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Figure 1. Left: Regular vision models such as SigLIP [44] processes images at a low resolution (e.g., 378 × 378 pixels), which is not
enough for many daily tasks such as spotting the stop sign while driving. In contrast, PS3 is able to both encode low-res features and
efficiently process high-res information of 4K-resolution images via top-down patch selection, i.e., selectively processing relevant patches
based on any text prompt. Top Right: SigLIP is pre-trained by contrasting global vision features and global captions, which is costly for
high-resolution images. PS3 is pre-trained with additional contrast between local high-res features with local captions, enabling pre-training
at 4K resolution with 79× less cost than SigLIP. Bottom Right: VILA-HD uses PS3 to selectively process high-res regions based on the user
prompt, outperforming state-of-the-art MLLMs such as Qwen2-VL [38] on the proposed 4KPro benchmark while achieving 2.96× speedup.

Abstract

High-resolution perception of visual details is crucial for
daily tasks. Current vision pre-training, however, is still
limited to low resolutions (e.g., 378×378 pixels) due to the
quadratic cost of processing larger images. We introduce
PS3 that scales CLIP-style vision pre-training to 4K res-
olution with a near-constant cost. Instead of contrastive
learning on global image representation, PS3 is pre-trained
by selectively processing local regions and contrasting them
with local detailed captions, enabling high-resolution rep-
resentation learning with greatly reduced computational
overhead. The pre-trained PS3 is able to both encode the
global image at low resolution and selectively process lo-
cal high-resolution regions based on their saliency or rele-
vance to a text prompt. When applying PS3 to multi-modal

*Work done during an internship at NVIDIA.

LLM (MLLM), the resulting model, named VILA-HD, signif-
icantly improves high-resolution visual perception compared
to baselines without high-resolution vision pre-training such
as AnyRes and S2 while using up to 4.3× fewer tokens. PS3
also unlocks appealing scaling properties of VILA-HD, in-
cluding scaling up resolution for free and scaling up test-time
compute for better performance. Compared to state of the
arts, VILA-HD outperforms previous MLLMs such as NVILA
and Qwen2-VL across multiple benchmarks and achieves bet-
ter efficiency than latest token pruning approaches. Finally,
we find current benchmarks do not require 4K-resolution
perception, which motivates us to propose 4KPro, a new
benchmark of image QA at 4K resolution, on which VILA-
HD outperforms all previous MLLMs, including a 14.5%
improvement over GPT-4o, and a 3.2% improvement and
2.96× speedup over Qwen2-VL.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Vision models with large-scale pre-training [8, 10, 25,
27] have been the workhorses for both fundamental vi-
sion tasks [13, 42] and numerous downstream applica-
tions [12, 28, 29]. Notably, CLIP-style vision pre-training
(i.e., vision-language contrastive learning) such as CLIP [27]
and SigLIP [44] have driven significant advancements in
multi-modal large language models (MLLMs) by providing
general-purpose language-aligned visual understanding in
real-world tasks [15, 17, 21].

However, modern vision models including CLIP and
SigLIP have one defect: they are pre-trained with low res-
olution only. Visual perception at high resolution (e.g., 4K
resolution) is essential in many real-world scenarios such as
spotting the stop sign while driving (Figure 1(Left)). On the
other hand, SigLIP, for example, is only pre-trained with a
maximum resolution of 378×378 [44], making it incapable
of perceiving visual details and thus unsuitable for assisting
humans in everyday tasks. Existing methods propose to run
pre-trained vision models at higher resolution in a training-
free manner for downstream tasks [6, 18, 32]. However, this
prevents the model from leveraging large-scale pre-training
data to learn high-quality high-resolution perception, result-
ing in suboptimal performance [32].

What blocks the current vision pre-training from scaling
to higher resolution? The computational cost. The compute
spent by the vision model grows quadratically for CNNs and
quartically for ViTs with increasing resolution, making it
even infeasible to pre-train over 1K resolution [25, 44].

In this work, we introduce Pre-training with Scale-
Selective Scaling, or PS3, that scales CLIP-style pre-training
to 4K resolution with a near-constant cost. The key insight
is that, instead of contrasting between global images and
captions for the whole high-res image, it suffices to contrast
between local regions and local captions to learn detailed
feature extraction in high-resolution images. For example,
in Figure 1(Left, Top Right), to learn to recognize the text
on the stop sign, the model only needs to extract the high-
resolution feature around the local region of the text and
align it with the detailed description about the region. This
is analogous to top-down selection mechanism in human
vision [3, 48], i.e., one usually focuses on a small portion
of the scene that is relevant to the high-level task (e.g., spot-
ting the stop sign). In this way, the model enjoys greatly
reduced computational cost by being scale-selective, i.e.,
selectively processing a small region at fine-grained scale.
By disentangling the region size from the image resolution,
we are able to scale PS3 pre-training to 4K resolution with
a near-constant cost, reducing the pre-training compute by
79× compared to global contrastive learning of SigLIP (Fig-
ure 1(Top Right)).

The success of PS3 pre-training hinges on addressing
three challenges: data, model, and algorithm. First, since the

low-resolution image-text pairs used for CLIP pre-training
is not suitable for PS3 pre-training, we collect 75M images
with up to 4K resolution and build an automatic pipeline
to curate 282M pairs of detailed captions and bounding
boxes of salient local regions in the images. Second, we de-
sign a vision model that can not only extract low-resolution
global features, but also select local patches based on image
saliency or text queries and process high-resolution details
of the patches. Third, we design an algorithm that pre-trains
high-resolution perception through contrastive loss between
local regions and local captions and pre-trains patch selection
with supervision from the curated bounding boxes.

We show PS3 enables high-quality and efficient high-
resolution perception in multi-modal LLMs (MLLMs).
Specifically, we train a modern MLLM [21] using pre-
trained PS3 as the vision encoder. The resulting MLLM,
named VILA-HD, is capable of capturing the global image
at low resolution and extracting high-resolution details in
the local regions selected based on the user prompt. Evalu-
ated on seven benchmarks that require high-res perception,
VILA-HD significantly improves the performance over base-
line MLLMs that use either the original low-res SigLIP or
approaches such as S2 [32] and AnyRes [6, 18] that scale
up the resolution of SigLIP without high-resolution vision
pre-training, while using 4.3× fewer tokens compared to
the AnyRes baseline. PS3 also unlocks several intriguing
scaling properties of VILA-HD, for example, scaling up
the resolution without extra cost by selecting a constant
number of high-res patches and trading more compute for
higher performance at test time by selecting larger high-res
regions. We further show in the Appendix that, with a more
advanced training recipe, VILA-HD is able to surpass state-
of-the-art MLLMs such as NVILA [21] and Qwen2-VL [38]
on various benchmarks and achieve superior efficiency and
performance over latest token pruning approaches [2, 5, 43].

Despite the superior performance of PS3, we find most
existing benchmarks do not actually require 4K resolution.
Therefore, we introduce 4KPro, a benchmark that evaluates
visual perception at 4K resolution in four professional use
cases including autonomous vehicle, household, gaming,
and UI understanding. For each category, 4KPro contains
image QA pairs where each question can only be answered
under 4K resolution. On 4KPro, PS3 shows a significant
improvement of 15% over S2 and AnyRes baselines and
achieves state-of-the-art results compared to both propri-
etary and open-sourced MLLMs including GPT-4o [11] and
Qwen2-VL [38] while being up to 2.96× faster than Qwen2-
VL (Figure 1(Bottom Right)).

2. PS3: Vision Pre-Training at 4K Resolution
Based on the paradigm of contrastive language-image pre-
training (CLIP) [27] which optimizes a contrastive loss
between global images and global captions, we propose
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Figure 2. Pre-training data example. Each instance contains
an image with resolution up to 4K, bounding boxes of the salient
regions in the image, and captions about details in the regions such
as text or small objects.

PS3 which instead optimizes the contrast loss between lo-
cal regions and detailed captions about the regions (Fig-
ure 1(Upper Right)). In this way, the model efficiently
learns language-aligned detailed representation by being
scale-selective, i.e., only processing the selected regions at
a fine-grained scale. This detaches the computational cost
from the global image size, allowing us to scale up to ultra-
high image resolution during pre-training by controlling the
size of the local regions.

The scale-selective pre-training requires a redesign of
data, model, and algorithm. We first collect 75M high-
resolution images with 282M pairs of bounding boxes and
captions of salient local regions (Section 2.1). We then
design the architecture of PS3 that can both encode low-
resolution global images and select local high-resolution
patches to process based on image saliency or their rele-
vance to a text prompt (Section 2.2). We finally pre-train
PS3 jointly with localized contrastive loss for high-res per-
ception and box supervision for patch selection (Section 2.3).

2.1. Pre-Training Data of PS3

To learn fine-grained perception in high-res images through
contrastive loss between local regions and captions, we need
to collect high-res images together with bounding boxes
and captions of local regions in each image. We need to
make sure the local regions contain rich details in order
for the model to learn fine-grained representation. In this
work, we collect 75M high-res images with 282M pairs of
bounding boxes and local captions for both natural images
and document images. Specifically, we propose a pipeline
of first detecting the salient regions containing fine-grained
details using SAM [13, 47] and then captioning the salient
regions using off-the-shelf MLLMs [38]. The detail of data
curation approach is explained in the Appendix. An example
of the pre-training data is shown in Figure 2, and more
examples can be found in the Appendix.

2.2. Model Design of PS3
We design the model such that given a high-res image, it
can 1) extract low-res global features, 2) select local regions
based on saliency or their relevance to a input text prompt,
and 3) extract high-res features of the selected regions. The
whole model can be divided into three stages correspond-
ing to these three capabilities respectively, as illustrated in
Figure 3. The design of each stage is detailed below.

Stage 1: Low-res feature extraction. We use the same vi-
sion transformer (ViT) architecture as SigLIP-SO400M [44]
to extract low-res features. The image is resized to 378×378
which corresponds to 27×27 output tokens.

Stage 2: Top-down or bottom-up patch selection. In this
stage, the model selects important regions either based on
their relevance to a text prompt (i.e., top-down selection)
or based on the saliency of the region itself (i.e., bottom-
up selection) [3, 48]. See Figure 4(Left) for examples of
such selection. To achieve this, the model predicts a selection
score for each spatial position of the image by calculating the
cosine similarity between the low-res visual features (from
Stage 1) and the embedding of the prompt. The prompt
embedding is either the text embedding for top-down selec-
tion or a constant learnable vector for bottom-up selection,
following [31]. The text embedding comes from the text
encoder in our contrastive pre-training.

The selection score is calculated with low-res features
only, making it infeasible to locate fine-grained details. To
alleviate this issue, we predict additional high-res selection
score following the same process but with auxiliary high-
res features extracted by a light-weight encoder. The light-
weight encoder is a ConvNeXt [20] model with only 3 blocks
and extracts features at 1512 resolution. The high-res and
low-res selection scores are then interpolated to the same
size and averaged as the final score.

Stage 3: High-res multi-scale feature extraction. Stage 3
consists of a few key steps. 1) Selecting top-k multi-scale
high-res patches. The model first resizes the high-res im-
age to a set of pre-defined scales and patchifies each. For
example, we use three scales of 756×756, 1512×1512, and
3780×3780 for a maximum resolution of 4K. Each is then
patchified to 54×54, 108×108, and 270×270 patches, re-
spectively. The selection score from Stage 2 is also inter-
polated into the same each size. Then for each scale, top-k
patches with the highest score are selected. Note that k can
vary for different scales. During pre-training, we set k for
each scale to be proportional to the total number of patches
at that scale. 2) Scale-aware positional embedding. We
add positional embedding for each token by interpolating
the original low-res positional embedding and selecting the
embeddings that correspond to the selected patches. On
top of that, we add a new learnable scale-specific positional
embedding to tokens from each scale. 3) High-res feature
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Figure 3. Model architecture of PS3. The model consists of 3 stages. In Stage 1, the model encodes global low-resolution features. In
Stage 2, based on the low-resolution features as well as auxiliary high-resolution features extracted by a light-weight encoder, the model
selects local regions that are either relevant to a text prompt (top-down selection) or salient by themselves (bottom-up selection). In Stage 3,
the model processes multi-scale high-res patches from the selected regions with the same encoder from Stage 1. KV cache from the low-res
tokens in Stage 1 is added to the self-attention layers to provide a global context for local high-res encoding.

extraction with low-res KV cache. The selected patches
from different scales are gathered and simultaneously pro-
cessed by the same ViT as in Stage 1. To make the local
high-res features aware of the global visual context, we aug-
ment the K and V in the self-attention layers with the K
and V from the corresponding layer in the low-res feature
extraction, similar to the KV cache in modern LLMs [26].

2.3. Pre-Training Algorithm of PS3
PS3 is pre-trained to jointly learn 1) detailed visual repre-
sentation through localized contrastive loss and 2) top-down
and bottom-up patch selection from box supervision.

Learning high-res visual representation. Given the paired
data of high-res images and detailed local captions, we use
PS3 to extract the high-res features of the local regions as
described in Section 2.2, extract text embedding of the local
captions using a text encoder, and optimize a contrastive loss
between the high-res visual features and the text embeddings.
The total number of selected high-res patches for each image
is limited to 2560 during pre-training for efficiency, while
one can choose to select more tokens for downstream appli-
cations (Section 3.1). We use the same sigmoid contrastive
loss as in SigLIP [44]. Both the ViT backbone in PS3 and
the text encoder are initialized with the pre-trained SigLIP.

There are several key designs in the contrastive pre-
training. The effect of each design is studied in Appendix.
1) Using ground-truth selection score for patch selection.
Normally PS3 selects patches based on the local caption.
However, in pre-training, to avoid inaccuracy in the selection
score predicted by the model which may lead to selecting
irrelevant regions, we use selection score generated from the
ground-truth bounding box. This is similar to Teacher Forc-
ing [39] in training recurrent neural networks. The ground
truth selection score is generated by setting the score inside
the box to 1 and others to 0. 2) Pooling only tokens in

the ground-truth boxes. SigLIP uses attention pooling to
compress all the output tokens into one for contrastive loss.
When a box contains fewer patches than the pre-set k, the
model will select patches outside the box as well. Pooling
both tokens inside and outside the box results in aligning
irrelevant visual features to the text embedding in contrastive
loss. To avoid this, we constrain the attention pooling to
only tokens inside the box. 3) Mixing global and local
contrast. We empirically find that optimizing contrastive
loss only between local regions and captions can degrade
the quality of global low-res representations. To this end, we
mix global and local contrast, i.e., each batch contains both
pairs of global low-resolution features and global caption
embeddings and pairs of local high-resolution features and
local caption embeddings. 4) Avoiding intra-image con-
trast. Since we have multiple local boxes and captions for
each high-res image, there is a chance that one batch con-
tains multiple local regions from the same image. It can be
problematic to contrast visually similar regions of the same
image [4]. We make sure each image only appears once in a
batch to avoid intra-image contrast.

Learning top-down and bottom-up patch selection. For
top-down patch selection, we supervise the selection score
predicted from local captions by treating it as a binary se-
mantic segmentation problem. Specifically, the ground truth
segmentation map has value 1 inside the ground-truth box
and 0 outside. A position-wise cross entropy loss as well
as a DICE loss [34] is then optimized between the selec-
tion score map and the ground-truth map. For bottom-up
selection, since the boxes for each image are already la-
beled around salient regions, we directly use these boxes
to generate ground truth segmentation map and supervise
the predicted bottom-up selection score in the same way
as above. Figure 4(Left) shows examples of the learned
top-down and bottom-up patch selection.
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Figure 4. Qualitative examples of patch selection. Left: PS3 can select patches based on image saliency (denoted by ∅) or local captions.
Middle & Right: VILA-HD with PS3 is fine-tuned to select patches based on questions about local regions.
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Figure 5. Model design of VILA-HD. VILA-HD first extracts the
low-res image features using PS3 and sends them along with the
text tokens to the LLM. The last-layer embedding of the last token
is used to select high-res patches to encode in PS3. VILA-HD can
select and encode up to 2560×N high-res patches by running patch
selection for N times.

3. VILA-HD: Enabling High-Resolution
MLLM with PS3

We apply PS3 to MLLMs to enhance their high-resolution
perception capability. Specifically, we propose VILA-HD,
an MLLM with PS3 as the vision encoder that shows suprior
performance and efficiency in processing images of up to 4K
resolution. In the following we introduce the model design
(Section 3.1) and training recipe (Section 3.2) of VILA-HD.

3.1. Building VILA-HD with PS3

VILA-HD is built based on NVILA [21] but with the vision
encoder replaced by PS3. The model design of VILA-HD
is illustrated in Figure 5. We first extract the global low-res
features following Stage 1 of PS3 and send them along with
the text tokens to LLM. We then select high-res patches in
either a bottom-up or a top-down way. Bottom-up selection
is exactly the same as in pre-training. For top-down selection,
since we need to select regions that can help answer the
user’s question, instead of using the text embedding from
the SigLIP text encoder as the prompt, we use the latent

embedding of the last token in the user’s text input from the
last layer of LLM as the prompt embedding. This is inspired
by LISA [14] which uses the same embedding for reasoning
segmentation. Finally, the selected high-res patches are
encoded by Stage 3 of PS3 and sent to LLM after the text
tokens, from which the following text generation resumes.
We also add an additional positional embedding to the high-
res features such that LLM is aware of the spatial positions of
the selected patches. Note that while the number of selected
high-res patches is limited to 2560 during pre-training, one
can select an arbitrary number of patches when applying
to MLLMs by running patch selection and high-res feature
extraction for multiple times. For example, to select 3840
high-res patches, one can first select the top 2560 patches to
process in Stage 3, and then select another top 1280 patches
among the rest of the unselected patches and process them
in Stage 3.

3.2. Training VILA-HD

The whole model is trained with the normal next-token-
prediction loss. We also jointly fine-tune the top-down patch
selection since it uses different prompt embeddings from
pre-training. To achieve this, we collect data of high-res
images paired with questions about local regions as well
as their bounding boxes. Images and bounding boxes are
directly sampled from the pre-training data (Section 2.1) and
questions are automatically generated from the local captions
using LLaMA-3.1 [9]. During training, low-res image and
question are input to LLM, the output last-layer embedding
is used for patch selection, and the predicted selection map
is supervised by the ground-truth bounding box following
the same objective as in Section 2.3. See Figure 4(Middle &
Right) for visualization of the fine-tuned patch selection. To
better align the high-res features from PS3 to the text space
of VILA-HD, we collect high-res QA data and mix it into
the training data mixture, which is detailed in Appendix.

9635



AnyRes PS3 (test-time scaling)Original (SigLIP) PS3S

(a) All results (b) Whole-image resolution scaling (c) Constant-cost scaling (d) Constant-resolution scaling (e) Test-time scaling

0 3840729 1600
#HR token for MLLM

Figure 6. Scaling properties of PS3. (a) Overall results. We report average performance of VILA-HD with PS3 on seven benchmarks. (b)
PS3 scales better than baselines without high-res pre-training when all high-res patches are selected. (c) PS3 can benefit from processing
higher resolution even while selecting a fixed number of high-res patches. (d) At a fixed resolution, PS3 trades compute for performance by
selecting more high-res patches. (e) PS3 can select more high-res patches at test time for better performance.

4. Scaling Properties of PS3
We first evaluate how the performance of PS3 scales with
the pre-training resolution. Specifically, we pre-train PS3
at three resolutions of 756, 1512, and 3780. We then train
VILA-HD with each PS3 model and evaluate. We show
four types of scaling: 1) Whole-image resolution scaling.
PS3 selects all the high-res patches for VILA-HD. This
is to compare the high-res feature quality of PS3 with the
baselines that also process all high-res patches. 2) Constant-
cost scaling. For PS3 pre-trained at different resolutions,
we select a constant number of high-res patches for VILA-
HD. This evaluates if performance scales “for free”, i.e., by
maintaining a constant downstream training and inference
cost (note that the pre-training cost is already near-constant).
3) Constant-resolution scaling. Pre-trained at the same
resolution, we select increasingly more high-res patches
when training VILA-HD. This evaluates if we gain benefits
from selecting more patches in downstream without touching
pre-training. 4) Test-time scaling. Similar to 3), but we
increase the number of high-res patches at test time. Figure 6
shows the scaling curves and the full results are in Appendix.

Experiment settings. PS3 is initialized with SigLIP-
SO400M [44] before pre-training. For evaluation, we re-
port average accuracy on seven resolution-sensitive bench-
marks: TextVQA [33], ChartQA [22], DocVQA [23], In-
foVQA [24], OCRBench [19], V∗Bench [40], and Real-
WorldQA [41]. We compare PS3 to the original SigLIP as
well as two baselines, AnyRes [6, 18] and S2 [32], that run
SigLIP at larger resolution in a training-free way by splitting
large images into smaller tiles. See Appendix for the detailed
training and evaluation setting.

4.1. Whole-Image Resolution Scaling
Results are shown in Figure 6(b). We can see that the effect
of scaling up resolution is significant, where PS3 at 1512 res-
olution improves 14.2% over SigLIP baseline. Compared to

AnyRes and S2, PS3 shows consistent improvements across
different resolution while using a similar number of high-res
tokens. For example, at 1512 resolution, PS3 improves by
2.4% over S2 and 6.9% over AnyRes which is commonly
used by modern MLLMs [6, 15]. Since all the methods are
processing the whole high-res image, the advantage of PS3
mainly comes from the improved high-res feature quality
which is brought by our high-res pre-training.

4.2. Constant-Cost Scaling
Scaling up resolution comes at a cost of quadratically in-
creasing number of tokens in Section 4.1. However, for PS3,
higher resolution is still beneficial even when selecting a
constant number of patches (Figure 6(c)). For example, se-
lecting 729 (20%) patches with 1512 resolution improves the
accuracy by 2% over selecting 729 (100%) patches with 756
resolution. This is because at 756 resolution, not all patches
are relevant to the user’s questions, and by scaling up the
resolution, there are fewer irrelevant 756-resolution patches
but more relevant 1512-resolution patches being selected,
thanks to our top-down selection mechanism. Comparing to
AnyRes, PS3 achieves 58.2% accuracy at resolution of 1512
through constant-cost scaling, improving over AnyRes by
2% accuracy while using 5× fewer tokens. This also enables
scaling up 4K resolution for VILA-HD with a constant cost
and achieving 63.9% accuracy, improving over S2 by 3.1%
with fewer tokens.

4.3. Constant-Resolution Scaling
Pre-trained at a fixed resolution, PS3 can flexibly select
different number of patches for VILA-HD to trade com-
pute for performance. As shown by Figure 6(d), selecting
more patches at 1512 resolution consistently improves per-
formance. By increasing the number of patches from 729
(20%) to 1600 (44%), PS3 is able to outperform S2 with only
half the number of high-res tokens. Further increasing to
3645 (100%) patches gives extra 2.2% performance boost.
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Figure 7. Examples from 4KPro and comparison of different models. Each example corresponds to one out of four categories and each
question can only be answered without ambiguity under 4K resolution. PS3 improves over the state-of-the-art MLLMs.

< 1K

ChartQA

OCRBench
TextVQA

RealWorldQA
DocVQA

V*Bench
InfoVQA

4KP
ro

2K - 4K

Image Resolution Minimum Recognizable Resolution

1K - 2K

Figure 8. Image resolution and MRR of different benchmarks.
Existing benchmarks contain high-res images but the resolution
required to answer the questions (MRR) is mostly under 1K. In
contrast, 4KPro contains questions only solvable at 4K resolution.

4.4. Test-Time Scaling
Constant-resolution scaling is still valid at test time, i.e., we
select a fixed number of high-res patches during training
but select more at test time. As shown in Figure 6, at 1512
resolution, we can train with 20% high-res patches and test
with 44% patches, which improves the accuracy by 1.2%.
Similarly, training with 40% patches but testing with 100%
patches gives an improvement of 0.9%. Note that scaling
at test time still performs worse than training time since the
MLLM learns better by seeing more patches at training time.

5. 4KPro: Benchmarking PS3 at 4K Resolution
Despite the suprior performance of PS3 on existing bench-
marks (Section 4), we find these benchmarks do not ac-
tually require high resolution visual perception, especially
4K-resolution perception, even though some of them con-
tain high-resolution images. Specifically, we examine the
minimum recognizable resolution (MRR) of the existing
benchmarks, i.e., the minimum resolution required to an-
swer the questions. We calculate the MRR by randomly
sampling examples from a benchmark, manually checking
the minimum resolution (4K, 2K, or 1K) under which the
visual details are clear enough to answer each question, and
averaging the minimum resolutions of different samples. As
shown in Figure 8, even though benchmarks like DocVQA
and V∗Bench already contain images at 4K resolution, the
MRR is mostly around 1K. InfoVQA has the highest MRR

PS3

Original (SigLIP)

AnyRes

S

PS3 (test-time scaling)

0 #HR token 7680

Figure 9. Scaling properties of PS3 on 4KPro. PS3 shows con-
sistently improved performance by scaling to 4K resolution and
greatly outperforms the baselines.

of 2K, although it is solely focused on infographic under-
standing. To effectively evaluate 4K-resolution perception in
real-world tasks, we introduce 4KPro which collects image
QA pairs with MRR of 4K from four professional use cases
including autonomous vehicle, household, gaming, and UI
understanding. Each QA pair is in the form of multi-choice
problem with four options. Examples of 4KPro are shown in
Figure 7. We detail the data curation process in Appendix.

5.1. Main Results

Scaling properties of PS3. We evaluate the performance of
VILA-HD when scaling up the resolution of PS3. Results
are shown in Figure 9. We can see PS3 outperforms other
baselines at resolution of 756 and 1512. While it is infeasible
to scale to 4K resolution for the baselines, we are able to
train PS3 at 4K resolution by selecting the same number
of high-res patches as 1512 resolution. This constant-cost
scaling improves the performance by 4.8%. Taking a step
further, we can double the number of high-res patches at
test time to boost the performance by another 8.2%. On the
other direction, we can also shrink the number of patches by
3×, achieving 48.4% accuracy which is 3.2% higher than
AnyRes at 1512 resolution while using 2.5× fewer tokens.

Comparison to state of the arts. We compare the per-
formance of VILA-HD with PS3 at 3780 resolution with
other proprietary or open-source MLLMs (Table 2). Please
see training details in Appendix. The best proprietary
MLLMs achieves accuracy of 59.7%. For open-source mod-
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Table 1. Comparing VILA-HD to state-of-the-art MLLMs. Res. is the maximum resolution each model supports. Some models (e.g.,
Qwen2-VL, InternVL2) can accept input images of different aspect ratios, for which the resolution is calculated as square root of the
maximum number of pixels the model can take in. Select is the high-res patch selection ratio of PS3 at test time. #Token is the total number
of visual tokens fed into LLM under the maximum input resolution.

Res. Select #Token Chart Doc Info Math MMB MMMUP OCR V∗ RWQA Text 4KPro

VILA-1.5-8B [16] 336 - 576 52.7 40.6 25.9 36.7 68.9 - - - 52.7 68.5 33.9
Cambrian-1-8B [37] 1024 - - 73.3 77.8 - 49.0 75.9 - 624 59.2 64.2 71.7 50.0
NVILA-8B [21] 1552 - 3072 86.1 93.7 70.7 65.4 87.6 33.6 794 67.2 66.4 80.1 58.1
MM1.5-7B [45] 2016 - 5184 78.6 88.1 59.5 47.6 - - 635 - 62.5 76.5 -
LLaVA-OV-7B [15] 2304 - 7252 80.0 87.5 68.8 63.2 80.8 29.5 - 69.2 66.3 - 67.7
IXC2-4KHD [7] 2479 - 7920 81.0 90.0 68.6 57.8 80.2 - 675 - - 77.2 42.8
IXC-2.5-7B [46] 2743 - 10000 82.2 90.9 70.0 59.6 82.2 - 690 45.6 67.8 78.2 32.3
InternVL2-8B [36] 2833 - 10496 83.3 91.6 74.8 58.3 81.7 32.5 794 65.8 64.4 77.4 58.1
Qwen2-VL-7B [38] 3584 - 16384 83.0 94.5 76.5 58.2 - - 866 71.0 70.1 84.3 71.0

1512 33% 1411 81.3 88.4 58.2 65.3 91.8 35.0 768 67.3 68.4 77.3 50.0
1512 67% 2626 84.2 91.9 65.3 66.0 91.8 35.1 776 67.5 68.6 78.0 53.2VILA-HD-1.5K-8B
1512 100% 3841 84.3 92.0 67.4 64.6 92.6 35.0 782 68.1 68.9 78.4 59.7

3780 6% 1476 82.2 87.1 57.9 63.9 90.8 34.6 753 68.2 66.5 72.2 62.9
3780 12% 2756 83.8 91.5 64.5 64.6 91.8 34.7 773 68.8 66.9 77.9 68.8VILA-HD-4K-8B
3780 18% 4036 84.3 91.7 65.3 64.5 91.8 33.5 774 71.2 70.3 77.9 72.6

Table 2. Comparing VILA-HD to state-of-the-art MLLMs on
4KPro. VILA-HD outperforms Qwen2-VL which has the best
performance among existing MLLMs while having a lower latency.

Model Select Latency Acc.

GPT-4o [11] - - 59.7
Claude 3.5 Sonnet [1] - - 29.0
Gemini-1.5-Pro [35] - - 59.7

NVILA-8B [21] - 0.82s 58.1
Cambrian-1-8B [37] - 2.78s 50.0
InternVL2-8B [36] - 1.65s 58.1
IXC-2.5-7B [46] - 2.11s 32.3
LLaVA-OneVision-7B [15] - 1.75s 67.7
Qwen2-VL-7B-Instruct [38] - 3.61s 71.0

VILA-HD-4K 18% 1.22s 72.6
VILA-HD-4K 35% 1.91s 74.2

els, Qwen2-VL-7B-Instruct performs the best at 71.0% ac-
curacy, although at a cost of larger latency than other models
due to processing the full high-resolution images in its vision
encoder. On the other hand, VILA-HD-4K (i.e., VILA-HD
model with 4K-resolution PS3) achieves 74.2% accuracy
at 3780 resolution when selecting 35% patches, which im-
proves over both the proprietary models and the state-of-the-
art open-source model (Qwen2-VL) while having a lower
latency. By selecting fewer patches (e.g., 18%), VILA-HD-
4K still maintains superior performance of 72.6% while
enjoying only 1/3 of the latency comparing to Qwen2-VL.
See Figure 7 for qualitative examples.

6. Comparison to State of the Arts

In this section, we compare VILA-HD with other state-of-
the-art MLLMs. See the experiment settings in Appendix.
We also compare the efficiency of PS3 with other token
pruning methods [2, 5, 43] and verify the generalizability

of PS3 pre-training to different state-of-the-art vision en-
coders [30, 44] in Appendix.

As shown in Table 1, VILA-HD shows competitive perfor-
mance compared to state-of-the-art MLLMs such as NVILA
and Qwen2-VL and achieves the best results in 6 out of 11
benchmarks. Specifically, VILA-HD-1.5K achieves the best
results on benchmarks that have the MRR around 512-1K in-
cluding MathVista, MMBench, and MMMU-Pro, and VILA-
HD-4K obtains state-of-the-art performance on benchmarks
that require more detailed understanding (MRR between
1K and 4K) such as V∗Bench, RealWorldQA, and 4KPro,
surpassing NVILA despite using the same recipe and less
data, showing the effect of PS3 pre-training. Note that this
is achieved by selecting only 18% of the high-res patches,
showing both the efficacy and efficiency of our model. We
further show that PS3 can achieve even higher efficiency
with only minor performance degradation on most bench-
marks. Specifically, by selecting only 6% patches for PS3, it
maintains competitive performance of VILA-HD-4K while
only using 1476 tokens for a maximum resolution of 4K
which is less than 1/10 of #token of Qwen2-VL. We can see
the performance stays similar compared to 18% patch selec-
tion for benchmarks such as TextVQA and RealWorldQA,
and only has minor drops for CharQA and V∗Bench.

7. Conclusion

We propose PS3, a scalable CLIP-style vision pre-training
method for 4K resolution with near-constant cost. It learns
high-res perception via localized contrast by encoding a
low-res global image and selectively processing key high-
res regions based on image saliency or text prompts. PS3
powers VILA-HD, a high-res MLLM that scales with pre-
training resolution and outperforms state-of-the-art MLLMs
efficiently. We also introduce 4KPro, a 4K visual perception
benchmark, where VILA-HD sets a new state of the art.
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