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Abstract

This paper tackles the problem of video question answer-
ing (VideoQA), a task that often requires multi-step reason-
ing and a profound understanding of spatial-temporal dy-
namics. While large video-language models perform well
on benchmarks, they often lack explainability and spatial-
temporal grounding. In this paper, we propose Agent-
of-Thoughts Distillation (AoTD), a method that enhances
models by incorporating automatically generated Chain-
of-Thoughts (CoTs) into the instruction-tuning process.
Specifically, we leverage an agent-based system to decom-
pose complex questions into sub-tasks, and address them
with specialized vision models, the intermediate results are
then treated as reasoning chains. We also introduce a veri-
fication mechanism using a large language model (LLM) to
ensure the reliability of generated CoTs. Extensive experi-
ments demonstrate that AoTD improves the performance on
multiple-choice and open-ended benchmarks.

1. Introduction

Video Question Answering (VideoQA) refers to a critical
task that offers a natural interface for human-machine in-
teraction through language [33, 42, 43, 49]. This synergy
of visual content and language enhances the accessibility
of AI systems for the general public, allowing users to
query complex visual content with natural language. By en-
compassing tasks such as action recognition, object detec-
tion, and scene understanding, VideoQA serves as a com-
prehensive benchmark for evaluating AI’s ability to inter-
pret videos, addressing the fundamental questions of ‘who’,
‘what’, ‘when’, and ‘where’ that are crucial to understand
daily life activities, pushing the boundaries of what AI sys-
tems can interpret from dynamic visual content.

Recent literature has primarily explored two avenues
in VideoQA. The first involves training large video lan-
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guage models (Video-LLMs) through direct instruction-
tuning, using videos paired solely with corresponding ques-
tions and answers [1, 22, 24, 53]. While these models excel
on public benchmarks, they often lack explainability and
struggle with spatial-temporal grounding. This limitation
hinders their ability to provide clear reasoning, which is es-
sential for real-world applications where transparency and
interpretability are critical [29].

Conversely, an emerging approach utilizes agent-based
systems that decompose complex questions into manage-
able sub-tasks, each addressed by specialized tools [15,
17, 37]. The results are then aggregated to form a coher-
ent answer. Theoretically, such approach naturally offers
greater interpretability, as the reasoning process is divided
into explainable steps that can be independently assessed.
However, our experiments indicate that current video un-
derstanding tools are not strong enough for building reli-
able agent-based systems. In addition, the high memory de-
mands and time-consuming nature of these systems present
significant challenges for their practical use.

In this paper, we aim to leverage the advantage of both
research lines, enhancing Video-LLM by integrating Chain-
of-Thoughts (CoTs) into instruction-tuning, with the CoTs
being constructed from the outputs of specialized agent
models, capturing the step-by-step reasoning procedure, as
illustrated in Figure 1.

In specific, we start by systematically evaluating the off-
the-shelf models tailored for atomic video understanding
tasks, such as action recognition [39, 41] and language
grounding [23], using well-annotated datasets. This com-
prehensive evaluation allows us to pinpoint the most effec-
tive tools for each sub-task, thus laying a robust foundation
for constructing reliable chains. Moreover, this process also
provides a critical assessment of the broader capabilities of
visual models across general and complex scenes, offering
valuable insights for future research within the community.

In addition, we introduce a verification mechanism us-
ing a large language model (LLM), designed to assess if
the generated CoTs adhere to a clear, step-by-step reason-
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  Person held the phone/camera: Frame 22 to 30. 

Person closed something: Frame 15 to 22. 

Person’s location: [49, 0, 201, 335] at frame 15 ··· 

Laptop around the person and person closed it … 

Laptop’s location: [135, 0, 255, 144] at frame 15 ··· 

Answer: (A) The laptop.

Video-LLM

Video-LLM-AoTD

Frame 15

……

Frame 15 Frame 18 Frame 19 Frame 22

…… …

(a) Previous Video-LLM training w/o AoTD 

(b) Video-LLM training w/ AoTD 

Z

Question: Which object did the person close before they held the phone? 
Possible answers: (A) The laptop. (B) The box. (C) The bed. (D) The book.

…

Thinking Process

Question 
Breakdown

Temporal 
Grounding

Object 
Detection

(D) The book.

…

Question: Which object did the person close before they held the phone? 
Possible answers: (A) The laptop. (B) The box. (C) The bed. (D) The book.

Figure 1. Our method, AoTD, distills multi-step reasoning and spatial-temporal understanding into a single generative video-language
model. When addressing complex VideoQA tasks, the model trained with AoTD (as shown in (b)) enables to generate a step-by-step
reasoning to get the correct answer. In contrast, previous models trained solely on question-answer pairs (as in (a)) generate only a final
answer, often without intermediate reasoning, which can lead to incorrect conclusions.

ing process and incorporate essential information for an-
swering the queries effectively. This mechanism filters out
low-quality or logically inconsistent reasoning paths. The
remaining CoTs that pass this verification are then distilled
into large generative video-language models, significantly
enhancing both their performance and interpretability, ulti-
mately leading to the development of more robust, accurate,
and interpretable VideoQA systems.

In summary, our contributions are three-fold: (i) we pro-
pose a novel approach for enhancing Video-LLMs by dis-
tilling high-quality CoTs into their instruction-tuning pro-
cess. These CoTs capture step-by-step reasoning paths, im-
proving both the model’s performance and its interpretabil-
ity; (ii) to automatically construct the CoTs for any dataset,
we employ an agent-based system to decompose complex
VideoQA questions into simpler sub-tasks, leveraging off-
the-shelf vision models to handle each sub-task. The in-
termediate outputs from these models can therefore be col-
lected as CoTs for addressing the corresponding visual
question; (iii) through extensive experiments, we demon-
strate that our distilled model outperforms existing meth-
ods across both multiple-choice and open-ended VideoQA
benchmarks, enabling to deliver not only accurate answers
but also comprehensive reasoning explanations.

2. Related Work

Video-language models (Video-LLMs). Recent works
such as VideoLLaMA2 [4], LLaVA-NeXT-Video [54] and

VideoChat2 [19], with their excellent architecture design
and reasonable instruction-tuning data collection, have
achieved a new level of zero-shot results in VideoQA task.
However, current end-to-end models still lack interpretabil-
ity for questions, as well as the ability to think and visually
process complex problems in multiple steps, which is an
important part for embodied learning and autonomous driv-
ing.
Visual Programming and Agents. With the progress of
LLMs, some recent works [5, 15, 37, 45] begin to try to
use LLM as planner to solve the complex reasoning task in
real scenarios. They attempt to decompose the question into
some easier sub-questions, and use different specialist mod-
els as agents to solve these sub-questions, and finally gather
them to get the answer of the raw question. These models
demonstrate a strong ability to obtain trustworthy answers
based on the intermediate evidence they get, but they lag far
behind the end-to-end model in terms of inference speed.
Visual Chain-of-Thoughts (CoTs). The potential of
Chain-of-Thought (CoT) reasoning [40, 46] extends from
NLP to the visual domain, highlighting a growing interest
in applying this approach across various fields. Numerous
studies have incorporated CoTs into visual understanding
tasks [11, 30, 36, 55], utilizing powerful Multi-Modal Large
Language Models (MLLMs) for generating CoTs or adopt-
ing tool-based architectures for sequential problem-solving.

Recent innovations, for example, Visual Program Dis-
tillation (VPD) [16] and Fact [10] attempt to address these
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CoT Distillation

Question: What happened after the person held the laptop?  Answer: Opened the refrigerator.

Program Generation & Execution

def execute_command(video):
held_clip = Filter_frames_with_act(···
after_held_clip = trim(video, start=···

······
person_clip = Find(after_held_clip, 

     “person”)
answer = Query_action(person_clip)
return answer

CoT Conversion & Filtering

Execution 
Trace

Conversion 
Prompt

Unfiltered 
CoTFind person [108,51,218,287] at 

frame 13

Person held the laptop  frame 13 to 18

Trim video from frame 18 to 32
······

Person opened the refrigerator

We first need to 
find when did the 
person hold the 

laptop, it 
happened from 
frame 0 to 5 ···Filtering 

Prompt

CoT: We first need to find when  
did the person hold the ··· 

Answer: Opened the refrigerator.Answer the question  
in a word or phrase.

Explain the rationale  
to solve the question.

What happened after the 
person held the laptop?

Video-LLM-AoTD

Available Agents

Object 
Detection

Question 
Decomposition

Temporal 
Grounding

Action 
Recognition

Question 
Answering

Captioning 
Summary

Model Selection
Model 1 Model 2 Model 3

LLM LLM

······

Figure 2. Overview on Agent-of-Thoughts Distillation (AoTD). Step 1: Selecting best-performing agents for each sub-task to construct
an agent-based system. Step 2: Decomposing question into executable program and leveraging chosen models to solve it sequentially to
generate execution trace. Step 3: The execution trace is converted and filtered by LLM to produce high quality natural language CoTs. Step

4: Distilling CoTs into Video-LLM with two forms of prompt, allowing it achieve a balance between concise answers and comprehensive
rationales. The final model is Video-LLM-AoTD.

issues by maintaining the accuracy and diversity of CoTs,
while leveraging MLLMs to generate them directly. These
approaches decompose complex tasks into code programs,
call upon expert models to handle sub-tasks, and utilize the
resulting CoTs as training data to fine-tune visual-language
models. This process significantly improves the models’
ability to generate detailed rationales. Despite the progress
in image understanding, there remains a notable oversight in
video domains, where reasoning chains can be particularly
effective due to the complex spatial-temporal dynamics of
video understanding tasks. This is the focus of our paper.
Concurrent Work. In the recent literature, we notice
two work that share similar idea with ours, specifically,
Video-STaR [56] construct CoTs using videos and exist-
ing labels for instruction-tuning, yet they do not develop
an agent-based system. Meanwhile, MotionEpic [8] intro-
duces a Video-of-Thought reasoning framework that inte-
grates video spatial-temporal scene graphs, marking a sig-
nificant stride towards more nuanced video reasoning.

3. Agent-of-Thoughts Distillation

In this paper, we propose a novel approach, termed Agent-
of-Thoughts Distillation (AoTD), to enhance the Video-
LLMs by training them with multi-step Chain-of-Thoughts.

Specifically, we start by developing an agent-based video
understanding system, to generate multi-step reasoning
chains that address complex video questions. These reason-
ing chains are then distilled into one Video-LLM through
instruction-tuning. By combining the strengths of agent-
based systems and large generative models, our proposed
AoTD enables to build more reliable and interpretable
VideoQA systems. Figure 2 illustrates the entire process
of our method.

3.1. Problem Formulation

Given a video clip with t frames, V = {x1, . . . , xt}, and a
set of n questions Q = {q1, q2, ..., qn}, our goal is to train a
Video-LLM capable of producing both concise answers and
comprehensive rationales. Depending on the suffix prompt
ps, the model can generate different types of outputs. The
process can be formulated as:

{ai,Si} = !(V, qi, ps), Si = {→} or {si,1, . . . , si,k}

where qi denotes the i-th question, ai is the answer in free-
form text, and Si represents the rationale, consisting of the
reasoning process. If the prompt specifies to only generate
the answer, Si = {→}. Otherwise, if the prompt requires the
generation of rationales, Si = {si,1, . . . , si,k}, where each
si,j corresponds to a reasoning step.
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def execute_command(video, query, possible_answers):
    hold_clip = Filter_frames_with_act(video, 
                                'person held the book')
    before_hold_clip = trim(video, end=hold_clip.start)
    put_clip = Filter_frames_with_act(before_hold_clip, 

     'person put down something')
    person_clip = Find(put_clip, 'person')
    put_objs = Query_Objs(person_clip, 

‘object put down by the person’)
 info = {'object put down by the person’: put_objs}
 answer = select_answer(query, info, possible_answers)

    return answer

Question: Which object did the person put down before they held the book?

Video input

Filter_frames_with_act
hold_clip: 
Frame 7 to 15

frame 7 frame 15

Ground Truth
Hold a book: Frame[6.64
,7.45,…,16.32]

trim
before_hold_clip: 
Frame 0 to 7

···

frame 7frame 0

Filter_frames_with_act
put_clip: 
Frame 2 to 7

frame 7

Find
person_clip:[120,0,239,
413] in frame 2 ···

frame 2 frame 2

Ground Truth
Frame[2.88,3.41,4.78,
6.12,6.64]

Ground Truth
Put something: Frame[2.88
,3.41,4.78,6.12,6.64]

···

Ground Truth
Person:[128,64,244,371] 
in frame 2.88 ···

Query_Objs
put_objs: broom

Ground Truth
Put a broom somewhere

Ground Truth Answer

The broom.

Program Output

The broom.

Object Detection Eval
Person:[119,0,241,408] 
in frame 2.88 ···

frame 2.88

···

···

frame 7

··· ···

frame 2 frame 7

Possible answers: (A) The broom. (B) The paper. (C) The door. (D) The cup.

frame 6.64

Evaluation IoU

65.8%

Figure 3. Program execution process in an agent-based system. We uniformly sample 32 frames from the video, and to ensure scale
consistency, the frame ids of key frames are normalized into these 32 frames. The blue boxes represent the program execution steps, the
red boxes denote the ground truth for each step. The combination of red and yellow boxes represents one example process of evaluating
Object detection model candidates.

Discussion. Unlike existing models that are instruction-
tuned on VideoQA datasets using simple question-answer
pairs, which bypass the intermediate thought process,
our approach emphasizes the importance of training with
Chain-of-Thoughts (CoTs). In the following section, we
outline the process for generating high-quality CoTs from
existing VideoQA datasets.

3.2. CoT Construction with Agent-based System

Recent work, such as STAR [42], has introduced the idea
of employing executable symbolic programs, to directly de-
compose questions into sub-tasks. When combined with
scene graphs that contain comprehensive video informa-
tion from key frames—such as object locations, interac-
tions, and actions—these programs facilitate the generation
of concise Chain-of-Thoughts (CoTs) through direct execu-
tion of symbolic operations. However, datasets of this na-
ture are limited in scale, we therefore propose to first build
an agent-based system, capable of breaking down complex
questions into simpler sub-tasks, and the intermediate out-
puts from this system can then be employed to construct
CoTs for any existing VideoQA dataset.
Agent-based VideoQA. Assuming we are given a video in-
put (V), questions (Q), and a set of visual models (M =
{ωact,ωdet, . . . ,ωqa}), an LLM-based agent core (ε(·)) pro-
cesses the question along with the documentation of the
visual models (T ), which includes variables and function-

Sub-task Model name Metric Number (%)

question
decomposition

CodeQwen1.5-Chat (7B) [2] 52.7
GPT-3.5-Turbo [31] Acc 73.1
DeepSeek-Coder-Instruct (6.7B) [6] 85.7

object
detection

OWL-ViT v1 [26] 47.3
GLIP [20] IoU 58.9
OWL-ViT v2 [28] 63.0

temporal
grounding

LITA (13B) [18] 11.7 / 20.2
TimeChat (7B) [35] IoU / Recall 13.9 / 23.1
UniVTG [23] 24.7 / 35.3

action
recognition

InternVideo2 (1B) [39] 7.6
Open-VCLIP [41] Top1-Acc 8.9
LLaVA-NeXT-Video-DPO (7B) [54] 18.2

question
answering

LLaMA-VID (7B) [21] 43.5
SeViLA [48] Acc 46.5
LLaVA-NeXT-Video-DPO (7B) [54] 53.4

Table 1. Sub-tasks definition and evaluation results. We choose
3 model candidates for each sub-task and evaluate them in STAR
training set with the corresponding metrics. Models with best per-
formance are placed at the bottom of each column.

alities. The agent subsequently decomposes the question
into sub-tasks formatted as Python code, and resolves them
by invoking the appropriate visual models through function
calls. It is important to note that the visual models can be ar-
ranged in various orders depending on the specific question,
ensuring flexibility in problem-solving.

Specifically, as illustrated by the example in Figure 3, the
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question is first decomposed into a series of sub-tasks, in-
cluding temporal grounding, object detection, and question
answering. The corresponding specialized models are then
executed sequentially to address these sub-tasks, ultimately
yielding the final answer yi:

{ωground,ωdet,ωqa} := ε(qi, T ),

yi = ωground(V) ↑ ωdet(V) ↑ ωqa(V)

CoT Construction. To ensure the correctness of outputs
at all the intermediate steps, we leverage the training set
from STAR for hyperparameter tuning, enabling us to iden-
tify the most effective model for each sub-task within the
agent-based system. By following the provided programs,
we evaluate the performance of the corresponding vision
models on tasks such as object detection and action recog-
nition. Given the availability of complete reasoning chains,
we independently assess each sub-task using ground truth
data for all preceding steps.

As shown in Table 1, we present the evaluation results
for the various sub-tasks. Specifically, for question decom-

position, we compare several code LLMs, with DeepSeek-
Coder-Instruct achieving the highest performance, outper-
forming even GPT-3.5-Turbo. In object detection, OWL-
ViT v2 records the highest Intersection over Union (IoU)
score, showcasing its superior open-vocabulary detection
capability. The results for temporal grounding indicate
that while UniVTG leads in performance, there remains a
need for further advancements in this area. In action recog-

nition, our evaluations show that generative models outper-
formed discriminative models, likely due to the fine-grained
action list provided by the STAR dataset. However, the per-
formance of both model types reveals significant room for
improvement. Finally, in the one-hop question answer-

ing sub-task, all models perform admirably, with LLaVA-
NeXT-Video-DPO standing out as a top performer, consis-
tent with its strong results on other benchmarks.

With these high-performing models, we implement the
agent-based approach on VideoQA datasets that consist
solely of QA pairs. During the execution of the programs,
we record all intermediate outputs to construct the CoTs.
Since the outputs from these vision models vary in for-
mat—such as bounding boxes and free-form text—we em-
ploy another LLM to translate the execution trace into nat-
ural language for better use in the distillation process. De-
tailed examples are provided in Appendix C.

3.3. CoT Verification

To refine the quality of reasoning chains for VideoQA sam-
ples, we implement a two-step verification: (i) we filter ex-
ecution traces to retain only those, where the program can
reach correct output. For multiple-choice datasets, the out-
put must match the correct answer exactly, while for open-
ended datasets, we prompt the LLM to verify correctness,

Dataset Description # Labels # CoTs

AGQA Compositional 25.0K 5.4K
ANetQA Compositional 25.0K 3.6K
STAR Compositional 45.7K 11.2K
NExT-QA Temporal & Causal 34.1K 12.1K
CLEVRER Spatial & Temporal 21.0K -
EgoQA Ego-centric 7.8K -
Total 158.6K 32.3K

Table 2. Dataset statistics. The column “# Labels” indicates the
number of VideoQA pairs, which include the video, query, possi-
ble answers (multiple-choice), and the correct answer. “# CoTs”
refers to the number of CoTs generated using our agent-based sys-
tem for each dataset.

accounting for format differences; (ii) we prompt the LLM
to evaluate the logical coherence and usefulness of the rea-
soning chains in solving the problem. The model assesses
whether the CoTs follow a clear, step-by-step reasoning
process and provides a binary evaluation (‘Yes’ or ‘No’) to
indicate their quality (detailed prompts are included in Ap-
pendix D). This two-step approach ensures that only high-
quality CoTs are retained for further distillation.

In Table 2, we provide the statistics for the remaining
generated CoTs for different datasets. We primarily select
compositional QA datasets, as these require the model to
process spatial-temporal information from different events
comprehensively.

3.4. Step-by-step Distillation

In this section, we describe the process of distilling the gen-
erated CoTs into a Video-LLM. This distillation enhances
the model’s ability for spatial-temporal video understand-
ing and multi-step reasoning, thereby improving its perfor-
mance on complex VideoQA tasks.

In specific, using the generated CoTs, we can build the
dataset D = {(Vj , qj , ŷj , cj , ps)}Nj=1, where N is the to-
tal number of samples in the distilling dataset, Vj is the
video input, qj is the question, ŷj is the ground-truth an-
swer, cj is the generated CoT, ps is the task-specific suf-
fix prompt, to distinguish different tasks, for example, for
multiple-choice VQA, the prompt can be: “Answer with the
option’s letter from the given choices directly and only give
the best option”, and for open-ended VQA, the prompt can
be: “Answer in one word or phrase”. Please refer to detailed
prompts in Appendix D.

At distillation stage, we minimize the cross-entropy loss
of predicting both the answer and the CoTs, we replace the
suffix prompt ps with “Explain the rationale to answer the
question”, to indicate whether we want a question answer
or a rationale to explain the thinking steps. Following [10]
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Question: Why are the boys geared in helmets? 
Possible answers: (A) sledding (B) rugby (C) cycling (D) 
skiing (E) race car

The boys are geared in helmets from frame 0 to frame 31, 32 
frames totally. 

Next, we should find where the boys are to better know why they 
are geared in helmets. The boys’ bounding box region is [147,  0, 
235, 193] in frame 0, [147,  0, 235, 193] in frame 1, and so on. 

We can see that the boys are riding bicycles on a dirt road, 
climbing a dirt hill, riding a bike on a dirt trail, and so on. As 
helmets are commonly worn while cycling, it can be concluded 
that the boys are geared in helmets because they are cycling. 

Therefore, the answer is cycling.

··· ··· ···

LLaVA-NeXT 
-Video-AoTD

Question: What type of performance is this? 
Possible answers: (A) party concert (B) parade (C) group 
discussion (D) marketing (E) a play

Here is the rationale for the question:  

To solve this question, we need to find when and where the 
performance occurs in the video. The performance occurs from 
frame 0 to frame 31, 32 frames totally.  

When we analyze the bounding box region of the performers in 
each frame, we can see that they are dressed in costumes, holding 
microphones, and standing on stages. This suggests that the 
performance is a theatrical or musical performance.  

Therefore, the most qualified answer is a play.

LLaVA-NeXT 
-Video-AoTD

0 1 31 0 15 31

Figure 4. Visualization of rationales. LLaVA-NeXT-Video-AoTD can output rationales containing both spatial-temporal grounding of
key information and step-by-step thinking process to solve the question.

and [16], our optimization objective is:

L = Llabel + ϑLrationale

=
N∑

j=1

ϖ(!(Vj , qj , ps), ŷj) + ϑϖ(!(Vj , qj , ps), cj)

Here, we set ϑ to 1 to ensure the importance of answer
and rationale are equally considered. Notice that, not all
the QA pairs can generate qualified CoT. In that case, the
Lrationale will be set to 0.

Dataset
Size

Type Train Eval
train eval

MC-VQA

STAR [42] 45.7K 7.1K Compositional ✁ ✁

NExT-QA [43] 34.1K 5.0K Temporal & Causal ✁ ✁

CLEVRER [47] 21.0K - Spatial-temporal ✁ ✂

Perception-Test [33] - 11.5K General ✂ ✁

MVBench [19] - 4.0K General ✂ ✁

VideoMME [9] - 2.7K General ✂ ✁

VSIBench [44] - 5.0K spatial-temporal ✂ ✁

OE-VQA

AGQA [14] 25.0K 2.0K Compositional ✁ ✁

ANetQA [50] 25.0K 2.0K Compositional ✁ ✁

EgoQA [13] 7.8K - Ego-centric ✁ ✂

Activitynet-QA [49] - 8.0K General ✂ ✁

Video-ChatGPT [24] - 3.0K General ✂ ✁

Table 3. Training and evaluation datasets statics.

4. Experiments

In this section, we present the experimental setup (Sec. 4.1)
and results on various VideoQA benchmarks (Sec. 4.2). Ex-
tensive ablation studies have also been conducted to further
examine the contributions of our approach in Sec. 4.3, and

an evaluation on the quality of rationales generated by the
distilled model is made in Sec. 4.4.

4.1. Experimental Setup

Base model. We use LLaVA-NeXT-Video (7B) [54] (LNV
for short) as base Video-LLM, which has shown remarkable
performance on image-centric tasks, for example image
question answering [51]. We present comparison on naive
instruction-tuning with video question answering dataset or
with additional CoT distillation. For CoT conversion and
verification, we prompt LLaMA-3.1-8B with the manually-
designed instruction and some in-context examples. De-
tailed prompts are provided in Appendix D.

Instruction tuning. We utilize both multiple-choice and
open-ended QA data, along with the generated CoTs, to
fine-tune the base video question answering model, as sum-
marised in Table 2. The resulting distilled model is named
LLaVA-NeXT-Video-AoTD (LNV-AoTD for short). Ad-
ditionally, as baseline, we also train another version of the
model using only the basic QA data, which we refer to as
LLaVA-NeXT-Video-Instruct (LNV-Instruct for short).

Evaluation benchmarks. We conduct extensive evalua-
tions on Multiple-Choice Video QA (MC-VQA) and Open-
Ended Video QA (OE-VQA). We report the top-1 accuracy
for all MC benchmarks, which means the proportion of the
output equal to the answer. We report a GPT-assessed Acc.
and Score with the help of GPT-3.5-turbo-0613 for all OE
benchmarks. For each question, GPT delivers a binary de-
cision indicating whether the output is correct or incorrect,
along with a similarity score reflecting the degree of align-
ment between the output and the correct answer. The term
‘Acc.’ refers to the percentage of correct outputs, while
‘Score’ represents the average similarity scores. For the
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Model
MVBench VideoMME STAR NExT-QA Perception-Test VSIBench

(Acc.) (Acc.) (Acc.) (Acc.) (Acc.) (Acc.)

Proprietary Models

Gemini 1.5 Pro [12] - 75.0 - - - 45.4
GPT4-V [32] 43.7 59.9 - - - -

Open-source Models

LLaMA-VID (7B) [21] 41.9 25.9 - - 44.6 -
Video-LLaVA (7B) [22] 41.0 39.9 - - 44.3 -
VideoChat2 (7B) [19] 51.1 33.7 59.0* 68.6* 47.3 -
VideoLLaMA2 (7B) [4] 53.4 45.1 58.5* 62.3* 49.6 -
LLaVA-NeXT-Video (7B) [54] 46.5* 41.0* 52.4* 61.6* 47.5* 19.7*

LLaVA-NeXT-Video-Instruct (7B) 53.4 43.2 72.2 77.1 50.3 26.7
LLaVA-NeXT-Video-AoTD (7B) 55.6 45.0 74.3 77.6 50.6 28.8

Table 4. Comparison with Video-LLMs on MC-VQA benchmarks. LLaVA-NeXT-Video-AoTD outperforms all other baselines the and
the version without CoT distillation. * means results reproduced by ourseleves. Results without signs are retrieved from [4] and [44].

evaluation on AGQA and ANetQA, due to the large vol-
ume of test set, we test on a subset of samples. We evenly
select the benchmark in-domain and out-of-domain for test-
ing to ensure a comprehensive and reasonable evaluation of
the model capability. Noted that though VSIBench has both
MC and OE questions, it doesn’t need GPT for score, so we
classify it into MC benchmarks for convenience. Detailed
statistics for evaluation benchmarks are shown in Table 3.

4.2. Quantitative Results

We divide the comparison into two parts: the first focuses on
comparing the distilled model with other baselines, while
the second examines the difference between the instruct ver-
sion and the AoTD version. Note that, the latter part will be
mainly compared and discussed, to demonstrate the model’s
improvement relative to its previous performance, as well as
establishing the transferability of the method across models.
MC-VQA performance. As shown in Table 4, our LLaVA-
NeXT-Video-AoTD achieves superior performance across
all benchmarks. Several key observations can be made: (i)
comparing to the base model, even a simple instruction-
tuning on certain VideoQA datasets significantly enhances
the model’s question-answering performance. This im-
provement is notable, as the base model was primarily
trained on static images and struggled with video under-
standing; (ii) our model, instruction-tuned with CoT dis-
tillation, demonstrates further performance enhancements
across all benchmarks, particularly on the compositional
VideoQA benchmark (STAR) and comprehensive bench-
marks (VideoMME, MVBench). This suggests that our
AoTD method effectively improves the model’s ability to
address complex problems and interpret spatial-temporal
scenes; (iii) the distilled model consistently outperforms all
other baselines across almost all benchmarks, even when
compared to more powerful models. This finding shows
that our method effectively bridges performance gaps cre-
ated by varying model components.

OE-VQA performance. As shown in Table 5, LLaVA-
NeXT-Video-AoTD outperforms the Instruct variant across
all open-ended VideoQA benchmarks. Notably, it achieves
a greater percentage increase compared to the MC-VQA
benchmarks, suggesting that CoT distillation may be more
effective for open-ended generation than for multiple-
choice selection. While the distilled model scores higher
than most models listed in the table, it does not surpass
LLaVA-NeXT-Video on certain benchmarks. We conjec-
ture this is due to the model’s extensive training on images,
that can also benefit the question answering without requir-
ing complex reasonings, as also suggested by the findings in
VideoLLaMA2 [4]. Additionally, the inherent challenges of
evaluating open-ended VQA may influence the results. As-
sessments conducted by GPT can be biased or inaccurate,
and the metrics we employ primarily indicate general trends
rather than providing absolute accuracy.

4.3. Ablation Study

Analysis on CoT filtering. To prove the effectiveness of
our filtering mechanism, we trained an alternative model
without CoT filtering while maintaining all other settings,
i.e., using 36.3K verified CoTs for distillation. As shown
in Table 9, the model’s performance declines significantly
on both the Multiple-Choice VQA and Open-Ended VQA
benchmarks when the CoT filtering mechanism is not uti-
lized. This confirms that employing large language models
(LLMs) to filter CoTs is crucial for enhancing data quality.
Analysis on model transferability. As AoTD is a distil-
lation method that leverages Chain-of-Thoughts (CoTs), it
can theoretically be applied to any Video-LLMs. To assess
the transferability of our method, we conduct experiments
on another very recent model, LLaVA-OneVision (7B) [3].
As shown in Table 9, our method also demonstrates signif-
icant improvements on the benchmarks, showing the trans-
ferability and robustness of the approach. Due to the rapid
advancements in the computer vision field, evaluating all
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Model
ANetQA AGQA Video-ChatGPT (Score) ActivityNet

(Acc./Score) (Acc./Score) Corr. Deta. Cont. Temp. Cons. (Acc./Score)

Proprietary Models

Gemini 1.5 Pro [12] - - - - - - - 56.7/-
GPT4-V [32] - - 4.09 3.88 4.37 3.94 4.02 59.5/-

Open-Source Models

VideoLLaMA (7B) [53] - - 1.96 2.18 2.16 1.82 1.79 12.4/1.1
Video-ChatGPT (7B) [24] - - 2.50 2.57 2.69 2.16 2.20 35.2/2.7
LLaMA-VID (7B) [21] - - 2.96 3.00 3.53 2.46 2.51 47.4/3.3
Video-LLaVA (7B) [22] - - 2.87 2.94 3.44 2.45 2.51 45.3/3.3
VideoChat2 (7B) [19] - - 3.02 2.88 3.51 2.66 2.81 49.1/3.3
VideoLLaMA2 (7B) [4] - - 3.09 3.09 3.68 2.63 3.25 49.9/3.3
LLaVA-NeXT-Video (7B) [54] 46.4/3.3* 27.4/2.2* 3.26* 3.22* 3.77* 2.47* 2.99* 54.3/3.2*

LLaVA-NeXT-Video-Instruct (7B) 47.1/3.1 59.3/3.4 2.96 2.81 3.35 2.42 2.82 50.0/3.3
LLaVA-NeXT-Video-AoTD (7B) 53.9/3.4 60.9/3.6 3.11 3.00 3.60 2.41 2.91 53.2/3.4

Table 5. Comparison with Video-LLMs on OE-VQA benchmarks. LLaVA-NeXT-Video-AoTD improves performance in all open-ended
benchmarks compared with the Instruct version. * means results reproduced by ourseleves. Results without signs are retrieved from [4].

models and benchmarks is prohibitively infeasible. Thus,
we focus on assessing some representative models against
selected benchmarks to provide a representative evaluation.

Model Filtering
MVBench STAR AGQA

(Acc.) (Acc.) (Acc. / Score)

LNV-AoTD ✂ 53.7 73.3 59.5/3.5
LNV-AoTD ✁ 55.6 74.3 60.9/3.6
Onevision-Instruct - 59.2 75.8 65.6/3.7
Onevision-AoTD ✁ 60.5 76.6 65.7/3.7

Table 6. Ablation results of CoT filtering and transferability.

4.4. Evaluation on Rationales

To verify whether the model has effectively learned multi-
step reasoning through CoTs distillation, we analyze the ra-
tionales generated by the model. Specifically, we extract
and evaluate the temporal and spatial information embed-
ded within these rationales. This approach extends beyond
merely assessing the correctness of the final answer, which
could be influenced by biases or other external factors. By
examining the reasoning process in detail, it enables a more
accurate understanding of the model’s ability to perceive
and reason about spatial and temporal relationships.
Evaluation protocols. We randomly select 200 samples
from the STAR validation set and run inference on them us-
ing the suffix prompt, recording the generated rationales.
From these rationales, we extract the predicted tempo-
ral windows and bounding boxes, comparing them to the
ground truth. For the spatial part, we calculate the IoU be-
tween the predicted and ground truth bounding boxes. For
the temporal part, we compute IoU and Recall, leveraging
the frame-level annotations provided in the dataset.
Evaluation results. Table 7 presents the evaluation re-
sults. For comparison, we also test UniVTG for temporal
reasoning and OWL-ViT v2 for spatial reasoning. The re-

Model
Temporal Grounding Spatial Grounding

IoU (%) Recall (%) IoU (%)

UniVTG 22.8 31.0 -
OWL-ViT v2 - - 64.7
LNV-Instruct ✂ ✂ ✂
LNV-AoTD 21.7 34.0 45.2

Table 7. Temporal and spatial abilities evaluation results.

sults show that LNV-Instruct struggles to generate valid ra-
tionales, even when using the suffix prompt. In contrast,
LNV-AoTD demonstrates comparable performance to spe-
cialized models in both spatial and temporal reasoning, in-
dicating that the model successfully acquired these abilities
through the distillation process.

5. Conclusion

We present Agent-of-Thoughts Distillation (AoTD), that
aims to distill multi-step reasoning and spatial-temporal
understanding into a large video-language model (Video-
LLM). Our method introduces an agent-based system that
automates the generation of Chain-of-Thoughts (CoTs)
from various VideoQA datasets, by breaking down complex
questions into manageable sub-tasks that can be addressed
by specialized vision models. Extensive experiments vali-
date that the distilled model significantly enhances perfor-
mance on both MC-VQA and OE-VQA benchmarks, un-
derscoring the effectiveness of our approach. We believe
AoTD represents a promising future direction for advanc-
ing the reasoning abilities in Video-LLMs.
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