muscle segment activates, the spring force will shorten
or bend the body around it. Muscle force on the whole
soft body is encoded in a pose-dependent activation matrix
A ∈ R3N×M :

fm = A(p)a , (7)

where a ∈ RM is the vector of activations of all the muscle
segments. Please refer to the supplementary materials for
a complete description of the calculations involving activa-
tion matrix A.

We provide an automatic muscle generation tool given
T , which uses the medial axis transform [8, 29] of the
model. Four longitudinal muscles are placed parallel near
the medial axis at a given radius, and radial muscles are
placed at given intervals. Users can also customize the
muscle setup with preferred arrangements inside the object
to achieve different movements. For instance, by implant-
ing several longitudinal muscle fibers that run the length of
the body, the body can be shortened when these muscles
contract. Bending the body can be achieved by contracting
these muscles unevenly on one side. Additionally, circular
muscles wrap around the body, enabling it to twist, while

radial muscles extend across the body’s cross-section, al-
lowing the body to elongate while preserving its volume.

3.3.2. Contacting 3DGS
In this section we present a novel contact model for 3DGS.
For Gaussian kernels in Go, we first define u as the position
of points in bidirectional local embedding T± below the
plane as NTu+d ≤ 0. Non-interpenetration constraints on
3DGS is thus defined as inequalities:

Cn(u) ≡ NT u̇ ≥ 0. (8)

We decompose contact forces on the Gaussian as fg =
Nf⊥ + Df∥, where D is a set of directions at the contact
point approximating the friction cone, and they are perpen-
dicular to the plane normal N. f⊥ and f∥ are the magnitudes
of normal and tangent forces.

LCP formulation [2] that regulates the contact velocity
and contact force is:

0 ≤

 f⊥
f∥
λ

 ⊥

 NT u̇
DT u̇+Eλ
µf⊥ −ET f∥

 ≥ 0, (9)

where µ is the friction coefficient, and λ is an auxiliary vari-
able (e.g., the Lagrange multiplier) that relates the tangent
velocity to a sliding contact. E is a block-diagonal matrix
of e. LCP condition notation x ⊥ y indicates xTy = 0.
The first line of Equation (9) is a complementarity formula-
tion of contact that enforces the non-penetration condition,
and the following two lines encode Coulomb’s friction law.

Like [33], contact can be viewed as a regularization
of the complementarity form of the non-penetration con-
straint, which gives penalty forms of contact as spring force
fspringg :

fspring⊥ ≡ −kn min(0, Cn(u)), (10)

fspring∥ ≡ −min

(
kf , µ

∥fspring∥

∥DT u̇∥

)
DT u̇, (11)
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where kn and kf control the stiffness of the contact. Forces
on local embeddings can be converted back onto points on
T using the same weights in Equation (2), giving us fc or
fspringc .

3.3.3. Two-stage Locomotion
Unlike force-based passive dynamics, we achieve the de-
sired locomotion mainly by intuitively prescribing the mo-
tion trajectory of the object. For the position of a target
point p⋆, the objective function that constrains the position
can be written as:

Gposition = ∥f(p)− p⋆∥2 , (12)

where f can be functions that compute the positional tar-
get of the object. For instance, a commonly used setup is
fCOM , which calculates the COM (center of mass) c =
fCOM (p) of the body, of local COM coordinates (foot,
head, base, etc.). Similar objective functions can be used
to track the velocity, acceleration, angular momentum, base
area, etc.

We first solve Equation (4) by substituting fc with
fspringc and temporarily keeping muscle activation a same
as the last time step. Based on the resulting ṗ, we convert
the state of contact points back into the inequalities in Equa-
tion (9), and solve a Quadratic Programming (QP) problem
to find the best a. For example, if a contact point is in static
contact, the corresponding QP is:

min
a,f⊥,f∥,λ

G
(
a, f⊥, f∥

)
subject to

0 ≤ f⊥, NT u̇n+1 = 0

0 ≤ f∥, DT u̇n+1 +Eλ = 0

0 = λ, µf⊥ −ET f∥ ≥ 0.

(13)

Note that all contact points may have their own states. If the
results are not satisfactory, we will use the pivoting method
as in [41] to find the appropriate contact states.

3.4. Gaussian Deformation in Tetrahedral Mesh
The barycentric coordinates of the points in T+ are calcu-
lated in the reference configuration, and the deformed coor-
dinates in the current configuration T+

s = [m′,v′
1,v

′
2,v

′
3]

are then calculated at each timestep to describe the defor-
mation.

After that, we construct two matrices Dm and Ds, repre-
senting the differences in vertex coordinates in the reference
and current configurations, respectively:

Dm = [v0
1 −m,v0

2 −m,v0
3 −m]

Ds = [v′
1 −m′,v′

2 −m′,v′
3 −m′].

(14)

The linear transformation F that maps the reference config-
uration to the current configuration can be calculated as:

F = Ds ·D−1
m .

The deformed covariance becomes: Σ′ = FΣFT and is
converted into scaling and rotation by performing singular
value decomposition (SVD) on Σ′:

S+ = diag(
√

SVDΣ(Σ′))
R+ = SVDU (Σ

′).
(15)

Note that if det(R+) = −1, one needs to negate its last
column to ensure it is a valid rotation matrix in SO(3). It
is also necessary to adjust the spherical harmonics’ orien-
tation by applying rotation RSH = SVDU (Σ

′)SVDV (Σ
′)T

to display the correct colors from various angles.
The points in local embeddings represent the shape of

the deformed Gaussian kernel but they do not necessarily
belong to the same tetrahedron. For some larger Gaussian
kernels, significant rotations may cause them to extend be-
yond the original radiance field’s boundaries. To avoid this
situation, we use the reverse embedding T− and use the
aforementioned method to obtain its corresponding rotation
matrix R−. The angle between R+ and R− can be ex-
pressed as:

θ = arccos

(
tr(R+T

R−)− 1

2

)
. (16)

If θ exceeds the threshold θ > η, it indicates that the re-
gion covered by the Gaussian has transformed from a plane
to a curved surface. A single kernel can no longer repre-
sent the deformed area accurately; thus, this Gaussian will
be split into two from the center. Figure 2 (b) provides a
schematic of our splitting process, while Figure 8 presents
the corresponding experimental results.

Inspired by [9, 15], the splitting of a Gaussian
(α0, µ0,Σ0) into two new Gaussian kernels (αl, µl,Σl) and
(αr, µr,Σr) at the center is calculated by:

αl = αr =
α0

2
,

µl = µ0 −
vk − µ0

κ
, µr = µ0 +

vk − µ0

κ
,

Σl = Σr = Σ0 −
(vk − µ0)(vk − µ0)

T

κ2
.

(17)

In the above, vk ∈ T+ stands for the endpoint on main prin-
ciple axis with the largest scaling factor sk. Factor κ = 2γ√

2π
is derived by maximizing the similarity between each new
Gaussian and their own part of the original. We refer read-
ers to supplementary material for the complete derivation.

3.5. Plane Estimation
To find the parameters N and d of a plane in a 3DGS scene,
we first construct a depth map on the plane:

Dp(u, v) = − N · tc + d

nTRT
c K

−1p(u, v)
, (18)
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where p(u, v) represents the pixel coordinates in homoge-
neous form [u, v, 1]T , Rc and tc are the rotation and trans-
lation extracted from the camera’s extrinsic matrix, and K
denotes the camera’s intrinsic matrix. Initially, N is set to
camera’s look-at direction and d is set to zero to ensure solv-
ability.

By minimizing the error between the depth map within
the region and the GS depth map Dg , the plane parameters
can be optimized by:

argmin
N,d

∑
(u,v)∈M

∥Dp(u, v)−Dg(u, v)∥ , (19)

where M is a mask of the planar region which can be ob-
tained through image-based segmentation algorithms [28]
or roughly drawn by the user.

The user can repeat this step on multiple images and opti-
mize simultaneously to obtain fine-tuned plane parameters.
In practice, a single viewpoint is usually sufficient to esti-
mate an accurate plane.

3.6. Object Segmentation with Plane Priors
We categorize the Gaussian scene into two types: dynamic
splitting and static splitting. Equation (17) showcases dy-
namic online splitting to enhance the quality during the de-
formation process and ensure the speed of splitting on an-
imating objects. For a Gaussian model, since the segmen-
tation plane of the object and environment is already deter-
mined, it is more suitable to incorporate the plane informa-
tion during training to regulate the Gaussian parameters at
the cutting plane.

To perform static splitting on the training stage, we first
determine whether the Gaussian intersects with the plane.
This requires checking if all the endpoints in T± are on
the same side of the plane. We project center-to-endpoints
distance onto the plane normal:

ηseg = max
vi∈T±

|NT (vi −m)|. (20)

If the distance from Gaussian kernel to the plane |d0| =
|P (n, d)(m)| < ηseg , we will constrain the Gaussian’s pa-
rameter or split the Gaussian with the plane.

We fine-tune the trained Gaussian model by introducing
the following non-penetration regularization term to ensure
the model’s influence range does not cross the plane:

Lseg = ||ηseg − |d0|||2 (21)

3.7. Inpainting 3D Object on GS
After extracting the object Go, a hole is left in the back-
ground Gscene. To address this issue, we introduce the depth
map of the plane in Equation (18) into the depth-based in-
painting method [30] and use a 2D inpainting tool [40] to
obtain the color of the missing parts from the current view-
point. Subsequently, we fine-tune the filled patch using the
inpainted single-view image.

4. Experiments
We implemented our pipeline on a workstation with a sin-
gle NVIDIA RTX4090 GPU and Intel 14900K CPU. We
used PyTorch for storing and editing 3DGS on GPU, and
OSQP [37] for solving QP in Equation (13). Our method
supports the original 3DGS implementation [25]. For bet-
ter visual quality on the planar surface, we set the minimum
scaling factor on Gaussian kernels to ϵ = e−10, similar to
2DGS[19]. More benchmarks for the locomotion examples
are reported in the supplementary document.

4.1. Locomotion Design
Walking. We achieve walking by controlling the trajec-
tories of all four legs. The diagonal support legs simulta-
neously lift the body, while the remaining two legs swing
forward with the body’s movement. As shown in Figure 4,
the wooden stool moves one position to the right by taking
four steps.

Jumping. Jumping soft-bodied characters are more com-
monly seen in cartoons and animations. Jumping is a com-
plex action because the contact state between the object and
the ground changes rapidly and significantly. To achieve
continuous jumping, it is necessary to precisely control the
position of the COM and the relative velocity of the cen-
ter of the base to jump the appropriate distance and main-
tain balance. We have designed an animation of a game of
chess, where the soft-bodied chess pieces move across the
board by continuously jumping, as shown in Figure 1.

Twisting. Figure 5 illustrates an example of the
Peashooter doll twisting, jumping, and rotating 180
degrees. Based on the jumping motion, we additionally
control the change in angular momentum along the central
axis, allowing the Peashooter to rotate its body while
airborne and face the zombie upon landing.

4.2. Comparison I. Deformation on GS
We compare our method with the current state-of-the-art
physic-aware GS methods. Figure 6 shows a qualitative
comparison, where our method demonstrates better results
under large deformation. Table 1 presents the related quan-
titative evaluation: we apply bending, twisting, and falling
on the ground deformations to the ficus, chair, and mic ex-
amples from the NeRF synthetic dataset [34], and compare
them with the rendered images of the source 3D mesh sub-
jected to the same deformations as the ground truth.

4.3. Comparison II. Two-stage Locomotion
To evaluate our two-stage locomotion solver, we conducted
frame-by-frame tests on an animation sequence with given
muscle activation. This animation sequence includes 50
frames, 60 variables, and 50 pairs of linear complemen-
tarity constraints. We compared our solution with a QP
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Figure 4. Walking stool. In the bedroom scene, a wooden stool walks like a quadruped.

Figure 5. Peashooter vs. Zombie. On a cloth-covered coffee table, a Peashooter figurine contracts, jumps, and twists its body, landing
after a 180-degree spin to face the zombie.

Rest shape PhysGaussian VR-GS Ours

Figure 6. Visual quality comparison on deforming objects.
Compared to PhysGaussian [45] and VR-GS [23], our method
can still suppress spiky artifacts under large deformations.

solver based directly on the static contact assumption and
the QPCC solver proposed by [41], and reported the aver-
age best and worst results across all frames in Table 2. Our
locomotion solver uses the results predicted by the penalty
force as guidance, reducing the number of iterations and
lowering the objective value.

4.4. Comparison III. Inpainting
As shown in Figure 7, we demonstrate the inpainting effect
on a plane using the garden example from Mip-NeRF360
dataset [4] and the truck example from DTU dataset [22],
comparing it with the existing 3D object inpainting method
on GS. In both examples, the removed objects occupy a sig-
nificant portion of the photo, leaving a large hole on the
ground after removal. Existing methods, due to the lack
of relevant depth information, struggle to fill such a large
missing area even after extensive finetuning of the inpainted
2D image (approximately 10,000 iterations). In contrast,

Gaussian Grouping (20min)Input View Ours (20s, 60x faster)

Figure 7. Large 3D object inpainting. Comparison on large 3D
object inpainting cases on the ground, where Gaussian Grouping
[48] requires 20 minutes fine-tuning but still fails to fill the large
hole on the ground while our method with better inpainting quality
only needs 20 seconds fine-tuning. We show the render result as
well as the depth.

our method leverages the plane as a prior, placing a dense
and reasonably positioned point cloud in the missing area.
This approach requires only about 100 iterations of finetun-
ing, speeding up the inpainting process by several orders
of magnitude and remaining unaffected by the size of the
missing region.

4.5. Ablation Studies
Bidirectional local embedding We first use a checkered
bar to showcase the effect of bidirectional local embedding
as in Figure 8. The checkered bar twists increasingly from
right to left, and the sparky artifacts become progressively
more pronounced. Without the need to detect whether the
Gaussian kernel exceeds the object’s surface, our bidirec-
tional local embedding automatically identifies the regions
causing sparky artifacts based on the information within the
Gaussian kernel. Table 1 also reports quantitative results.

Non-penetration regularization Since the segmentation
plane under Go is occluded from any viewpoint, directly
masking out the object from the environment results in sig-
nificant blurring and penetration at the segmentation plane.
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Bending Twisting Falling

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
SuGaR [14] 28.04 0.890 0.046 26.37 0.823 0.101 25.01 0.913 0.053
PhysGaussian [45] 28.14 0.907 0.043 26.53 0.856 0.089 25.10 0.923 0.048
VR-GS [23] 28.63 0.917 0.038 26.53 0.893 0.066 25.31 0.938 0.044

Ours (w/o split) 28.62 0.918 0.038 26.47 0.891 0.062 25.34 0.939 0.042
Ours 28.79 0.923 0.031 26.89 0.910 0.041 25.67 0.951 0.032

Table 1. Quantitative evaluation of rendering quality after deformation on the NeRF synthetic dataset.

Iterations ↓ Object value ↓

Avg. Best Worst Avg. Best Worst
QP - - - 9.43 0.16 23.86
QPCC [41] 46.19 1 510 1.29 0.14 12.11
Ours 17.01 1 382 0.83 0.13 7.89

Table 2. Numerical experiments of locomotion solvers.

Figure 8. Ablation study on bidirectional local embedding. Our
method captures the regions that produce spiky artifacts and re-
moves them by splitting the Gaussian kernels to fit the radiance
field.

PSNR ↑ SSIM ↑ LPIPS ↓ Residual ↓

Mask (w/o Lseg) - - - 0.058
Remove 25.917 0.827 0.211 -
w/ Lseg 35.291 0.945 0.034 0.002

Table 3. Ablation study on non-penetration regularization:
quantitative results.

The Gaussian kernel that penetrates the plane contributes to
the object’s appearance, so a direct Remove operation would
create holes in the object. Figure 9 shows the relevant qual-
itative comparison results. Our non-penetration regulariza-
tion restricts the Gaussian from penetrating the plane, main-
taining the integrity of the object’s surface. In the quantita-
tive experiments shown in Table 3, we placed the camera
on the segmentation plane, compared the image quality of
the object’s upper half with full mask-out, and evaluated the
residual of the lower half. The residuals are expressed as the
ratio of the sum of pixel values in the lower half to those in
the upper half.

Removew/o  with

Figure 9. Ablation study on non-penetration regularization:
qualitative results. With Lseg applied to Gaussian kernels pen-
etrating the plane, the object retains its complete appearance near
the cutting plane while removing the parts below the cutting plane.

5. Conclusion
In this paper, we present EnliveningGS, a novel pipeline
that enables active locomotion for 3D models represented
by 3DGS. We use a hybrid mesh embedding of 3DGS to
better estimate the contact between a 3DGS model and the
environment. Given a high-level motion goal, we find the
optimal muscle activations driving the movement of the ob-
ject’s body. An LCP-penalty mixed optimizer is used to
efficiently calculate the contact and friction force.

Limitation Currently, our method relies on plane-based
simplification of the environment. When the surroundings
consist of more complicated geometries, users may need to
use more sophisticated approximation strategies to estimate
the contact plane. It is also possible to use triangulated sur-
faces. Doint so could impose more computational overhead
for the contact solver.

Acknowledgements The authors would like to thank
the reviewers for their insightful comments. Yin Yang
is partially supported by NSF 2301040. This work
is also supported by NSF China (No. 62322209
and No. 62421003), the gift from Adobe Research,
the XPLORER PRIZE, and the 100 Talents Program
of Zhejiang University. The source code and data
are available at https://gapszju.github.io/EnliveningGS.

903



References
[1] Sheldon Andrews, Kenny Erleben, and Zachary Ferguson.

Contact and friction simulation for computer graphics. In
ACM SIGGRAPH 2022 Courses, pages 1–172, Vancouver
British Columbia Canada, 2022. ACM. 2

[2] Mihai Anitescu and Florian A Potra. Formulating dynamic
multi-rigid-body contact problems with friction as solvable
linear complementarity problems. Nonlinear Dynamics, 14:
231–247, 1997. 2, 4

[3] Lijie Bai, John E Mitchell, and Jong-Shi Pang. On convex
quadratic programs with linear complementarity constraints.
Computational Optimization and Applications, 54(3):517–
554, 2013. 2

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 7

[5] Javier Bonet and Richard D Wood. Nonlinear continuum
mechanics for finite element analysis. Cambridge university
press, 1997. 4

[6] Piotr Borycki, Weronika Smolak, Joanna Waczyńska,
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