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Abstract

We introduce and develop a framework for Multi-Task Tem-
poral Action Segmentation (MT-TAS), a novel paradigm
that addresses the challenges of interleaved actions when
performing multiple tasks simultaneously. Traditional ac-
tion segmentation models, trained on single-task videos,
struggle to handle task switches and complex scenes inher-
ent in multi-task scenarios. To overcome these challenges,
our MT-TAS approach synthesizes multi-task video data
from single-task sources using our Multi-task Sequence
Blending and Segment Boundary Learning modules. Ad-
ditionally, we propose to dynamically isolate foreground
and background elements within video frames, address-
ing the intricacies of object layouts in multi-task scenarios
and enabling a new two-stage temporal action segmenta-
tion framework with Foreground-Aware Action Refinement.
Also, we introduce the Multi-task Egocentric Kitchen Ac-
tivities (MEKA) dataset, containing 12 hours of egocentric
multi-task videos, to rigorously benchmark MT-TAS mod-
els. Extensive experiments demonstrate that our frame-
work effectively bridges the gap between single-task train-
ing and multi-task testing, advancing temporal action seg-
mentation with state-of-the-art performance in complex en-
vironments.1

1. Introduction
Consider a typical morning routine, when you prepare
breakfast: you start making oatmeal and while waiting for
it to cook, you brew coffee and pack your food for lunch.
In fact, in our daily lives, we often perform multiple tasks
simultaneously. For computer vision systems to accurately
analyze such behaviors and provide useful assistance, they
must comprehend these complex and interleaved activities.
Temporal action segmentation (TAS) has emerged as a cru-
cial technology for understanding human activities by parti-
tioning videos into meaningful segments, each correspond-
ing to a distinct action or step [17, 22, 24, 31, 33, 48, 49, 64,
73, 84, 88]. Recently, TAS has attracted growing interests

1Code: https://github.com/Yuhan-Shen/MT-TAS.
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Figure 1. (a) Multi-task temporal action segmentation involves segment-
ing actions from interleaved tasks. It requires capturing interruptions and
resumptions in the execution of each task. (b) Comparison between frames
from single-task and multi-task videos. In multi-task videos, at each time
instant, the scene often contains objects from tasks different from the cur-
rently executed one (highlighted by purple boxes).

within egocentric videos [5, 36, 52, 54, 65, 77], where activ-
ities are captured from a first-person perspective, enabling
fine-grained analysis of human actions, which is essential
for applications such as real-time personalized assistance,
embodied agents and efficient video content retrieval.

In this paper, we study the new problem of Multi-Task
Temporal Action Segmentation (MT-TAS), which explicitly
focuses on scenarios where users perform multiple tasks
by interleaving their steps within a single video, see Fig.
1. There are two major challenges that existing TAS mod-
els face in addressing MT-TAS. First, despite the notable
progress through deep learning techniques [1, 6, 14, 17, 41,
42, 45, 49, 84], current TAS models have primarily focused
on scenarios where each video contains actions related to
a single high-level task, such as assembling a piece of fur-
niture or cooking a specific recipe. This single-task focus
limits the applicability of TAS models to the multi-task set-
ting since i) they are biased to predict actions/steps from
only one task at the inference time, ii) when performing
several tasks, the environment and the scene often contains
objects relevant to multiple tasks, which adds complexity
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to the context, while single-task videos often contain ob-
jects relevant to one task (see Fig. 1(b)), iii) interleaving
steps of multiple tasks introduces complexities such as un-
predictable task switches and disruptions to the temporal
flows of actions within each task.

Second, a significant obstacle in advancing MT-TAS is
the lack of appropriate training data. Existing datasets [5,
16, 18, 31, 36, 63, 88] are predominantly collected for
single-task scenarios, making them insufficient for captur-
ing complexities of interleaved tasks. Furthermore, many
possible step combinations in the multi-task setting makes
it impractical to collect and annotate comprehensive real-
world videos covering all potential situations (such videos
would also be much longer than single-task videos).

Paper Contributions. We study the new problem of MT-
TAS. To overcome the aforementioned challenges, we pro-
pose an MT-TAS framework that uses only single-task
videos for training. We generate synthetic multi-task data
using single-task videos and propose a two-stage action
segmentation model for accurate predictions. For the data
generation, we first develop a Multi-task Sequence Blend-
ing (MSB) module that leverages Large Language Mod-
els (LLMs) to create multi-task transcripts of interleaved
steps and their associated videos. Second, we develop a
Segment Boundary Learning (SBL) module to mitigate the
abrupt transitions at segment boundaries caused by the syn-
thetic data. Third, we introduce a Dynamic Isolation of
Video Elements (DIVE) approach to isolate foreground and
background components within video frames by identify-
ing action-relevant objects and combining foregrounds of
actions in one task with backgrounds of other tasks to cap-
ture the more complex scenes of multi-task videos. By in-
creasing the variation in the background components for the
training data, our method becomes more robust to unseen
object compositions in multi-task scenarios.

For the action segmentation model, we develop a two-
stage framework, where we refine the initial action pre-
dictions using a Foreground-Aware Action Refinement
(FAAR) module. This approach leverages foreground infor-
mation to enhance the focus of our model on action-relevant
cues (e.g., focusing on the regions of kettle and measuring
cup for the action “transfer water to kettle” as in Fig. 3(b)),
improving accuracy and robustness to background varia-
tions during the multi-task testing.

For proper evaluation of MT-TAS models, we gather
and annotate the Multi-task Egocentric Kitchen Activities
(MEKA) video dataset (we plan to publicly release the
dataset), built upon the recent EgoPER [36] dataset. MEKA
comprises 100 egocentric videos of users (about 12 hours of
footage) performing multiple kitchen recipes from EgoPER
in each run by interleaving their steps. This new benchmark
captures a variety of interleaved kitchen activities, provid-
ing a rigorous testing ground for MT-TAS models. Through

extensive experiments in both offline and online settings,
we demonstrate that our proposed framework successfully
bridges the gap between single-task training data and the
complexities of real-world multi-task scenarios, advancing
research in temporal action segmentation.

2. Related Works

Temporal Action Segmentation. TAS aims to under-
stand the sequential structure of human activities in videos
by assigning an action label to each frame, thereby par-
titioning the video into a sequence of action segments.
Based on the level of supervision during training, TAS
methods can be categorized into three main groups: un-
supervised [2, 15, 16, 20, 33, 34, 61, 66, 76, 79, 80, 88],
weakly-supervised [8, 12, 19, 22–24, 38–40, 44, 47, 48, 57–
59, 62, 64, 71], and fully-supervised [1, 4, 6, 17, 27, 29, 32,
35, 36, 41, 42, 45, 49, 51, 60, 65, 68–71, 83, 84] approaches.
Our work primarily aligns with the fully-supervised meth-
ods. However, regardless of the supervision level, pre-
vious studies have predominantly focused on single-task
TAS, where test videos contain actions from only one high-
level activity or task, while we focus on multi-task TAS.
A closely related work, UnweaveNet [53], aims to predict
the start, continuation, and resumption of multiple activity
threads within a video. While UnweaveNet models multi-
ple concurrent activities, its predictions are at the activity or
task level and do not capture the fine-grained action steps
within each task. In contrast, our approach focuses on rec-
ognizing and segmenting detailed action steps across inter-
leaved tasks, providing a more granular understanding of
multi-task activities.
Procedural Video Datasets. To support research in TAS
and related tasks, numerous procedural video datasets have
been collected and released. These datasets include third-
person videos (e.g., Breakfast [30], 50Salads [72], YouTube
Instructional [2], COIN [74], CrossTask [88], ProceL [16],
and ATA [24]), egocentric videos (e.g., GTEA [18],
EGTEA [43], MECCANO [56], EgoProceL [5], HoloAs-
sist [78], and EgoPER [36]), or both views such as As-
sembly101 [63], (3+1)ReC [62] and EgoExoLearn [28].
While large-scale video datasets like EPIC-Kitchens [11],
Ego4D [25], and Ego-Exo4D [26] exist, they primarily fo-
cus on detecting and recognizing atomic action steps rather
than modeling the procedural relationships between steps
within a task, making them less suitable for TAS research.
Also, most existing TAS datasets are limited to single-task
scenarios, where each video contains actions related to one
high-level activity. In contrast, our collected MEKA dataset
specifically addresses multi-task temporal action segmenta-
tion by capturing videos where multiple tasks are performed
in an interleaved manner, providing a more challenging and
realistic benchmark for advancing TAS research.
Object-Aware and Foreground/Background Learning.
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Learning to localize active objects or relevant objects is a
prominent topic in video understanding [67, 75, 85, 86].
Furthermore, researchers have explored leveraging object
information to improve video representation learning [85],
action recognition [87], and action anticipation [86]. Some
studies have also focused on disentangling foreground and
background elements to enhance video representations [3,
13, 37]. Our work differs by specifically addressing the
generalization of TAS models to multi-task videos. Unlike
existing approaches that concentrate on short video clips or
single-task videos, we propose a method that dynamically
isolates foreground and background elements to handle un-
seen object compositions in multi-task scenarios, thereby
mitigating interference from irrelevant objects.

3. Multi-Task Temporal Action Segmentation

3.1. Problem Setting

Given a video sequence V = (v1, . . . , vT ) of T frames, the
goal of TAS is to predict the sequence of action labels A =
(a1, . . . , aT ), where each label at comes from a predefined
set of action classes C. Assume we have O tasks, where the
set Co consists of actions for the task o ∈ {1, . . . , O} and
C =

⋃O
o=1 Co contains actions of all tasks. In a single-task

video, actions come from one Co, while a multi-task video
has interleaved actions from several tasks, hence, at may
belong to any Co for o ∈ {1, . . . , O}. Additionally, there
may be background segments (e.g., ‘answering phone’) ir-
relevant to any of the tasks. A particular challenge in MT-
TAS is to distinguish between action segments belonging to
different tasks and background segments.

In our setting, the training data consists of single-task
videos with full framewise annotations. Our goal is to train
a model on single-task videos so that it can effectively gen-
eralize to multi-task videos during testing.

3.2. Overview of Proposed Framework

Fig. 2 shows the overview of our MS-TAS framework.
Our approach first employs Multi-task Sequence Blending
(MSB) to generate synthetic multi-task videos by lever-
aging LLM-guided task transitions, eliminating the need
for multi-task data collection. However, the initial syn-
thesized multi-task videos contain abrupt transitions at seg-
ment boundaries, which disrupt the temporal flow, and con-
tain discrepancies in object compositions between single-
task and multi-task videos. To mitigate these issues, we in-
troduce three components: a Segment Boundary Learning
(SBL) module that enhances temporal smoothness between
segments, a Dynamic Isolation of Video Elements approach
that augments the background variations during training,
and a two-stage TAS method with foreground-aware action
refinement to improve the predictions of the model. Next,
we discuss each component of our framework in details.

video 1
video 2single-task videos

Foreground

Background
…

Dynamic Isolation of Video Elements

Segment Boundary Learning

Multi-task Sequence Blending

Temporal Action Segmentation

Foreground-Aware 
Action Refinement

Foreground-Background 
Feature Composition

action
probabilities

Figure 2. Framework Overview. The modules marked with
are used exclusively for training, and modules marked with are
used for both training and testing.

3.3. Multi-task Sequence Blending (MSB)

The goal of MSB is to create initial multi-task video se-
quences from single-task videos, to simulate real-world
multitasking behaviors. Given single-task training videos
{V(i)}Mi=1, where each video V(i) = (v

(i)
1 , v

(i)
2 , . . . , v

(i)
Ti
)

has a task label τi and consists of a sequence of action
segments S(i) = (s

(i)
1 , s

(i)
2 , . . . , s

(i)
Ni

) with action labels

A(i) = (a
(i)
1 , a

(i)
2 , . . . , a

(i)
Ni

), a naive approach would be
to randomly sample segments from videos to concatenate.
However, this ignores the temporal order of actions within a
task and more importantly can create unrealistic sequences,
e.g., “scooping jelly from jar” followed by “grinding coffee
beans” (this is unrealistic since it is common sense to spread
the jelly right away after scooping it from a jar).

To create plausible multi-task sequences, we: i) pre-
serve the original temporal order of action segments within
each task, ii) preserve common sense action ordering and
switches among tasks. Specifically, the sequence of action
segments s(i)j from task τi follows the same order as in the
original single-task video. At the end of an action segment,
we leverage an LLM, which encodes extensive contextual
and commonsense knowledge from real-world data, to de-
cide whether to continue the current task or switch to an-
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action label/prediction: 
transfer water to kettle

Object 
Detector

“What are the relevant objects necessary for 
performing the step transfer water to kettle?”

“Kettle and measuring cup.”

LLM
Foreground Frame

Background Frame

Target Objects:
kettle; measuring cup; 
left hand; right hand.

Current task: tea
Current step: transfer water to kettle
Option 1 (continue tea): pour water to mug
Option 2 (switch to pinwheels): spread peanut butter onto tortilla
Question: Should we continue the current task or switch to the other task?

con
tinu
e?

switch?

LLM

(a) Multi-task Sequence Blending (b) Dynamic Isolation of Video Elements

Figure 3. Illustration of leveraging LLM in our proposed framework for MSB (a) and DIVE (b).

other task (see Fig. 3(a)). The LLM assesses the plausibility
of continuing or switching based on the current action a

(i)
j ,

the next action of the current task a
(i)
j+1, and the next action

of another task a
(k)
m , where τk is a different task and a

(k)
m is

its next pending action. For example, after “turning on the
kettle to boil water” in a tea-making task, it is plausible to
switch to a new task during the waiting time. Conversely,
after “scooping jelly from a jar” in a pinwheel-making task,
it makes sense to continue with the next action “spread jelly
on tortilla” rather than switching tasks.

During training, we randomly sample potential task
switch points at the end of action segments and use the LLM
to decide whether to continue or switch tasks. For more
than two tasks, we first randomly select one unfinished task
as the candidate for switching. We then blend the sequence
of action segments based on the LLM’s decisions, resulting
in a new multi-task sequence of actions and frames.

3.4. Segment Boundary Learning (SBL)
The multi-task videos synthesized by MSB exhibit abrupt
transitions at boundaries where we switch tasks, which dis-
rupt the temporal flow and negatively impact the model’s
performance. Therefore, we propose the SBL module that
learns to recover the feature representation of a frame ft
using its nearby frames, excluding frames immediately ad-
jacent to t to avoid trivial learning. This approach allows us
to generate features for frames where we concatenate seg-
ments from different videos, thus enhancing the temporal
smoothness between action segments.

Following prior works in TAS [17, 45, 49, 84], we first
extract the framewise feature representation ft using an I3D
feature extractor [7] applied to a sliding window Vt,

ft = I3D(Vt). (1)

Then, for a given frame t, we consider its neighboring
frames from the intervals [t−δ−w, t−δ] and [t+δ, t+δ+
w], where w defines the window size and δ specifies the ex-
clusion margin around t. We train a reconstruction function
FSBL to predict the feature ft from its surrounding frames,

f̄t = FSBL
(
ft−δ−w:t−δ, ft+δ:t+δ+w

)
, (2)

where ft−δ−w:t−δ and ft+δ:t+δ+w denote the features of
frames before and after t within the specified intervals. We
optimize the reconstruction function by minimizing the re-
construction loss over non-boundary frames,

LSBL =
∑
t/∈B

∥∥f̄t − ft
∥∥2 , (3)

where B is the set of boundary frames (which come from
two different videos, therefore are not continuous or real-
istic and we should not learn from them). By learning this
reconstruction function, the model can generate smooth fea-
ture representations at segment boundaries. During train-
ing, we replace the original features at boundary frames
with the reconstructed features f̄t to enhance the temporal
smoothness of the synthesized multi-task videos.

3.5. Dynamic Isolation of Video Elements (DIVE)
In real multi-task videos, the present objects and their
layouts can significantly differ from those in single-task
videos. For example, as shown in the top-right frame in
Fig. 1(b), in a video of making both tea and pinwheels,
we might add honey to a mug while a rolled tortilla is on
the cutting board, which is typically unseen in single-task
videos. However, the output of MSB, which concatenates
different actions from different single-task videos, does
not capture such realistic multi-task layouts. Observing
that action-relevant objects remain consistent across single-
task and multi-task videos, we propose a Dynamic Isola-
tion of Video Elements approach to isolate video elements
into foreground and background components, and develop
a Foreground-Background Feature Composition module to
synthesize more realistic multi-task videos for training.
Detecting Action-Relevant Objects. Given a frame, it is
challenging to distinguish between foreground and back-
ground solely based on visual cues, especially in cluttered
multi-task environments. The definition of “foreground” or
“relevant objects” depends on the action being performed;
thus, knowledge of the action context is essential. Fig. 3(b)
illustrates how we obtain the foreground and background
components. We first query an LLM to obtain a list of rel-
evant objects for each action class a ∈ C. For example,
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the action “transfer water to kettle” would be associated
with “kettle” and “measuring cup”. Then, we use an open-
vocabulary object detector, GroundingDINO [46], to detect
these relevant objects along with hands (we add “left hand”
and “right hand” as object names) within each frame. We
define the foreground region as the union of detected bound-
ing boxes. We generate foreground and background frames
through Gaussian blurring [82] outside and inside this re-
gion, respectively. We empirically observed that Gaussian
blurring performs slightly better than simply zero masking.
Foreground-Background Feature Composition (FBFC).
After generating foreground and background frames, we ex-
tract I3D features,

f
fg
t = I3D(Vt ⊙M

fg
t ), f

bg
t = I3D(Vt ⊙M

bg
t ), (4)

where f fg
t and f bg

t are foreground and background frame
features, respectively, and ⊙ is the Gaussian blurring oper-
ation with corresponding foreground masks M fg

t and back-
ground masks M fg

t . We train a decoder D to reconstruct the
original feature from foreground and background features,

f̂t = D(f fg
t , f bg

t ). (5)

Let ft denote the original feature in Eq. (1). We train the
decoder by minimizing the composition loss,

LFBFC =
∑
t

∥∥∥f̂t − ft

∥∥∥2 . (6)

To augment synthetic multi-task features, we mix the
background features of the current frame with background
features of frames from another task

f̃ bg
t = βf bg

t + (1− β)f bg
t′ , (7)

where f bg
t is the background feature from the current frame,

f bg
t′ is the background feature from another task, and β ∈
[0, 1] controls the mixing ratio. We then compose multi-task
features from the foreground feature and the mixed back-
ground feature using the decoder

f̃t = D
(
f fg
t , f̃ bg

t

)
. (8)

We replace the training data with these recomposed fea-
tures, exposing the model to diverse background variations.

3.6. Two-Stage Temporal Action Segmentation
To further enhance the robustness of our model to back-
ground variations during testing, we propose a two-stage
action segmentation method incorporating a Foreground-
Aware Action Refinement (FAAR) module. By focusing
on foreground regions, FAAR mitigates the impact of back-
ground distractions and refines the initial TAS predictions.

During training, with ground-truth actions available, we
obtain the action-relevant objects and detect the foreground

regions. We extract CLIP features [55] from the fore-
ground frames and apply a lightweight TAS model to pre-
dict foreground-aware action probabilities based solely on
the foreground frames, pfg

t , which are combined with the
initial action predictions pt output by the base TAS model,

pfg
t = R

(
g(vt⊙mfg

t )
)
, pfinal

t = (1−α) ·pt+α ·pfg
t , (9)

where mfg
t is the binary foreground mask, g denotes CLIP

feature extractor, R denotes the lightweight TAS model,
α ∈ [0, 1] controls the weight of foreground-aware prob-
abilities, and pfinal

t is the refined action probabilities.
During inference, without ground-truth actions, we first

select the top K predicted action classes {â(1)t , . . . , â
(K)
t }

based on the initial action probabilities pt from the base
TAS model, and retrieve their relevant objects. We then
detect the corresponding foreground regions and obtain
foreground-aware action probabilities pfg,(k)

t for each of the
top K actions respectively. We compute the final predic-
tion by combining the initial action probabilities with the
foreground-aware ones,

pfinal
t = (1− α) · pt + α ·

K∑
k=1

θ
(k)
t p

fg,(k)
t , (10)

where the weights θ(k)t are proportional to the initial prob-

abilities of the top-K actions, i.e., θ(k)t =
pt

(
â
(k)
t

)
∑K

j=1 pt

(
â
(j)
t

) .

This approach refines the predictions by focusing on the
most probable actions and their relevant objects, enhancing
robustness to background variations in multi-task scenarios.

3.7. Training and Inference

Training. We use the synthetic multi-task videos gener-
ated by MSB for training. We train the SBL module FSBL
via LSBL in Eq. (3) and utilize the reconstructed features at
segment boundaries to enhance temporal smoothness. Sim-
ilarly, we train the FBFC decoder D via LFBFC in Eq. (6),
and augment the training data by mixing background fea-
tures from different tasks as described in Eqs. (7) and (8).
We train the base TAS model with FAAR using the standard
action loss. The total loss function L is:

L = Laction + λSBLLSBL + λFBFCLFBFC, (11)

where Laction includes the cross-entropy loss and smoothing
loss for TAS, applied to the final action probabilities output
by the FAAR module. λSBL and λFBFC are the loss weights.

Inference. During inference, we do not use the MSB, SBL
and FBFC modules, as they are designed to augment train-
ing. We first obtain initial action predictions from the base
TAS model, and then apply the FAAR module, as specified
in Eq. (10), to derive the final action predictions.

19124



3.8. Incorporating Unlabeled Multi-Task Videos
Our proposed framework so far trains an MT-TAS model
using only single-task videos. However, we additionally in-
vestigate the potential benefits of incorporating unlabeled
multi-task videos, when such videos are available. Since an-
notating long multi-task videos is labor-intensive and time-
consuming, leveraging unlabeled multi-task videos offers a
practical way to enhance the model performance.

We formulate this as a domain adaptation problem [9,
10, 50], where labeled single-task and synthetic multi-task
videos constitute the source domain, while unlabeled real
multi-task videos form the target domain. We aim to learn
domain-invariant feature representations through adversar-
ial training, achieved by adding a domain classifier with
a Gradient Reversal Layer (GRL) [21] after the base TAS
model’s early feature layer. The model is trained jointly
with action labels on the source domain and domain labels
on both domains. During training, the GRL reverses the
gradient flow, encouraging indistinguishable feature distri-
butions across domains. Our overall training loss is

L = Laction+λSBLLSBL+λFBFCLFBFC+λdomainLdomain, (12)

where Ldomain is the framewise binary domain classification
loss, and λdomain is the loss weight.

4. MEKA Dataset
While our proposed framework can be trained using only
single-task videos, we require an MT-TAS benchmark for
evaluation. To this end, we introduce the Multi-task Ego-
centric Kitchen Activities (MEKA) dataset, which ex-
tends the EgoPER dataset [36] to multi-task scenarios.
EgoPER is an egocentric procedural video dataset designed
for temporal action segmentation and error detection. It
contains single-task videos of users performing kitchen ac-
tivities while wearing an egocentric camera (HoloLens 2).
The dataset includes five cooking tasks: making pinwheels,
quesadillas, oatmeal, coffee, and tea, each associated with
a predefined task graph.

To create realistic multi-task scenarios, we generated
multi-task transcripts by interleaving action sequences from
multiple tasks while ensuring logical coherence within the
task graphs. Participants equipped with a HoloLens 2 cam-
era followed these transcripts during recording. While we
used similar recording equipment and kitchen tools as in the
EgoPER dataset to maintain consistency, variations in the
environments introduce additional challenges to the evalua-
tion benchmark.

After data collection, we annotated each video by assign-
ing framewise labels for both actions and tasks. In total,
MEKA consists of 100 videos for 12 hours of footage. In
each video, participants perform two or three cooking tasks
in an interleaved manner. See the supplementary materi-
als for more details about the dataset. We will make the

MEKA dataset publicly available upon publication, includ-
ing videos and framewise annotations, to facilitate further
research in multi-task temporal action segmentation.

5. Experiments

5.1. Experimental Setup

Datasets. Since MT-TAS is a new task, existing datasets
cannot be used for its evaluation. Consequently, we eval-
uate our approach using single-task videos from EgoPER
[36] for training and our collected multi-task videos from
MEKA for testing. EgoPER contains 213 normal single-
task egocentric videos and MEKA contains 100 multi-task
videos for the five recipes in EgoPER. In total, it has 51
classes of action steps. We were also able to adapt the
EGTEA dataset [43] for multi-task evaluation. We manu-
ally select actions that appear exclusively in either the first
or second half of each video, treating these segments as
single-task videos, and consider the full videos with inter-
leaved actions as multi-task videos. The supplementary ma-
terials provide additional details and the experimental re-
sults on the adapted EGTEA dataset.
Model Architecture. We evaluate our method with three
base TAS models: two offline models (MSTCN [17] and
FACT [49]) and one online model (ProTAS [65]). Online
TAS differs from offline TAS in that it only uses the frames
up to the current moment for prediction. We implement the
SBL module (FSBL) by processing interval features through
two convolutional layers, followed by temporal global av-
erage pooling. The Decoder D processes foreground and
background features through parallel two-layer MLPs, each
reducing feature dimension by half, followed by a linear
layer that reconstructs the original feature representation
from the concatenated features. We employ a three-layer
TCN [17] with a hidden dimension of 64 for FAAR (R).
For experiments with domain adaptation, we insert a GRL
after the feature layer of the initial stage of TAS models,
and use a two-layer MLP for binary domain classification.
Implementation Details. Following standard practice [17,
49, 65, 81, 84], we extract 2048-dimensional I3D fea-
tures [7] pretrained on Kinetics [7] as video representa-
tions. We evaluate performance using standard TAS met-
rics: frame-wise accuracy (Acc), frame-wise accuracy ex-
cluding background frames (Acc-bg), segment-wise edit
score (Edit), and segment-wise F1 scores at multiple IoU
thresholds (F1@10,25,50). We adopt the default configu-
rations from MSTCN [17], FACT [49], and ProTAS [65]
using their official source codes. We train all models us-
ing Adam optimizer with a learning rate of 0.0005. We set
the loss weights as λSBL = λFBFC = λdomain = 1. For the
SBL module, we define boundary frames as the 10 frames
centered at the points where segments from different videos
are concatenated, and set window size w as 5 and margin
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MSB SBL FBFC FAAR
TAS model: MSTCN [17] TAS model: FACT [49]

Acc Acc-bg Edit F1@{10,25,50} Acc Acc-bg Edit F1@{10,25,50}

baseline 62.3 49.1 50.1 52.6 49.3 39.7 53.7 41.4 42.9 44.6 41.6 31.7

✓ 67.8 63.7 64.2 68.9 66.8 56.0 72.8 67.8 73.1 73.1 70.0 58.4
✓ ✓ 68.8 65.9 64.7 70.8 68.8 58.1 73.6 70.4 74.5 76.1 73.6 62.3
✓ ✓ ✓ 73.7 64.4 69.5 73.0 69.9 58.8 73.8 71.3 74.4 79.6 76.7 65.5
✓ ✓ ✓ ✓ 75.7 72.1 74.9 79.7 77.6 67.4 75.7 72.8 76.0 81.2 79.3 69.9

Table 1. Offline multi-task temporal action segmentation performance on MEKA.

MSB SBL FBFC FAAR Acc Edit F1@{10,25,50}

baseline 49.1 24.6 24.1 20.0 12.4

✓ 51.1 30.7 26.5 22.1 12.8
✓ ✓ 51.1 33.1 29.3 24.5 14.6
✓ ✓ ✓ 55.2 37.5 32.8 27.1 18.3
✓ ✓ ✓ ✓ 67.8 54.8 54.6 49.8 36.7

Table 2. Online temporal action segmentation on MEKA.

δ as 2. For Foreground-Background Feature Composition
(FBFC), we select 10% of frames and augment them with
Eq. (7) by randomly sampling β from [0.5, 1] during train-
ing. See Sec. 5.2 for the qualitative analysis on the value
of β. For the FAAR module, we employ a two-stage train-
ing process. In the first stage, we train the model without
FAAR by setting α = 0 in Eq. (9). In the second stage,
we incorporate FAAR and randomly sample α from [0, 1]
during training. For inference, we set K = 3 and α = 0.3
in Eq. (10). We include ablation studies on the values of K
and α in Sec. 5.2. Please refer to the supplementary materi-
als for more implementation details.

5.2. Experimental Results
Offline Temporal Action Segmentation. Tab. 1 presents
the performance of our approach on the MEKA dataset us-
ing two baseline offline TAS models: MSTCN [17] and
FACT [49]. We start with the baseline models trained
on single-task videos without any of our proposed mod-
ules (first row). We then progressively incorporate the
Multi-task Sequence Blending (MSB), Segment Boundary
Learning (SBL), Foreground-Background Feature Compo-
sition (FBFC), and Foreground-Aware Action Refinement
(FAAR) modules to assess their individual contributions.
In the first row, MSTCN achieves an accuracy of 62.3%
and an F1@50 score of 39.7%, while FACT attains 53.7%
accuracy and 31.7% F1@50, indicating that the baseline
models struggle to generalize to multi-task videos when
trained solely on single-task data. Incorporating MSB sig-
nificantly improves performance for both models, espe-
cially for FACT, due to its explicit modeling of video tran-
scripts during training. Adding SBL further boosts perfor-
mance. With MSB and SBL, MSTCN’s accuracy improves
by 6.5% and F1@50 by 18.4%, while FACT’s accuracy

Training Setup Acc Edit F1@{10,25,50}

Offline Temporal Action Segmentation

MSTCN [17]
LMT 78.0 75.9 78.3 76.6 70.4

LST&LMT 80.6 84.7 84.5 82.5 74.6

Ours
w/o DA 75.7 74.9 79.7 77.6 67.4
w/ DA 76.6+0.9 77.6+2.7 82.0+2.3 80.6+3.0 72.2+4.8

+LMT 82.7 87.3 89.7 88.5 82.4

Online Temporal Action Segmentation

ProTAS [65]
LMT 61.5 41.1 37.2 32.8 22.0

LST&LMT 64.5 49.8 39.4 34.5 22.7

Ours
w/o DA 67.8 54.8 54.6 49.8 36.7
w/ DA 69.1+1.3 56.9+2.1 57.5+2.9 52.0+2.2 38.8+2.1

+LMT 74.9 70.6 67.2 62.5 49.3

Table 3. The effect of domain adaptation using unlabeled multi-task
videos and comparison with methods using labeled multi-task videos.

improves by 19.9% and F1@50 by 30.6%. Incorporating
FBFC further improves the accuracy by 4.9% on MSTCN
and the F1@50 by 3.2% on FACT. Finally, integrating all
proposed modules leads to the highest performance, result-
ing in an F1@50 score of 67.4% for MSTCN and 69.9% for
FACT. Overall, our approach effectively enhances the capa-
bility of standard TAS models to handle multi-task videos.
Online Temporal Action Segmentation. We evaluate the
online TAS performance of our approach in Tab. 2, using
ProTAS [65] as the base TAS model. Without access to
future frames, the online model relies solely on past and
current frames, making it challenging to anticipate action
transitions and accurately segment boundaries. This lim-
itation results in a noticeable performance drop compared
to the offline models, echoing the difficulties of online MT-
TAS. However, our proposed modules still achieve a notable
performance boost. When all modules are combined, the
model increases accuracy by 18.7% and F1@50 by 24.3%
compared to the baseline. Particularly, the integration of
FAAR improves the accuracy by 12.6% and all F1 scores
by nearly 20%, highlighting the value of foreground-aware
refinements in scenarios without access to future frames.
Domain Adaptation with Unlabeled Multi-Task Videos.
In Tab. 3, we evaluate our domain adaptation approach us-
ing unlabeled multi-task videos, as introduced in Sec. 3.8.
Domain adaptation consistently improves performance
across all metrics, increasing F1@50 by 4.8% and 2.1%
in offline and online settings, respectively. To thoroughly
assess our method, we compare against two baseline se-
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Figure 4. Ablation Studies on FAAR: (a) comparison of different inputs; (b) effects of K; (c) effects of α.

tups using 3-fold cross-validation on multi-task videos: 1)
the model is trained on labeled multi-task (LMT) videos;
2) the model is trained on both labeled single-task and la-
beled multi-task (LST&LMT) videos. Note that these base-
lines use labeled multi-task data, while our method employs
only unlabeled multi-task videos during training. In of-
fline TAS, our model with domain adaptation outperforms
the LMT baseline and achieves comparable results to the
LST&LMT baseline. In the more challenging online setting,
our models surpass both baselines, demonstrating the abil-
ity of our modules to enhance generalization and handle the
data-intensive demands of online TAS. We also extend our
method by incorporating labeled multi-task videos (+LMT)
to provide an upper bound for domain adaptation. The per-
formance gap reveals room for improvement in unsuper-
vised domain adaptation. Furthermore, the performance
gains from LST&LMT to Ours+LMT demonstrate that our
modules provide complementary benefits even when la-
beled multi-task data is available.
Ablation Studies on FAAR. In Fig. 4, we conduct ablation
studies to evaluate different inputs of FAAR and analyze the
effects of K and α in Eq. (10) during inference. First, we
change the module’s input from foreground frames to back-
ground frames or full images. Background frames perform
poorly while foreground frames outperform full images,
showing the importance of action-relevant foreground in-
formation. We then examine how varying K, the number of
top predicted action classes considered, and α, the weight-
ing factor between initial predictions and foreground-aware
predictions, influences the performance. The model’s per-
formance gradually improves with increasing K, reaching
a plateau when K ≥ 3. As α increases from 0 to 1, the
model performs best between 0.3 and 0.4. Notably, while
the accuracies at α = 0 (base TAS predictions only) and
α = 1 (foreground-aware predictions only) are similar, the
Edit and F1@50 scores for foreground-only predictions are
significantly lower. This suggests that FAAR emphasizes
individual frame accuracy but may lack the temporal con-
sistency needed for segment-wise metrics.
Qualitative Analysis of FBFC. In Fig. 5, we qualitatively

Foreground Frame Background Frame
Nearest Multi-Task Frame

! = #. % ! = #. &

Figure 5. Retrieved nearest multi-task videos by different ratios with
FBFC. For simplicity, only middle frames of video clips are displayed.

analyze how FBFC works with different values of the mix-
ing ratio β. We sample two clips from single-task videos,
extract foreground frames from one clip and background
frames from another, and then recompose these features us-
ing FBFC via Eqs. (7) and (8). To assess the recomposition
quality, we retrieve the nearest clip from multi-task testing
videos based on feature similarity. With a lower mixing
ratio (β = 0.2), the recomposed features are more heav-
ily influenced by background features, and the context of
the retrieved frames predominantly match the background
frames. Conversely, with a higher mixing ratio (β = 0.8),
the retrieved frames often depict the same action as the fore-
ground frames while sharing some similarities with the con-
text of the background frames. Based on these observations,
we sample β ∈ [0.5, 1] in training to ensure preserving ac-
tion features while introducing background variations.
See supplementary materials for more results, qualitative
visualization, and discussion on complexity and limitations.

6. Conclusions

We proposed an MT-TAS framework to tackle the chal-
lenges of interleaved actions in multi-task scenarios. Our
approach combines synthesized multi-task data, a two-stage
TAS model, and the new MEKA benchmark dataset. We
validated the effectiveness of our approach through exten-
sive experiments in both offline and online MT-TAS.
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Kottur, Anurag Kumar, Federico Landini, Chao Li, Yang-
hao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Mod-
hugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu,
Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda
Sari, Kiran K. Somasundaram, Audrey Southerland, Yusuke
Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu,
Takuma Yagi, Yunyi Zhu, Pablo Arbeláez, David J. Crandall,
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